use std::borrow::Cow;
use either::Either;
use rustc_const_eval::const_eval::DummyMachine;
use rustc_const_eval::interpret::{
    ImmTy, Immediate, InterpCx, MemPlaceMeta, MemoryKind, OpTy, Projectable, Scalar,
    intern_const_alloc_for_constprop,
};
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexVec, newtype_index};
use rustc_middle::bug;
use rustc_middle::mir::interpret::GlobalAlloc;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{HasParamEnv, LayoutOf};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::DUMMY_SP;
use rustc_span::def_id::DefId;
use rustc_target::abi::{self, Abi, FIRST_VARIANT, FieldIdx, Primitive, Size, VariantIdx};
use smallvec::SmallVec;
use tracing::{debug, instrument, trace};
use crate::ssa::{AssignedValue, SsaLocals};
pub(super) struct GVN;
impl<'tcx> crate::MirPass<'tcx> for GVN {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 2
    }
    #[instrument(level = "trace", skip(self, tcx, body))]
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        debug!(def_id = ?body.source.def_id());
        let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
        let ssa = SsaLocals::new(tcx, body, param_env);
        let dominators = body.basic_blocks.dominators().clone();
        let mut state = VnState::new(tcx, body, param_env, &ssa, dominators, &body.local_decls);
        ssa.for_each_assignment_mut(
            body.basic_blocks.as_mut_preserves_cfg(),
            |local, value, location| {
                let value = match value {
                    AssignedValue::Arg | AssignedValue::Terminator => None,
                    AssignedValue::Rvalue(rvalue) => {
                        let value = state.simplify_rvalue(rvalue, location);
                        if state.local_decls[local].ty != rvalue.ty(state.local_decls, tcx) {
                            return;
                        }
                        value
                    }
                };
                let value = value.or_else(|| state.new_opaque()).unwrap();
                state.assign(local, value);
            },
        );
        state.next_opaque = None;
        let reverse_postorder = body.basic_blocks.reverse_postorder().to_vec();
        for bb in reverse_postorder {
            let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb];
            state.visit_basic_block_data(bb, data);
        }
        StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body);
    }
}
newtype_index! {
    struct VnIndex {}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AggregateTy<'tcx> {
    Array,
    Tuple,
    Def(DefId, ty::GenericArgsRef<'tcx>),
    RawPtr {
        data_pointer_ty: Ty<'tcx>,
        output_pointer_ty: Ty<'tcx>,
    },
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AddressKind {
    Ref(BorrowKind),
    Address(Mutability),
}
#[derive(Debug, PartialEq, Eq, Hash)]
enum Value<'tcx> {
    Opaque(usize),
    Constant {
        value: Const<'tcx>,
        disambiguator: usize,
    },
    Aggregate(AggregateTy<'tcx>, VariantIdx, Vec<VnIndex>),
    Repeat(VnIndex, ty::Const<'tcx>),
    Address {
        place: Place<'tcx>,
        kind: AddressKind,
        provenance: usize,
    },
    Projection(VnIndex, ProjectionElem<VnIndex, Ty<'tcx>>),
    Discriminant(VnIndex),
    Len(VnIndex),
    NullaryOp(NullOp<'tcx>, Ty<'tcx>),
    UnaryOp(UnOp, VnIndex),
    BinaryOp(BinOp, VnIndex, VnIndex),
    Cast {
        kind: CastKind,
        value: VnIndex,
        from: Ty<'tcx>,
        to: Ty<'tcx>,
    },
}
struct VnState<'body, 'tcx> {
    tcx: TyCtxt<'tcx>,
    ecx: InterpCx<'tcx, DummyMachine>,
    param_env: ty::ParamEnv<'tcx>,
    local_decls: &'body LocalDecls<'tcx>,
    locals: IndexVec<Local, Option<VnIndex>>,
    rev_locals: IndexVec<VnIndex, SmallVec<[Local; 1]>>,
    values: FxIndexSet<Value<'tcx>>,
    evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>,
    next_opaque: Option<usize>,
    feature_unsized_locals: bool,
    ssa: &'body SsaLocals,
    dominators: Dominators<BasicBlock>,
    reused_locals: BitSet<Local>,
}
impl<'body, 'tcx> VnState<'body, 'tcx> {
    fn new(
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        ssa: &'body SsaLocals,
        dominators: Dominators<BasicBlock>,
        local_decls: &'body LocalDecls<'tcx>,
    ) -> Self {
        let num_values =
            2 * body.basic_blocks.iter().map(|bbdata| bbdata.statements.len()).sum::<usize>()
                + 4 * body.basic_blocks.len();
        VnState {
            tcx,
            ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
            param_env,
            local_decls,
            locals: IndexVec::from_elem(None, local_decls),
            rev_locals: IndexVec::with_capacity(num_values),
            values: FxIndexSet::with_capacity_and_hasher(num_values, Default::default()),
            evaluated: IndexVec::with_capacity(num_values),
            next_opaque: Some(1),
            feature_unsized_locals: tcx.features().unsized_locals,
            ssa,
            dominators,
            reused_locals: BitSet::new_empty(local_decls.len()),
        }
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn insert(&mut self, value: Value<'tcx>) -> VnIndex {
        let (index, new) = self.values.insert_full(value);
        let index = VnIndex::from_usize(index);
        if new {
            let evaluated = self.eval_to_const(index);
            let _index = self.evaluated.push(evaluated);
            debug_assert_eq!(index, _index);
            if self.next_opaque.is_some() {
                let _index = self.rev_locals.push(SmallVec::new());
                debug_assert_eq!(index, _index);
            }
        }
        index
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn new_opaque(&mut self) -> Option<VnIndex> {
        let next_opaque = self.next_opaque.as_mut()?;
        let value = Value::Opaque(*next_opaque);
        *next_opaque += 1;
        Some(self.insert(value))
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> Option<VnIndex> {
