1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
use rustc_data_structures::captures::Captures;
use rustc_data_structures::intern::Interned;
use rustc_errors::{DiagArgValue, IntoDiagArg};
use rustc_hir::def_id::DefId;
use rustc_hir::LangItem;
use rustc_span::Span;
use rustc_type_ir::ClauseKind as IrClauseKind;
use rustc_type_ir::PredicateKind as IrPredicateKind;
use std::cmp::Ordering;

use crate::ty::visit::TypeVisitableExt;
use crate::ty::{
    self, AliasTy, Binder, DebruijnIndex, DebugWithInfcx, EarlyBinder, GenericArg, GenericArgs,
    GenericArgsRef, ImplPolarity, Term, Ty, TyCtxt, TypeFlags, WithCachedTypeInfo,
};

pub type ClauseKind<'tcx> = IrClauseKind<TyCtxt<'tcx>>;
pub type PredicateKind<'tcx> = IrPredicateKind<TyCtxt<'tcx>>;

/// A statement that can be proven by a trait solver. This includes things that may
/// show up in where clauses, such as trait predicates and projection predicates,
/// and also things that are emitted as part of type checking such as `ObjectSafe`
/// predicate which is emitted when a type is coerced to a trait object.
///
/// Use this rather than `PredicateKind`, whenever possible.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable)]
#[rustc_pass_by_value]
pub struct Predicate<'tcx>(
    pub(super) Interned<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
);

impl<'tcx> rustc_type_ir::visit::Flags for Predicate<'tcx> {
    fn flags(&self) -> TypeFlags {
        self.0.flags
    }

    fn outer_exclusive_binder(&self) -> ty::DebruijnIndex {
        self.0.outer_exclusive_binder
    }
}

impl<'tcx> Predicate<'tcx> {
    /// Gets the inner `ty::Binder<'tcx, PredicateKind<'tcx>>`.
    #[inline]
    pub fn kind(self) -> ty::Binder<'tcx, PredicateKind<'tcx>> {
        self.0.internee
    }

    // FIXME(compiler-errors): Think about removing this.
    #[inline(always)]
    pub fn flags(self) -> TypeFlags {
        self.0.flags
    }

    // FIXME(compiler-errors): Think about removing this.
    #[inline(always)]
    pub fn outer_exclusive_binder(self) -> DebruijnIndex {
        self.0.outer_exclusive_binder
    }

    /// Flips the polarity of a Predicate.
    ///
    /// Given `T: Trait` predicate it returns `T: !Trait` and given `T: !Trait` returns `T: Trait`.
    pub fn flip_polarity(self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>> {
        let kind = self
            .kind()
            .map_bound(|kind| match kind {
                PredicateKind::Clause(ClauseKind::Trait(TraitPredicate {
                    trait_ref,
                    polarity,
                })) => Some(PredicateKind::Clause(ClauseKind::Trait(TraitPredicate {
                    trait_ref,
                    polarity: polarity.flip()?,
                }))),

                _ => None,
            })
            .transpose()?;

        Some(tcx.mk_predicate(kind))
    }

    #[instrument(level = "debug", skip(tcx), ret)]
    pub fn is_coinductive(self, tcx: TyCtxt<'tcx>) -> bool {
        match self.kind().skip_binder() {
            ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
                tcx.trait_is_coinductive(data.def_id())
            }
            ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => true,
            _ => false,
        }
    }

    /// Whether this projection can be soundly normalized.
    ///
    /// Wf predicates must not be normalized, as normalization
    /// can remove required bounds which would cause us to
    /// unsoundly accept some programs. See #91068.
    #[inline]
    pub fn allow_normalization(self) -> bool {
        match self.kind().skip_binder() {
            PredicateKind::Clause(ClauseKind::WellFormed(_)) => false,
            // `NormalizesTo` is only used in the new solver, so this shouldn't
            // matter. Normalizing `term` would be 'wrong' however, as it changes whether
            // `normalizes-to(<T as Trait>::Assoc, <T as Trait>::Assoc)` holds.
            PredicateKind::NormalizesTo(..) => false,
            PredicateKind::Clause(ClauseKind::Trait(_))
            | PredicateKind::Clause(ClauseKind::RegionOutlives(_))
            | PredicateKind::Clause(ClauseKind::TypeOutlives(_))
            | PredicateKind::Clause(ClauseKind::Projection(_))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::AliasRelate(..)
            | PredicateKind::ObjectSafe(_)
            | PredicateKind::Subtype(_)
            | PredicateKind::Coerce(_)
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(_))
            | PredicateKind::ConstEquate(_, _)
            | PredicateKind::Ambiguous => true,
        }
    }
}

