Struct stable_mir::abi::LayoutShape

source ·
pub struct LayoutShape {
    pub fields: FieldsShape,
    pub variants: VariantsShape,
    pub abi: ValueAbi,
    pub abi_align: Align,
    pub size: MachineSize,
}
Expand description

The layout of a type in memory.

Fields§

§fields: FieldsShape

The fields location withing the layout

§variants: VariantsShape

Encodes information about multi-variant layouts. Even with Multiple variants, a layout still has its own fields! Those are then shared between all variants.

To access all fields of this layout, both fields and the fields of the active variant must be taken into account.

§abi: ValueAbi

The abi defines how this data is passed between functions.

§abi_align: Align

The ABI mandated alignment in bytes.

§size: MachineSize

The size of this layout in bytes.

Implementations§

source§

impl LayoutShape

source

pub fn is_unsized(&self) -> bool

Returns true if the layout corresponds to an unsized type.

source

pub fn is_sized(&self) -> bool

source

pub fn is_1zst(&self) -> bool

Returns true if the type is sized and a 1-ZST (meaning it has size 0 and alignment 1).

Trait Implementations§

source§

impl Clone for LayoutShape

source§

fn clone(&self) -> LayoutShape

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for LayoutShape

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Hash for LayoutShape

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl PartialEq for LayoutShape

source§

fn eq(&self, other: &LayoutShape) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Eq for LayoutShape

source§

impl StructuralPartialEq for LayoutShape

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 288 bytes