        let next_opaque = self.next_opaque.as_mut()?;
        let value = Value::Address { place, kind, provenance: *next_opaque };
        *next_opaque += 1;
        Some(self.insert(value))
    }
    fn get(&self, index: VnIndex) -> &Value<'tcx> {
        self.values.get_index(index.as_usize()).unwrap()
    }
    #[instrument(level = "trace", skip(self))]
    fn assign(&mut self, local: Local, value: VnIndex) {
        self.locals[local] = Some(value);
        let is_sized = !self.feature_unsized_locals
            || self.local_decls[local].ty.is_sized(self.tcx, self.param_env);
        if is_sized {
            self.rev_locals[value].push(local);
        }
    }
    fn insert_constant(&mut self, value: Const<'tcx>) -> Option<VnIndex> {
        let disambiguator = if value.is_deterministic() {
            0
        } else {
            let next_opaque = self.next_opaque.as_mut()?;
            let disambiguator = *next_opaque;
            *next_opaque += 1;
            debug_assert_ne!(disambiguator, 0);
            disambiguator
        };
        Some(self.insert(Value::Constant { value, disambiguator }))
    }
    fn insert_bool(&mut self, flag: bool) -> VnIndex {
        let value = Const::from_bool(self.tcx, flag);
        debug_assert!(value.is_deterministic());
        self.insert(Value::Constant { value, disambiguator: 0 })
    }
    fn insert_scalar(&mut self, scalar: Scalar, ty: Ty<'tcx>) -> VnIndex {
        let value = Const::from_scalar(self.tcx, scalar, ty);
        debug_assert!(value.is_deterministic());
        self.insert(Value::Constant { value, disambiguator: 0 })
    }
    fn insert_tuple(&mut self, values: Vec<VnIndex>) -> VnIndex {
        self.insert(Value::Aggregate(AggregateTy::Tuple, VariantIdx::ZERO, values))
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
        use Value::*;
        let op = match *self.get(value) {
            Opaque(_) => return None,
            Repeat(..) => return None,
            Constant { ref value, disambiguator: _ } => {
                self.ecx.eval_mir_constant(value, DUMMY_SP, None).discard_err()?
            }
            Aggregate(kind, variant, ref fields) => {
                let fields = fields
                    .iter()
                    .map(|&f| self.evaluated[f].as_ref())
                    .collect::<Option<Vec<_>>>()?;
                let ty = match kind {
                    AggregateTy::Array => {
                        assert!(fields.len() > 0);
                        Ty::new_array(self.tcx, fields[0].layout.ty, fields.len() as u64)
                    }
                    AggregateTy::Tuple => {
                        Ty::new_tup_from_iter(self.tcx, fields.iter().map(|f| f.layout.ty))
                    }
                    AggregateTy::Def(def_id, args) => {
                        self.tcx.type_of(def_id).instantiate(self.tcx, args)
                    }
                    AggregateTy::RawPtr { output_pointer_ty, .. } => output_pointer_ty,
                };
                let variant = if ty.is_enum() { Some(variant) } else { None };
                let ty = self.ecx.layout_of(ty).ok()?;
                if ty.is_zst() {
                    ImmTy::uninit(ty).into()
                } else if matches!(kind, AggregateTy::RawPtr { .. }) {
                    let data = self.ecx.read_pointer(fields[0]).discard_err()?;
                    let meta = if fields[1].layout.is_zst() {
                        MemPlaceMeta::None
                    } else {
                        MemPlaceMeta::Meta(self.ecx.read_scalar(fields[1]).discard_err()?)
                    };
                    let ptr_imm = Immediate::new_pointer_with_meta(data, meta, &self.ecx);
                    ImmTy::from_immediate(ptr_imm, ty).into()
                } else if matches!(ty.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
                    let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
                    let variant_dest = if let Some(variant) = variant {
                        self.ecx.project_downcast(&dest, variant).discard_err()?
                    } else {
                        dest.clone()
                    };
                    for (field_index, op) in fields.into_iter().enumerate() {
                        let field_dest =
                            self.ecx.project_field(&variant_dest, field_index).discard_err()?;
                        self.ecx.copy_op(op, &field_dest).discard_err()?;
                    }
                    self.ecx
                        .write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest)
                        .discard_err()?;
                    self.ecx
                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
                        .discard_err()?;
                    dest.into()
                } else {
                    return None;
                }
            }
            Projection(base, elem) => {
                let value = self.evaluated[base].as_ref()?;
                let elem = match elem {
                    ProjectionElem::Deref => ProjectionElem::Deref,
                    ProjectionElem::Downcast(name, read_variant) => {
                        ProjectionElem::Downcast(name, read_variant)
                    }
                    ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty),
                    ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
                        ProjectionElem::ConstantIndex { offset, min_length, from_end }
                    }
                    ProjectionElem::Subslice { from, to, from_end } => {
                        ProjectionElem::Subslice { from, to, from_end }
                    }
                    ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
                    ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
                    ProjectionElem::Index(_) => return None,
                };
                self.ecx.project(value, elem).discard_err()?