impl rustc_errors::IntoDiagArg for Predicate<'_> {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(self.to_string()))
    }
}

impl rustc_errors::IntoDiagArg for Clause<'_> {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(self.to_string()))
    }
}

/// A subset of predicates which can be assumed by the trait solver. They show up in
/// an item's where clauses, hence the name `Clause`, and may either be user-written
/// (such as traits) or may be inserted during lowering.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable)]
#[rustc_pass_by_value]
pub struct Clause<'tcx>(
    pub(super) Interned<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
);

impl<'tcx> Clause<'tcx> {
    pub fn as_predicate(self) -> Predicate<'tcx> {
        Predicate(self.0)
    }

    pub fn kind(self) -> ty::Binder<'tcx, ClauseKind<'tcx>> {
        self.0.internee.map_bound(|kind| match kind {
            PredicateKind::Clause(clause) => clause,
            _ => unreachable!(),
        })
    }

    pub fn as_trait_clause(self) -> Option<ty::Binder<'tcx, TraitPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::Trait(trait_clause) = clause.skip_binder() {
            Some(clause.rebind(trait_clause))
        } else {
            None
        }
    }

    pub fn as_projection_clause(self) -> Option<ty::Binder<'tcx, ProjectionPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::Projection(projection_clause) = clause.skip_binder() {
            Some(clause.rebind(projection_clause))
        } else {
            None
        }
    }

    pub fn as_type_outlives_clause(self) -> Option<ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::TypeOutlives(o) = clause.skip_binder() {
            Some(clause.rebind(o))
        } else {
            None
        }
    }

    pub fn as_region_outlives_clause(
        self,
    ) -> Option<ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::RegionOutlives(o) = clause.skip_binder() {
            Some(clause.rebind(o))
        } else {
            None
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub enum ExistentialPredicate<'tcx> {
    /// E.g., `Iterator`.
    Trait(ExistentialTraitRef<'tcx>),
    /// E.g., `Iterator::Item = T`.
    Projection(ExistentialProjection<'tcx>),
    /// E.g., `Send`.
    AutoTrait(DefId),
}

impl<'tcx> DebugWithInfcx<TyCtxt<'tcx>> for ExistentialPredicate<'tcx> {
    fn fmt<Infcx: rustc_type_ir::InferCtxtLike<Interner = TyCtxt<'tcx>>>(
        this: rustc_type_ir::WithInfcx<'_, Infcx, &Self>,
        f: &mut std::fmt::Formatter<'_>,
    ) -> std::fmt::Result {
        std::fmt::Debug::fmt(&this.data, f)
    }
}

impl<'tcx> ExistentialPredicate<'tcx> {
    /// Compares via an ordering that will not change if modules are reordered or other changes are
    /// made to the tree. In particular, this ordering is preserved across incremental compilations.
    pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
        use self::ExistentialPredicate::*;
        match (*self, *other) {
            (Trait(_), Trait(_)) => Ordering::Equal,
            (Projection(ref a), Projection(ref b)) => {
                tcx.def_path_hash(a.def_id).cmp(&tcx.def_path_hash(b.def_id))
            }
            (AutoTrait(ref a), AutoTrait(ref b)) => {
                tcx.def_path_hash(*a).cmp(&tcx.def_path_hash(*b))
            }
            (Trait(_), _) => Ordering::Less,
            (Projection(_), Trait(_)) => Ordering::Greater,
            (Projection(_), _) => Ordering::Less,
            (AutoTrait(_), _) => Ordering::Greater,
        }
    }
}

pub type PolyExistentialPredicate<'tcx> = ty::Binder<'tcx, ExistentialPredicate<'tcx>>;

