Struct rustc_trait_selection::infer::at::At
source · pub struct At<'a, 'tcx> {
pub infcx: &'a InferCtxt<'tcx>,
pub cause: &'a ObligationCause<'tcx>,
pub param_env: ParamEnv<'tcx>,
}
Fields§
§infcx: &'a InferCtxt<'tcx>
§cause: &'a ObligationCause<'tcx>
§param_env: ParamEnv<'tcx>
Implementations§
source§impl<'a, 'tcx> At<'a, 'tcx>
impl<'a, 'tcx> At<'a, 'tcx>
sourcepub fn sup<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn sup<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
Makes actual <: expected
. For example, if type-checking a
call like foo(x)
, where foo: fn(i32)
, you might have
sup(i32, x)
, since the “expected” type is the type that
appears in the signature.
See At::trace
and Trace::sub
for a version of
this method that only requires T: Relate<'tcx>
sourcepub fn sub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn sub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
Makes expected <: actual
.
See At::trace
and Trace::sub
for a version of
this method that only requires T: Relate<'tcx>
sourcepub fn eq<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn eq<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn relate<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
variance: Variance,
actual: T
) -> Result<InferOk<'tcx, ()>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
sourcepub fn lub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, T>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn lub<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, T>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
Computes the least-upper-bound, or mutual supertype, of two values. The order of the arguments doesn’t matter, but since this can result in an error (e.g., if asked to compute LUB of u32 and i32), it is meaningful to call one of them the “expected type”.
See At::trace
and Trace::lub
for a version of
this method that only requires T: Relate<'tcx>
sourcepub fn glb<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, T>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
pub fn glb<T>(
self,
define_opaque_types: DefineOpaqueTypes,
expected: T,
actual: T
) -> Result<InferOk<'tcx, T>, TypeError<'tcx>>where
T: ToTrace<'tcx>,
Computes the greatest-lower-bound, or mutual subtype, of two
values. As with lub
order doesn’t matter, except for error
cases.
See At::trace
and Trace::glb
for a version of
this method that only requires T: Relate<'tcx>
sourcepub fn trace<T>(self, expected: T, actual: T) -> Trace<'a, 'tcx>where
T: ToTrace<'tcx>,
pub fn trace<T>(self, expected: T, actual: T) -> Trace<'a, 'tcx>where
T: ToTrace<'tcx>,
Sets the “trace” values that will be used for error-reporting, but doesn’t actually perform any operation yet (this is useful when you want to set the trace using distinct values from those you wish to operate upon).
Trait Implementations§
source§impl<'tcx> NormalizeExt<'tcx> for At<'_, 'tcx>
impl<'tcx> NormalizeExt<'tcx> for At<'_, 'tcx>
source§fn normalize<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> InferOk<'tcx, T>
fn normalize<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> InferOk<'tcx, T>
Normalize a value using the AssocTypeNormalizer
.
This normalization should be used when the type contains inference variables or the projection may be fallible.
source§fn deeply_normalize<T: TypeFoldable<TyCtxt<'tcx>>>(
self,
value: T,
fulfill_cx: &mut dyn TraitEngine<'tcx>
) -> Result<T, Vec<FulfillmentError<'tcx>>>
fn deeply_normalize<T: TypeFoldable<TyCtxt<'tcx>>>( self, value: T, fulfill_cx: &mut dyn TraitEngine<'tcx> ) -> Result<T, Vec<FulfillmentError<'tcx>>>
Deeply normalizes value
, replacing all aliases which can by normalized in
the current environment. In the new solver this errors in case normalization
fails or is ambiguous.
In the old solver this simply uses normalizes
and adds the nested obligations
to the fulfill_cx
. This is necessary as we otherwise end up recomputing the
same goals in both a temporary and the shared context which negatively impacts
performance as these don’t share caching.
FIXME(-Znext-solver): This has the same behavior as traits::fully_normalize
in the new solver, but because of performance reasons, we currently reuse an
existing fulfillment context in the old solver. Once we also eagerly prove goals with
the old solver or have removed the old solver, remove traits::fully_normalize
and
rename this function to At::fully_normalize
.
source§impl<'cx, 'tcx> QueryNormalizeExt<'tcx> for At<'cx, 'tcx>
impl<'cx, 'tcx> QueryNormalizeExt<'tcx> for At<'cx, 'tcx>
source§fn query_normalize<T>(self, value: T) -> Result<Normalized<'tcx, T>, NoSolution>where
T: TypeFoldable<TyCtxt<'tcx>>,
fn query_normalize<T>(self, value: T) -> Result<Normalized<'tcx, T>, NoSolution>where
T: TypeFoldable<TyCtxt<'tcx>>,
Normalize value
in the context of the inference context,
yielding a resulting type, or an error if value
cannot be
normalized. If you don’t care about regions, you should prefer
normalize_erasing_regions
, which is more efficient.
If the normalization succeeds and is unambiguous, returns back the normalized value along with various outlives relations (in the form of obligations that must be discharged).
N.B., this will eventually be the main means of normalizing, but for now should be used only when we actually know that normalization will succeed, since error reporting and other details are still “under development”.
This normalization should only be used when the projection does not have possible ambiguity or may not be well-formed.
After codegen, when lifetimes do not matter, it is preferable to instead
use TyCtxt::normalize_erasing_regions
, which wraps this procedure.
source§impl<'tcx> StructurallyNormalizeExt<'tcx> for At<'_, 'tcx>
impl<'tcx> StructurallyNormalizeExt<'tcx> for At<'_, 'tcx>
fn structurally_normalize( &self, ty: Ty<'tcx>, fulfill_cx: &mut dyn TraitEngine<'tcx> ) -> Result<Ty<'tcx>, Vec<FulfillmentError<'tcx>>>
impl<'a, 'tcx> Copy for At<'a, 'tcx>
Auto Trait Implementations§
impl<'a, 'tcx> !DynSend for At<'a, 'tcx>
impl<'a, 'tcx> !DynSync for At<'a, 'tcx>
impl<'a, 'tcx> Freeze for At<'a, 'tcx>
impl<'a, 'tcx> !RefUnwindSafe for At<'a, 'tcx>
impl<'a, 'tcx> !Send for At<'a, 'tcx>
impl<'a, 'tcx> !Sync for At<'a, 'tcx>
impl<'a, 'tcx> Unpin for At<'a, 'tcx>
impl<'a, 'tcx> !UnwindSafe for At<'a, 'tcx>
Blanket Implementations§
source§impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T
fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]
source§impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T
fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T, R> CollectAndApply<T, R> for T
impl<T, R> CollectAndApply<T, R> for T
§impl<T> Filterable for T
impl<T> Filterable for T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<P> IntoQueryParam<P> for P
impl<P> IntoQueryParam<P> for P
fn into_query_param(self) -> P
source§impl<T> MaybeResult<T> for T
impl<T> MaybeResult<T> for T
§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<'tcx, T> ToPredicate<'tcx, T> for T
impl<'tcx, T> ToPredicate<'tcx, T> for T
fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T
source§impl<Tcx, T> Value<Tcx> for Twhere
Tcx: DepContext,
impl<Tcx, T> Value<Tcx> for Twhere
Tcx: DepContext,
default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed ) -> T
source§impl<T> WithSubscriber for T
impl<T> WithSubscriber for T
source§fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
source§fn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
impl<'a, T> Captures<'a> for Twhere
T: ?Sized,
impl<T> ErasedDestructor for Twhere
T: 'static,
Layout§
Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...)
attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.
Size: 24 bytes