            }
            Address { place, kind, provenance: _ } => {
                if !place.is_indirect_first_projection() {
                    return None;
                }
                let local = self.locals[place.local]?;
                let pointer = self.evaluated[local].as_ref()?;
                let mut mplace = self.ecx.deref_pointer(pointer).discard_err()?;
                for proj in place.projection.iter().skip(1) {
                    if matches!(proj, ProjectionElem::Index(_)) {
                        return None;
                    }
                    mplace = self.ecx.project(&mplace, proj).discard_err()?;
                }
                let pointer = mplace.to_ref(&self.ecx);
                let ty = match kind {
                    AddressKind::Ref(bk) => Ty::new_ref(
                        self.tcx,
                        self.tcx.lifetimes.re_erased,
                        mplace.layout.ty,
                        bk.to_mutbl_lossy(),
                    ),
                    AddressKind::Address(mutbl) => Ty::new_ptr(self.tcx, mplace.layout.ty, mutbl),
                };
                let layout = self.ecx.layout_of(ty).ok()?;
                ImmTy::from_immediate(pointer, layout).into()
            }
            Discriminant(base) => {
                let base = self.evaluated[base].as_ref()?;
                let variant = self.ecx.read_discriminant(base).discard_err()?;
                let discr_value =
                    self.ecx.discriminant_for_variant(base.layout.ty, variant).discard_err()?;
                discr_value.into()
            }
            Len(slice) => {
                let slice = self.evaluated[slice].as_ref()?;
                let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
                let len = slice.len(&self.ecx).discard_err()?;
                let imm = ImmTy::from_uint(len, usize_layout);
                imm.into()
            }
            NullaryOp(null_op, ty) => {
                let layout = self.ecx.layout_of(ty).ok()?;
                if let NullOp::SizeOf | NullOp::AlignOf = null_op
                    && layout.is_unsized()
                {
                    return None;
                }
                let val = match null_op {
                    NullOp::SizeOf => layout.size.bytes(),
                    NullOp::AlignOf => layout.align.abi.bytes(),
                    NullOp::OffsetOf(fields) => self
                        .ecx
                        .tcx
                        .offset_of_subfield(self.ecx.param_env(), layout, fields.iter())
                        .bytes(),
                    NullOp::UbChecks => return None,
                };
                let usize_layout = self.ecx.layout_of(self.tcx.types.usize).unwrap();
                let imm = ImmTy::from_uint(val, usize_layout);
                imm.into()
            }
            UnaryOp(un_op, operand) => {
                let operand = self.evaluated[operand].as_ref()?;
                let operand = self.ecx.read_immediate(operand).discard_err()?;
                let val = self.ecx.unary_op(un_op, &operand).discard_err()?;
                val.into()
            }
            BinaryOp(bin_op, lhs, rhs) => {
                let lhs = self.evaluated[lhs].as_ref()?;
                let lhs = self.ecx.read_immediate(lhs).discard_err()?;
                let rhs = self.evaluated[rhs].as_ref()?;
                let rhs = self.ecx.read_immediate(rhs).discard_err()?;
                let val = self.ecx.binary_op(bin_op, &lhs, &rhs).discard_err()?;
                val.into()
            }
            Cast { kind, value, from: _, to } => match kind {
                CastKind::IntToInt | CastKind::IntToFloat => {
                    let value = self.evaluated[value].as_ref()?;
                    let value = self.ecx.read_immediate(value).discard_err()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let res = self.ecx.int_to_int_or_float(&value, to).discard_err()?;
                    res.into()
                }
                CastKind::FloatToFloat | CastKind::FloatToInt => {
                    let value = self.evaluated[value].as_ref()?;
                    let value = self.ecx.read_immediate(value).discard_err()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let res = self.ecx.float_to_float_or_int(&value, to).discard_err()?;
                    res.into()
                }
                CastKind::Transmute => {
                    let value = self.evaluated[value].as_ref()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    if value.as_mplace_or_imm().is_right() {
                        let can_transmute = match (value.layout.abi, to.abi) {
                            (Abi::Scalar(s1), Abi::Scalar(s2)) => {
                                s1.size(&self.ecx) == s2.size(&self.ecx)
                                    && !matches!(s1.primitive(), Primitive::Pointer(..))
                            }
                            (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
                                a1.size(&self.ecx) == a2.size(&self.ecx) &&
                                b1.size(&self.ecx) == b2.size(&self.ecx) &&
                                b1.align(&self.ecx) == b2.align(&self.ecx) &&
                                !matches!(a1.primitive(), Primitive::Pointer(..))
                                    && !matches!(b1.primitive(), Primitive::Pointer(..))
                            }
                            _ => false,
                        };
                        if !can_transmute {
                            return None;
                        }
                    }
                    value.offset(Size::ZERO, to, &self.ecx).discard_err()?