impl<'tcx> PolyExistentialPredicate<'tcx> {
    /// Given an existential predicate like `?Self: PartialEq<u32>` (e.g., derived from `dyn PartialEq<u32>`),
    /// and a concrete type `self_ty`, returns a full predicate where the existentially quantified variable `?Self`
    /// has been replaced with `self_ty` (e.g., `self_ty: PartialEq<u32>`, in our example).
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Clause<'tcx> {
        match self.skip_binder() {
            ExistentialPredicate::Trait(tr) => {
                self.rebind(tr).with_self_ty(tcx, self_ty).to_predicate(tcx)
            }
            ExistentialPredicate::Projection(p) => {
                self.rebind(p.with_self_ty(tcx, self_ty)).to_predicate(tcx)
            }
            ExistentialPredicate::AutoTrait(did) => {
                let generics = tcx.generics_of(did);
                let trait_ref = if generics.params.len() == 1 {
                    ty::TraitRef::new(tcx, did, [self_ty])
                } else {
                    // If this is an ill-formed auto trait, then synthesize
                    // new error args for the missing generics.
                    let err_args = ty::GenericArgs::extend_with_error(tcx, did, &[self_ty.into()]);
                    ty::TraitRef::new(tcx, did, err_args)
                };
                self.rebind(trait_ref).to_predicate(tcx)
            }
        }
    }
}

impl<'tcx> ty::List<ty::PolyExistentialPredicate<'tcx>> {
    /// Returns the "principal `DefId`" of this set of existential predicates.
    ///
    /// A Rust trait object type consists (in addition to a lifetime bound)
    /// of a set of trait bounds, which are separated into any number
    /// of auto-trait bounds, and at most one non-auto-trait bound. The
    /// non-auto-trait bound is called the "principal" of the trait
    /// object.
    ///
    /// Only the principal can have methods or type parameters (because
    /// auto traits can have neither of them). This is important, because
    /// it means the auto traits can be treated as an unordered set (methods
    /// would force an order for the vtable, while relating traits with
    /// type parameters without knowing the order to relate them in is
    /// a rather non-trivial task).
    ///
    /// For example, in the trait object `dyn std::fmt::Debug + Sync`, the
    /// principal bound is `Some(std::fmt::Debug)`, while the auto-trait bounds
    /// are the set `{Sync}`.
    ///
    /// It is also possible to have a "trivial" trait object that
    /// consists only of auto traits, with no principal - for example,
    /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
    /// is `{Send, Sync}`, while there is no principal. These trait objects
    /// have a "trivial" vtable consisting of just the size, alignment,
    /// and destructor.
    pub fn principal(&self) -> Option<ty::Binder<'tcx, ExistentialTraitRef<'tcx>>> {
        self[0]
            .map_bound(|this| match this {
                ExistentialPredicate::Trait(tr) => Some(tr),
                _ => None,
            })
            .transpose()
    }

    pub fn principal_def_id(&self) -> Option<DefId> {
        self.principal().map(|trait_ref| trait_ref.skip_binder().def_id)
    }

    #[inline]
    pub fn projection_bounds<'a>(
        &'a self,
    ) -> impl Iterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> + 'a {
        self.iter().filter_map(|predicate| {
            predicate
                .map_bound(|pred| match pred {
                    ExistentialPredicate::Projection(projection) => Some(projection),
                    _ => None,
                })
                .transpose()
        })
    }

    #[inline]
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + Captures<'tcx> + 'a {
        self.iter().filter_map(|predicate| match predicate.skip_binder() {
            ExistentialPredicate::AutoTrait(did) => Some(did),
            _ => None,
        })
    }
}