                }
                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) => {
                    let src = self.evaluated[value].as_ref()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let dest = self.ecx.allocate(to, MemoryKind::Stack).discard_err()?;
                    self.ecx.unsize_into(src, to, &dest.clone().into()).discard_err()?;
                    self.ecx
                        .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
                        .discard_err()?;
                    dest.into()
                }
                CastKind::FnPtrToPtr | CastKind::PtrToPtr => {
                    let src = self.evaluated[value].as_ref()?;
                    let src = self.ecx.read_immediate(src).discard_err()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    let ret = self.ecx.ptr_to_ptr(&src, to).discard_err()?;
                    ret.into()
                }
                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::UnsafeFnPointer, _) => {
                    let src = self.evaluated[value].as_ref()?;
                    let src = self.ecx.read_immediate(src).discard_err()?;
                    let to = self.ecx.layout_of(to).ok()?;
                    ImmTy::from_immediate(*src, to).into()
                }
                _ => return None,
            },
        };
        Some(op)
    }
    fn project(
        &mut self,
        place: PlaceRef<'tcx>,
        value: VnIndex,
        proj: PlaceElem<'tcx>,
    ) -> Option<VnIndex> {
        let proj = match proj {
            ProjectionElem::Deref => {
                let ty = place.ty(self.local_decls, self.tcx).ty;
                if let Some(Mutability::Not) = ty.ref_mutability()
                    && let Some(pointee_ty) = ty.builtin_deref(true)
                    && pointee_ty.is_freeze(self.tcx, self.param_env)
                {
                    ProjectionElem::Deref
                } else {
                    return None;
                }
            }
            ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
            ProjectionElem::Field(f, ty) => {
                if let Value::Aggregate(_, _, fields) = self.get(value) {
                    return Some(fields[f.as_usize()]);
                } else if let Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant)) = self.get(value)
                    && let Value::Aggregate(_, written_variant, fields) = self.get(*outer_value)
                    && written_variant == read_variant
                {
                    return Some(fields[f.as_usize()]);
                }
                ProjectionElem::Field(f, ty)
            }
            ProjectionElem::Index(idx) => {
                if let Value::Repeat(inner, _) = self.get(value) {
                    return Some(*inner);
                }
                let idx = self.locals[idx]?;
                ProjectionElem::Index(idx)
            }
            ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
                match self.get(value) {
                    Value::Repeat(inner, _) => {
                        return Some(*inner);
                    }
                    Value::Aggregate(AggregateTy::Array, _, operands) => {
                        let offset = if from_end {
                            operands.len() - offset as usize
                        } else {
                            offset as usize
                        };
                        return operands.get(offset).copied();
                    }
                    _ => {}
                };
                ProjectionElem::ConstantIndex { offset, min_length, from_end }
            }
            ProjectionElem::Subslice { from, to, from_end } => {
                ProjectionElem::Subslice { from, to, from_end }
            }
            ProjectionElem::OpaqueCast(ty) => ProjectionElem::OpaqueCast(ty),
            ProjectionElem::Subtype(ty) => ProjectionElem::Subtype(ty),
        };
        Some(self.insert(Value::Projection(value, proj)))
    }
    #[instrument(level = "trace", skip(self))]
    fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) {
        if place.is_indirect_first_projection()
            && let Some(base) = self.locals[place.local]
            && let Some(new_local) = self.try_as_local(base, location)
            && place.local != new_local
        {
            place.local = new_local;
            self.reused_locals.insert(new_local);
        }
        let mut projection = Cow::Borrowed(&place.projection[..]);
        for i in 0..projection.len() {
            let elem = projection[i];
            if let ProjectionElem::Index(idx_local) = elem
                && let Some(idx) = self.locals[idx_local]
            {
                if let Some(offset) = self.evaluated[idx].as_ref()
                    && let Some(offset) = self.ecx.read_target_usize(offset).discard_err()
                    && let Some(min_length) = offset.checked_add(1)
                {
                    projection.to_mut()[i] =
                        ProjectionElem::ConstantIndex { offset, min_length, from_end: false };
                } else if let Some(new_idx_local) = self.try_as_local(idx, location)
                    && idx_local != new_idx_local
                {
                    projection.to_mut()[i] = ProjectionElem::Index(new_idx_local);
                    self.reused_locals.insert(new_idx_local);
                }
            }
        }
        if projection.is_owned() {
            place.projection = self.tcx.mk_place_elems(&projection);
        }
        trace!(?place);
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_place_value(
        &mut self,
        place: &mut Place<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        self.simplify_place_projection(place, location);
        let mut place_ref = place.as_ref();
        let mut value = self.locals[place.local]?;
        for (index, proj) in place.projection.iter().enumerate() {
            if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
                && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
                && let AddressKind::Ref(BorrowKind::Shared) = kind
                && let Some(v) = self.simplify_place_value(&mut pointee, location)
            {
                value = v;
                place_ref = pointee.project_deeper(&place.projection[index..], self.tcx).as_ref();
            }
            if let Some(local) = self.try_as_local(value, location) {
                place_ref = PlaceRef { local, projection: &place.projection[index..] };
            }
            let base = PlaceRef { local: place.local, projection: &place.projection[..index] };
            value = self.project(base, value, proj)?;
        }
        if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
            && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
            && let AddressKind::Ref(BorrowKind::Shared) = kind
            && let Some(v) = self.simplify_place_value(&mut pointee, location)
        {
            value = v;
            place_ref = pointee.project_deeper(&[], self.tcx).as_ref();
        }
        if let Some(new_local) = self.try_as_local(value, location) {
            place_ref = PlaceRef { local: new_local, projection: &[] };
        }
        if place_ref.local != place.local || place_ref.projection.len() < place.projection.len() {
            *place = place_ref.project_deeper(&[], self.tcx);
            self.reused_locals.insert(place_ref.local);
        }
        Some(value)
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_operand(
        &mut self,
        operand: &mut Operand<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        match *operand {
            Operand::Constant(ref constant) => self.insert_constant(constant.const_),
            Operand::Copy(ref mut place) | Operand::Move(ref mut place) => {
                let value = self.simplify_place_value(place, location)?;
                if let Some(const_) = self.try_as_constant(value) {
                    *operand = Operand::Constant(Box::new(const_));
                }
                Some(value)
            }
        }
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_rvalue(
        &mut self,
        rvalue: &mut Rvalue<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let value = match *rvalue {
            Rvalue::Use(ref mut operand) => return self.simplify_operand(operand, location),
            Rvalue::CopyForDeref(place) => {
                let mut operand = Operand::Copy(place);
                let val = self.simplify_operand(&mut operand, location);
                *rvalue = Rvalue::Use(operand);
                return val;
            }
            Rvalue::Repeat(ref mut op, amount) => {
                let op = self.simplify_operand(op, location)?;
                Value::Repeat(op, amount)
            }
            Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty),
            Rvalue::Aggregate(..) => return self.simplify_aggregate(rvalue, location),
            Rvalue::Ref(_, borrow_kind, ref mut place) => {
                self.simplify_place_projection(place, location);
                return self.new_pointer(*place, AddressKind::Ref(borrow_kind));
            }
            Rvalue::RawPtr(mutbl, ref mut place) => {
                self.simplify_place_projection(place, location);
                return self.new_pointer(*place, AddressKind::Address(mutbl));
            }
            Rvalue::Len(ref mut place) => return self.simplify_len(place, location),
            Rvalue::Cast(ref mut kind, ref mut value, to) => {
                return self.simplify_cast(kind, value, to, location);
            }
            Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
                return self.simplify_binary(op, lhs, rhs, location);
            }
            Rvalue::UnaryOp(op, ref mut arg_op) => {
                return self.simplify_unary(op, arg_op, location);
            }
            Rvalue::Discriminant(ref mut place) => {
                let place = self.simplify_place_value(place, location)?;
                if let Some(discr) = self.simplify_discriminant(place) {
                    return Some(discr);
                }
                Value::Discriminant(place)
            }
            Rvalue::ThreadLocalRef(..) | Rvalue::ShallowInitBox(..) => return None,
        };
        debug!(?value);
        Some(self.insert(value))
    }
    fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> {
        if let Value::Aggregate(enum_ty, variant, _) = *self.get(place)
            && let AggregateTy::Def(enum_did, enum_args) = enum_ty
            && let DefKind::Enum = self.tcx.def_kind(enum_did)
        {
            let enum_ty = self.tcx.type_of(enum_did).instantiate(self.tcx, enum_args);
            let discr = self.ecx.discriminant_for_variant(enum_ty, variant).discard_err()?;
            return Some(self.insert_scalar(discr.to_scalar(), discr.layout.ty));
        }
        None
    }
    fn try_as_place_elem(
        &mut self,
        proj: ProjectionElem<VnIndex, Ty<'tcx>>,
        loc: Location,
    ) -> Option<PlaceElem<'tcx>> {
        Some(match proj {
            ProjectionElem::Deref => ProjectionElem::Deref,
            ProjectionElem::Field(idx, ty) => ProjectionElem::Field(idx, ty),
            ProjectionElem::Index(idx) => {
                let Some(local) = self.try_as_local(idx, loc) else {
                    return None;
                };
                self.reused_locals.insert(local);
                ProjectionElem::Index(local)
            }
            ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
                ProjectionElem::ConstantIndex { offset, min_length, from_end }
            }
            ProjectionElem::Subslice { from, to, from_end } => {
                ProjectionElem::Subslice { from, to, from_end }
            }
            ProjectionElem::Downcast(symbol, idx) => ProjectionElem::Downcast(symbol, idx),
            ProjectionElem::OpaqueCast(idx) => ProjectionElem::OpaqueCast(idx),
            ProjectionElem::Subtype(idx) => ProjectionElem::Subtype(idx),
        })
    }
    fn simplify_aggregate_to_copy(
        &mut self,
        rvalue: &mut Rvalue<'tcx>,
        location: Location,
        fields: &[VnIndex],
        variant_index: VariantIdx,
    ) -> Option<VnIndex> {
        let Some(&first_field) = fields.first() else {
            return None;
        };
        let Value::Projection(copy_from_value, _) = *self.get(first_field) else {
            return None;
        };
        if fields.iter().enumerate().any(|(index, &v)| {
            if let Value::Projection(pointer, ProjectionElem::Field(from_index, _)) = *self.get(v)
                && copy_from_value == pointer
                && from_index.index() == index
            {
                return false;
            }
            true
        }) {
            return None;
        }
        let mut copy_from_local_value = copy_from_value;
        if let Value::Projection(pointer, proj) = *self.get(copy_from_value)
            && let ProjectionElem::Downcast(_, read_variant) = proj
        {
            if variant_index == read_variant {
                copy_from_local_value = pointer;
            } else {
                return None;
            }
        }
        let tcx = self.tcx;
        let mut projection = SmallVec::<[PlaceElem<'tcx>; 1]>::new();
        loop {
            if let Some(local) = self.try_as_local(copy_from_local_value, location) {
                projection.reverse();
                let place = Place { local, projection: tcx.mk_place_elems(projection.as_slice()) };
                if rvalue.ty(self.local_decls, tcx) == place.ty(self.local_decls, tcx).ty {
                    self.reused_locals.insert(local);
                    *rvalue = Rvalue::Use(Operand::Copy(place));
                    return Some(copy_from_value);
                }
                return None;
            } else if let Value::Projection(pointer, proj) = *self.get(copy_from_local_value)
                && let Some(proj) = self.try_as_place_elem(proj, location)
            {
                projection.push(proj);
                copy_from_local_value = pointer;
            } else {
                return None;
            }
        }
    }
    fn simplify_aggregate(
        &mut self,
        rvalue: &mut Rvalue<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let Rvalue::Aggregate(box ref kind, ref mut field_ops) = *rvalue else { bug!() };
        let tcx = self.tcx;
        if field_ops.is_empty() {
            let is_zst = match *kind {
                AggregateKind::Array(..)