/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
/// ```ignore (illustrative)
/// T: Foo<U>
/// ```
/// This would be represented by a trait-reference where the `DefId` is the
/// `DefId` for the trait `Foo` and the args define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the generic parameters.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct TraitRef<'tcx> {
    pub def_id: DefId,
    pub args: GenericArgsRef<'tcx>,
    /// This field exists to prevent the creation of `TraitRef` without
    /// calling [`TraitRef::new`].
    pub(super) _use_trait_ref_new_instead: (),
}

impl<'tcx> TraitRef<'tcx> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        trait_def_id: DefId,
        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
    ) -> Self {
        let args = tcx.check_and_mk_args(trait_def_id, args);
        Self { def_id: trait_def_id, args, _use_trait_ref_new_instead: () }
    }

    pub fn from_lang_item(
        tcx: TyCtxt<'tcx>,
        trait_lang_item: LangItem,
        span: Span,
        args: impl IntoIterator<Item: Into<ty::GenericArg<'tcx>>>,
    ) -> Self {
        let trait_def_id = tcx.require_lang_item(trait_lang_item, Some(span));
        Self::new(tcx, trait_def_id, args)
    }

    pub fn from_method(
        tcx: TyCtxt<'tcx>,
        trait_id: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> ty::TraitRef<'tcx> {
        let defs = tcx.generics_of(trait_id);
        ty::TraitRef::new(tcx, trait_id, tcx.mk_args(&args[..defs.params.len()]))
    }

    /// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
    /// are the parameters defined on trait.
    pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> TraitRef<'tcx> {
        ty::TraitRef::new(tcx, def_id, GenericArgs::identity_for_item(tcx, def_id))
    }

    pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
        ty::TraitRef::new(
            tcx,
            self.def_id,
            [self_ty.into()].into_iter().chain(self.args.iter().skip(1)),
        )
    }

    #[inline]
    pub fn self_ty(&self) -> Ty<'tcx> {
        self.args.type_at(0)
    }
}

pub type PolyTraitRef<'tcx> = ty::Binder<'tcx, TraitRef<'tcx>>;

impl<'tcx> PolyTraitRef<'tcx> {
    pub fn self_ty(&self) -> ty::Binder<'tcx, Ty<'tcx>> {
        self.map_bound_ref(|tr| tr.self_ty())
    }

    pub fn def_id(&self) -> DefId {
        self.skip_binder().def_id
    }
}

impl<'tcx> IntoDiagArg for TraitRef<'tcx> {
    fn into_diag_arg(self) -> DiagArgValue {
        self.to_string().into_diag_arg()
    }
}

/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
/// ```ignore (illustrative)
/// exists T. T: Trait<'a, 'b, X, Y>
/// ```
/// The generic parameters don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ExistentialTraitRef<'tcx> {
    pub def_id: DefId,
    pub args: GenericArgsRef<'tcx>,
}

impl<'tcx> ExistentialTraitRef<'tcx> {
    pub fn erase_self_ty(
        tcx: TyCtxt<'tcx>,
        trait_ref: ty::TraitRef<'tcx>,
    ) -> ty::ExistentialTraitRef<'tcx> {
        // Assert there is a Self.
        trait_ref.args.type_at(0);

        ty::ExistentialTraitRef {
            def_id: trait_ref.def_id,
            args: tcx.mk_args(&trait_ref.args[1..]),
        }
    }

    /// Object types don't have a self type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self type. A common choice is `mk_err()`
    /// or some placeholder type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
        // otherwise the escaping vars would be captured by the binder
        // debug_assert!(!self_ty.has_escaping_bound_vars());

        ty::TraitRef::new(tcx, self.def_id, [self_ty.into()].into_iter().chain(self.args.iter()))
    }
}

impl<'tcx> IntoDiagArg for ExistentialTraitRef<'tcx> {
    fn into_diag_arg(self) -> DiagArgValue {
        self.to_string().into_diag_arg()
    }
}

pub type PolyExistentialTraitRef<'tcx> = ty::Binder<'tcx, ExistentialTraitRef<'tcx>>;

impl<'tcx> PolyExistentialTraitRef<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.skip_binder().def_id
    }

    /// Object types don't have a self type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self type. A common choice is `mk_err()`
    /// or some placeholder type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
        self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
    }
}