                | AggregateKind::Tuple
                | AggregateKind::Closure(..)
                | AggregateKind::CoroutineClosure(..) => true,
                AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum,
                AggregateKind::Coroutine(..) => false,
                AggregateKind::RawPtr(..) => bug!("MIR for RawPtr aggregate must have 2 fields"),
            };
            if is_zst {
                let ty = rvalue.ty(self.local_decls, tcx);
                return self.insert_constant(Const::zero_sized(ty));
            }
        }
        let (mut ty, variant_index) = match *kind {
            AggregateKind::Array(..) => {
                assert!(!field_ops.is_empty());
                (AggregateTy::Array, FIRST_VARIANT)
            }
            AggregateKind::Tuple => {
                assert!(!field_ops.is_empty());
                (AggregateTy::Tuple, FIRST_VARIANT)
            }
            AggregateKind::Closure(did, args)
            | AggregateKind::CoroutineClosure(did, args)
            | AggregateKind::Coroutine(did, args) => (AggregateTy::Def(did, args), FIRST_VARIANT),
            AggregateKind::Adt(did, variant_index, args, _, None) => {
                (AggregateTy::Def(did, args), variant_index)
            }
            AggregateKind::Adt(_, _, _, _, Some(_)) => return None,
            AggregateKind::RawPtr(pointee_ty, mtbl) => {
                assert_eq!(field_ops.len(), 2);
                let data_pointer_ty = field_ops[FieldIdx::ZERO].ty(self.local_decls, self.tcx);
                let output_pointer_ty = Ty::new_ptr(self.tcx, pointee_ty, mtbl);
                (AggregateTy::RawPtr { data_pointer_ty, output_pointer_ty }, FIRST_VARIANT)
            }
        };
        let fields: Option<Vec<_>> = field_ops
            .iter_mut()
            .map(|op| self.simplify_operand(op, location).or_else(|| self.new_opaque()))
            .collect();
        let mut fields = fields?;
        if let AggregateTy::RawPtr { data_pointer_ty, output_pointer_ty } = &mut ty {
            let mut was_updated = false;
            while let Value::Cast {
                kind: CastKind::PtrToPtr,
                value: cast_value,
                from: cast_from,
                to: _,
            } = self.get(fields[0])
                && let ty::RawPtr(from_pointee_ty, from_mtbl) = cast_from.kind()
                && let ty::RawPtr(_, output_mtbl) = output_pointer_ty.kind()
                && from_mtbl == output_mtbl
                && from_pointee_ty.is_sized(self.tcx, self.param_env)
            {
                fields[0] = *cast_value;
                *data_pointer_ty = *cast_from;
                was_updated = true;
            }
            if was_updated && let Some(op) = self.try_as_operand(fields[0], location) {
                field_ops[FieldIdx::ZERO] = op;
            }
        }
        if let AggregateTy::Array = ty
            && fields.len() > 4
        {
            let first = fields[0];
            if fields.iter().all(|&v| v == first) {
                let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap());
                if let Some(op) = self.try_as_operand(first, location) {
                    *rvalue = Rvalue::Repeat(op, len);
                }
                return Some(self.insert(Value::Repeat(first, len)));
            }
        }
        if let AggregateTy::Def(_, _) = ty
            && let Some(value) =
                self.simplify_aggregate_to_copy(rvalue, location, &fields, variant_index)
        {
            return Some(value);
        }
        Some(self.insert(Value::Aggregate(ty, variant_index, fields)))
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_unary(
        &mut self,
        op: UnOp,
        arg_op: &mut Operand<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let mut arg_index = self.simplify_operand(arg_op, location)?;
        if op == UnOp::PtrMetadata {
            let mut was_updated = false;
            loop {
                match self.get(arg_index) {
                    Value::Cast { kind: CastKind::PtrToPtr, value: inner, from, to }
                        if self.pointers_have_same_metadata(*from, *to) =>
                    {
                        arg_index = *inner;
                        was_updated = true;
                        continue;
                    }
                    Value::Address { place, kind: _, provenance: _ }
                        if let PlaceRef { local, projection: [PlaceElem::Deref] } =
                            place.as_ref()
                            && let Some(local_index) = self.locals[local] =>
                    {
                        arg_index = local_index;
                        was_updated = true;
                        continue;
                    }
                    _ => {
                        if was_updated && let Some(op) = self.try_as_operand(arg_index, location) {
                            *arg_op = op;
                        }
                        break;
                    }
                }
            }
        }
        let value = match (op, self.get(arg_index)) {
            (UnOp::Not, Value::UnaryOp(UnOp::Not, inner)) => return Some(*inner),
            (UnOp::Neg, Value::UnaryOp(UnOp::Neg, inner)) => return Some(*inner),
            (UnOp::Not, Value::BinaryOp(BinOp::Eq, lhs, rhs)) => {
                Value::BinaryOp(BinOp::Ne, *lhs, *rhs)
            }
            (UnOp::Not, Value::BinaryOp(BinOp::Ne, lhs, rhs)) => {
                Value::BinaryOp(BinOp::Eq, *lhs, *rhs)
            }
            (UnOp::PtrMetadata, Value::Aggregate(AggregateTy::RawPtr { .. }, _, fields)) => {
                return Some(fields[1]);
            }
            (
                UnOp::PtrMetadata,
                Value::Cast {
                    kind: CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
                    from,
                    to,
                    ..
                },
            ) if let ty::Slice(..) = to.builtin_deref(true).unwrap().kind()
                && let ty::Array(_, len) = from.builtin_deref(true).unwrap().kind() =>
            {
                return self.insert_constant(Const::from_ty_const(
                    *len,
                    self.tcx.types.usize,
                    self.tcx,
                ));
            }
            _ => Value::UnaryOp(op, arg_index),
        };
        Some(self.insert(value))
    }
    #[instrument(level = "trace", skip(self), ret)]
    fn simplify_binary(
        &mut self,
        op: BinOp,
        lhs_operand: &mut Operand<'tcx>,
        rhs_operand: &mut Operand<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        let lhs = self.simplify_operand(lhs_operand, location);
        let rhs = self.simplify_operand(rhs_operand, location);
        let mut lhs = lhs?;
        let mut rhs = rhs?;
        let lhs_ty = lhs_operand.ty(self.local_decls, self.tcx);
        if let BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge = op
            && lhs_ty.is_any_ptr()
            && let Value::Cast {
                kind: CastKind::PtrToPtr, value: lhs_value, from: lhs_from, ..
            } = self.get(lhs)
            && let Value::Cast {
                kind: CastKind::PtrToPtr, value: rhs_value, from: rhs_from, ..
            } = self.get(rhs)
            && lhs_from == rhs_from
            && self.pointers_have_same_metadata(*lhs_from, lhs_ty)
        {
            lhs = *lhs_value;
            rhs = *rhs_value;
            if let Some(lhs_op) = self.try_as_operand(lhs, location)
                && let Some(rhs_op) = self.try_as_operand(rhs, location)
            {
                *lhs_operand = lhs_op;
                *rhs_operand = rhs_op;
            }
        }
        if let Some(value) = self.simplify_binary_inner(op, lhs_ty, lhs, rhs) {
            return Some(value);
        }
        let value = Value::BinaryOp(op, lhs, rhs);
        Some(self.insert(value))
    }
    fn simplify_binary_inner(
        &mut self,
        op: BinOp,
        lhs_ty: Ty<'tcx>,
        lhs: VnIndex,
        rhs: VnIndex,
    ) -> Option<VnIndex> {
        let reasonable_ty =
            lhs_ty.is_integral() || lhs_ty.is_bool() || lhs_ty.is_char() || lhs_ty.is_any_ptr();
        if !reasonable_ty {
            return None;
        }
        let layout = self.ecx.layout_of(lhs_ty).ok()?;
        let as_bits = |value| {
            let constant = self.evaluated[value].as_ref()?;
            if layout.abi.is_scalar() {
                let scalar = self.ecx.read_scalar(constant).discard_err()?;
                scalar.to_bits(constant.layout.size).discard_err()
            } else {
                None
            }
        };
        use Either::{Left, Right};
        let a = as_bits(lhs).map_or(Right(lhs), Left);
        let b = as_bits(rhs).map_or(Right(rhs), Left);
        let result = match (op, a, b) {
            (
                BinOp::Add
                | BinOp::AddWithOverflow
                | BinOp::AddUnchecked
                | BinOp::BitOr
                | BinOp::BitXor,
                Left(0),
                Right(p),
            )
            | (
                BinOp::Add
                | BinOp::AddWithOverflow
                | BinOp::AddUnchecked
                | BinOp::BitOr
                | BinOp::BitXor
                | BinOp::Sub
                | BinOp::SubWithOverflow
                | BinOp::SubUnchecked
                | BinOp::Offset
                | BinOp::Shl
                | BinOp::Shr,
                Right(p),
                Left(0),
            )
            | (BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked, Left(1), Right(p))
            | (
                BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::Div,
                Right(p),
                Left(1),
            ) => p,
            (BinOp::BitAnd, Right(p), Left(ones)) | (BinOp::BitAnd, Left(ones), Right(p))
                if ones == layout.size.truncate(u128::MAX)
                    || (layout.ty.is_bool() && ones == 1) =>
            {
                p
            }
            (
                BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::BitAnd,
                _,
                Left(0),
            )
            | (BinOp::Rem, _, Left(1))
            | (
                BinOp::Mul
                | BinOp::MulWithOverflow
                | BinOp::MulUnchecked
                | BinOp::Div
                | BinOp::Rem
                | BinOp::BitAnd
                | BinOp::Shl
                | BinOp::Shr,
                Left(0),
                _,
            ) => self.insert_scalar(Scalar::from_uint(0u128, layout.size), lhs_ty),
            (BinOp::BitOr, _, Left(ones)) | (BinOp::BitOr, Left(ones), _)
                if ones == layout.size.truncate(u128::MAX)
                    || (layout.ty.is_bool() && ones == 1) =>
            {
                self.insert_scalar(Scalar::from_uint(ones, layout.size), lhs_ty)
            }
            (BinOp::Sub | BinOp::SubWithOverflow | BinOp::SubUnchecked | BinOp::BitXor, a, b)