/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ExistentialProjection<'tcx> {
    pub def_id: DefId,
    pub args: GenericArgsRef<'tcx>,
    pub term: Term<'tcx>,
}

pub type PolyExistentialProjection<'tcx> = ty::Binder<'tcx, ExistentialProjection<'tcx>>;

impl<'tcx> ExistentialProjection<'tcx> {
    /// Extracts the underlying existential trait reference from this projection.
    /// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
    /// then this function would return an `exists T. T: Iterator` existential trait
    /// reference.
    pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx> {
        let def_id = tcx.parent(self.def_id);
        let args_count = tcx.generics_of(def_id).count() - 1;
        let args = tcx.mk_args(&self.args[..args_count]);
        ty::ExistentialTraitRef { def_id, args }
    }

    pub fn with_self_ty(
        &self,
        tcx: TyCtxt<'tcx>,
        self_ty: Ty<'tcx>,
    ) -> ty::ProjectionPredicate<'tcx> {
        // otherwise the escaping regions would be captured by the binders
        debug_assert!(!self_ty.has_escaping_bound_vars());

        ty::ProjectionPredicate {
            projection_ty: AliasTy::new(
                tcx,
                self.def_id,
                [self_ty.into()].into_iter().chain(self.args),
            ),
            term: self.term,
        }
    }

    pub fn erase_self_ty(
        tcx: TyCtxt<'tcx>,
        projection_predicate: ty::ProjectionPredicate<'tcx>,
    ) -> Self {
        // Assert there is a Self.
        projection_predicate.projection_ty.args.type_at(0);

        Self {
            def_id: projection_predicate.projection_ty.def_id,
            args: tcx.mk_args(&projection_predicate.projection_ty.args[1..]),
            term: projection_predicate.term,
        }
    }
}

impl<'tcx> PolyExistentialProjection<'tcx> {
    pub fn with_self_ty(
        &self,
        tcx: TyCtxt<'tcx>,
        self_ty: Ty<'tcx>,
    ) -> ty::PolyProjectionPredicate<'tcx> {
        self.map_bound(|p| p.with_self_ty(tcx, self_ty))
    }

    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().def_id
    }
}

impl<'tcx> Clause<'tcx> {
    /// Performs a instantiation suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// instantiation in terms of what happens with bound regions. See
    /// lengthy comment below for details.
    pub fn instantiate_supertrait(
        self,
        tcx: TyCtxt<'tcx>,
        trait_ref: &ty::PolyTraitRef<'tcx>,
    ) -> Clause<'tcx> {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a>: Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal instantiation.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds. So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The instantiation from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b` is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the instantiation `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the instantiation code will
        // adjust the DB index because we instantiating into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the instantiation to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // instantiation code expects equal binding levels in the values
        // from the instantiation and the value being instantiated into, and
        // this trick achieves that).

        // Working through the second example:
        // trait_ref: for<'x> T: Foo1<'^0.0>; args: [T, '^0.0]
        // predicate: for<'b> Self: Bar1<'a, '^0.0>; args: [Self, 'a, '^0.0]
        // We want to end up with:
        //     for<'x, 'b> T: Bar1<'^0.0, '^0.1>
        // To do this:
        // 1) We must shift all bound vars in predicate by the length
        //    of trait ref's bound vars. So, we would end up with predicate like
        //    Self: Bar1<'a, '^0.1>
        // 2) We can then apply the trait args to this, ending up with
        //    T: Bar1<'^0.0, '^0.1>
        // 3) Finally, to create the final bound vars, we concatenate the bound
        //    vars of the trait ref with those of the predicate:
        //    ['x, 'b]
        let bound_pred = self.kind();
        let pred_bound_vars = bound_pred.bound_vars();
        let trait_bound_vars = trait_ref.bound_vars();
        // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
        let shifted_pred =
            tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
        // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
        let new = EarlyBinder::bind(shifted_pred).instantiate(tcx, trait_ref.skip_binder().args);
        // 3) ['x] + ['b] -> ['x, 'b]
        let bound_vars =
            tcx.mk_bound_variable_kinds_from_iter(trait_bound_vars.iter().chain(pred_bound_vars));

        // FIXME: Is it really perf sensitive to use reuse_or_mk_predicate here?
        tcx.reuse_or_mk_predicate(
            self.as_predicate(),
            ty::Binder::bind_with_vars(PredicateKind::Clause(new), bound_vars),
        )
        .expect_clause()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>,

    /// If polarity is Positive: we are proving that the trait is implemented.
    ///
    /// If polarity is Negative: we are proving that a negative impl of this trait
    /// exists. (Note that coherence also checks whether negative impls of supertraits
    /// exist via a series of predicates.)
    ///
    /// If polarity is Reserved: that's a bug.
    pub polarity: ImplPolarity,
}

pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
        Self { trait_ref: self.trait_ref.with_self_ty(tcx, self_ty), ..self }
    }

    pub fn def_id(self) -> DefId {
        self.trait_ref.def_id
    }

    pub fn self_ty(self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().def_id()
    }

    pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
        self.map_bound(|trait_ref| trait_ref.self_ty())
    }

    #[inline]
    pub fn polarity(self) -> ImplPolarity {
        self.skip_binder().polarity
    }
}

/// `A: B`
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct OutlivesPredicate<A, B>(pub A, pub B);
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;

/// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates
/// whether the `a` type is the type that we should label as "expected" when
/// presenting user diagnostics.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>,
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;

/// Encodes that we have to coerce *from* the `a` type to the `b` type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct CoercePredicate<'tcx> {
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>,
}
pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: AliasTy<'tcx>,
    pub term: Term<'tcx>,
}

impl<'tcx> ProjectionPredicate<'tcx> {
    pub fn self_ty(self) -> Ty<'tcx> {
        self.projection_ty.self_ty()
    }

    pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ProjectionPredicate<'tcx> {
        Self { projection_ty: self.projection_ty.with_self_ty(tcx, self_ty), ..self }
    }

    pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
        self.projection_ty.trait_def_id(tcx)
    }

    pub fn def_id(self) -> DefId {
        self.projection_ty.def_id
    }
}

pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    /// Returns the `DefId` of the trait of the associated item being projected.
    #[inline]
    pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
        self.skip_binder().projection_ty.trait_def_id(tcx)
    }

    /// Get the [PolyTraitRef] required for this projection to be well formed.
    /// Note that for generic associated types the predicates of the associated
    /// type also need to be checked.
    #[inline]
    pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
        // Note: unlike with `TraitRef::to_poly_trait_ref()`,
        // `self.0.trait_ref` is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
    }

    pub fn term(&self) -> Binder<'tcx, Term<'tcx>> {
        self.map_bound(|predicate| predicate.term)
    }

    /// The `DefId` of the `TraitItem` for the associated type.
    ///
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
    pub fn projection_def_id(&self) -> DefId {
        // Ok to skip binder since trait `DefId` does not care about regions.
        self.skip_binder().projection_ty.def_id
    }
}

/// Used by the new solver. Unlike a `ProjectionPredicate` this can only be
/// proven by actually normalizing `alias`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct NormalizesTo<'tcx> {
    pub alias: AliasTy<'tcx>,
    pub term: Term<'tcx>,
}

impl<'tcx> NormalizesTo<'tcx> {
    pub fn self_ty(self) -> Ty<'tcx> {
        self.alias.self_ty()
    }

    pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> NormalizesTo<'tcx> {
        Self { alias: self.alias.with_self_ty(tcx, self_ty), ..self }
    }

    pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
        self.alias.trait_def_id(tcx)
    }

    pub fn def_id(self) -> DefId {
        self.alias.def_id
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

pub trait ToPredicate<'tcx, P = Predicate<'tcx>> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> P;
}

impl<'tcx, T> ToPredicate<'tcx, T> for T {
    fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T {
        self
    }
}

impl<'tcx> ToPredicate<'tcx> for PredicateKind<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        ty::Binder::dummy(self).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(self)
    }
}

impl<'tcx> ToPredicate<'tcx> for ClauseKind<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(ty::Binder::dummy(ty::PredicateKind::Clause(self)))
    }
}

impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, ClauseKind<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        tcx.mk_predicate(self.map_bound(ty::PredicateKind::Clause))
    }
}

impl<'tcx> ToPredicate<'tcx> for Clause<'tcx> {
    #[inline(always)]
    fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.as_predicate()
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for ClauseKind<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        tcx.mk_predicate(Binder::dummy(ty::PredicateKind::Clause(self))).expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for Binder<'tcx, ClauseKind<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        tcx.mk_predicate(self.map_bound(|clause| ty::PredicateKind::Clause(clause))).expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        ty::Binder::dummy(self).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx, TraitPredicate<'tcx>> for TraitRef<'tcx> {
    #[inline(always)]
    fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> TraitPredicate<'tcx> {
        TraitPredicate { trait_ref: self, polarity: ImplPolarity::Positive }
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for TraitRef<'tcx> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let p: Predicate<'tcx> = self.to_predicate(tcx);
        p.expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, TraitRef<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        let pred: PolyTraitPredicate<'tcx> = self.to_predicate(tcx);
        pred.to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for Binder<'tcx, TraitRef<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let pred: PolyTraitPredicate<'tcx> = self.to_predicate(tcx);
        pred.to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx, PolyTraitPredicate<'tcx>> for Binder<'tcx, TraitRef<'tcx>> {
    #[inline(always)]
    fn to_predicate(self, _: TyCtxt<'tcx>) -> PolyTraitPredicate<'tcx> {
        self.map_bound(|trait_ref| TraitPredicate {
            trait_ref,
            polarity: ty::ImplPolarity::Positive,
        })
    }
}

impl<'tcx> ToPredicate<'tcx> for TraitPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        PredicateKind::Clause(ClauseKind::Trait(self)).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(|p| PredicateKind::Clause(ClauseKind::Trait(p))).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for TraitPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let p: Predicate<'tcx> = self.to_predicate(tcx);
        p.expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for PolyTraitPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let p: Predicate<'tcx> = self.to_predicate(tcx);
        p.expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(|p| PredicateKind::Clause(ClauseKind::RegionOutlives(p))).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        ty::Binder::dummy(PredicateKind::Clause(ClauseKind::TypeOutlives(self))).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for ProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        ty::Binder::dummy(PredicateKind::Clause(ClauseKind::Projection(self))).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        self.map_bound(|p| PredicateKind::Clause(ClauseKind::Projection(p))).to_predicate(tcx)
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for ProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let p: Predicate<'tcx> = self.to_predicate(tcx);
        p.expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx, Clause<'tcx>> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Clause<'tcx> {
        let p: Predicate<'tcx> = self.to_predicate(tcx);
        p.expect_clause()
    }
}

impl<'tcx> ToPredicate<'tcx> for NormalizesTo<'tcx> {
    fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
        PredicateKind::NormalizesTo(self).to_predicate(tcx)
    }
}

impl<'tcx> Predicate<'tcx> {
    pub fn to_opt_poly_trait_pred(self) -> Option<PolyTraitPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Clause(ClauseKind::Trait(t)) => Some(predicate.rebind(t)),
            PredicateKind::Clause(ClauseKind::Projection(..))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::NormalizesTo(..)
            | PredicateKind::AliasRelate(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::Clause(ClauseKind::RegionOutlives(..))
            | PredicateKind::Clause(ClauseKind::WellFormed(..))
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::Clause(ClauseKind::TypeOutlives(..))
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(..))
            | PredicateKind::ConstEquate(..)
            | PredicateKind::Ambiguous => None,
        }
    }

    pub fn to_opt_poly_projection_pred(self) -> Option<PolyProjectionPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Clause(ClauseKind::Projection(t)) => Some(predicate.rebind(t)),
            PredicateKind::Clause(ClauseKind::Trait(..))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::NormalizesTo(..)
            | PredicateKind::AliasRelate(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::Clause(ClauseKind::RegionOutlives(..))
            | PredicateKind::Clause(ClauseKind::WellFormed(..))
            | PredicateKind::ObjectSafe(..)
            | PredicateKind::Clause(ClauseKind::TypeOutlives(..))
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(..))
            | PredicateKind::ConstEquate(..)
            | PredicateKind::Ambiguous => None,
        }
    }

    /// Matches a `PredicateKind::Clause` and turns it into a `Clause`, otherwise returns `None`.
    pub fn as_clause(self) -> Option<Clause<'tcx>> {
        match self.kind().skip_binder() {
            PredicateKind::Clause(..) => Some(self.expect_clause()),
            _ => None,
        }
    }

    /// Assert that the predicate is a clause.
    pub fn expect_clause(self) -> Clause<'tcx> {
        match self.kind().skip_binder() {
            PredicateKind::Clause(..) => Clause(self.0),
            _ => bug!("{self} is not a clause"),
        }
    }
}