                if a == b =>
            {
                self.insert_scalar(Scalar::from_uint(0u128, layout.size), lhs_ty)
            }
            (BinOp::Eq, Left(a), Left(b)) => self.insert_bool(a == b),
            (BinOp::Eq, a, b) if a == b => self.insert_bool(true),
            (BinOp::Ne, Left(a), Left(b)) => self.insert_bool(a != b),
            (BinOp::Ne, a, b) if a == b => self.insert_bool(false),
            _ => return None,
        };
        if op.is_overflowing() {
            let false_val = self.insert_bool(false);
            Some(self.insert_tuple(vec![result, false_val]))
        } else {
            Some(result)
        }
    }
    fn simplify_cast(
        &mut self,
        kind: &mut CastKind,
        operand: &mut Operand<'tcx>,
        to: Ty<'tcx>,
        location: Location,
    ) -> Option<VnIndex> {
        use CastKind::*;
        use rustc_middle::ty::adjustment::PointerCoercion::*;
        let mut from = operand.ty(self.local_decls, self.tcx);
        let mut value = self.simplify_operand(operand, location)?;
        if from == to {
            return Some(value);
        }
        if let CastKind::PointerCoercion(ReifyFnPointer | ClosureFnPointer(_), _) = kind {
            return self.new_opaque();
        }
        let mut was_updated = false;
        if let PtrToPtr = kind
            && let Value::Aggregate(AggregateTy::RawPtr { data_pointer_ty, .. }, _, fields) =
                self.get(value)
            && let ty::RawPtr(to_pointee, _) = to.kind()
            && to_pointee.is_sized(self.tcx, self.param_env)
        {
            from = *data_pointer_ty;
            value = fields[0];
            was_updated = true;
            if *data_pointer_ty == to {
                return Some(fields[0]);
            }
        }
        if let PtrToPtr = kind
            && let Value::Cast { kind: inner_kind, value: inner_value, from: inner_from, to: _ } =
                *self.get(value)
            && let PtrToPtr = inner_kind
        {
            from = inner_from;
            value = inner_value;
            was_updated = true;
            if inner_from == to {
                return Some(inner_value);
            }
        }
        if let Transmute = kind
            && let Value::Cast {
                kind: PtrToPtr,
                value: inner_value,
                from: inner_from,
                to: inner_to,
            } = *self.get(value)
            && self.pointers_have_same_metadata(inner_from, inner_to)
        {
            from = inner_from;
            value = inner_value;
            was_updated = true;
            if inner_from == to {
                return Some(inner_value);
            }
        }
        if was_updated && let Some(op) = self.try_as_operand(value, location) {
            *operand = op;
        }
        Some(self.insert(Value::Cast { kind: *kind, value, from, to }))
    }
    fn simplify_len(&mut self, place: &mut Place<'tcx>, location: Location) -> Option<VnIndex> {
        let place_ty = place.ty(self.local_decls, self.tcx).ty;
        if let ty::Array(_, len) = place_ty.kind() {
            return self.insert_constant(Const::from_ty_const(
                *len,
                self.tcx.types.usize,
                self.tcx,
            ));
        }
        let mut inner = self.simplify_place_value(place, location)?;
        while let Value::Address { place: borrowed, .. } = self.get(inner)
            && let [PlaceElem::Deref] = borrowed.projection[..]
            && let Some(borrowed) = self.locals[borrowed.local]
        {
            inner = borrowed;
        }
        if let Value::Cast { kind, from, to, .. } = self.get(inner)
            && let CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) = kind
            && let Some(from) = from.builtin_deref(true)
            && let ty::Array(_, len) = from.kind()
            && let Some(to) = to.builtin_deref(true)
            && let ty::Slice(..) = to.kind()
        {
            return self.insert_constant(Const::from_ty_const(
                *len,
                self.tcx.types.usize,
                self.tcx,
            ));
        }
        Some(self.insert(Value::Len(inner)))
    }
    fn pointers_have_same_metadata(&self, left_ptr_ty: Ty<'tcx>, right_ptr_ty: Ty<'tcx>) -> bool {
        let left_meta_ty = left_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
        let right_meta_ty = right_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
        if left_meta_ty == right_meta_ty {
            true
        } else if let Ok(left) =
            self.tcx.try_normalize_erasing_regions(self.param_env, left_meta_ty)
            && let Ok(right) = self.tcx.try_normalize_erasing_regions(self.param_env, right_meta_ty)
        {
            left == right
        } else {
            false
        }
    }
}
fn op_to_prop_const<'tcx>(
    ecx: &mut InterpCx<'tcx, DummyMachine>,
    op: &OpTy<'tcx>,
) -> Option<ConstValue<'tcx>> {
    if op.layout.is_unsized() {
        return None;
    }
    if op.layout.is_zst() {
        return Some(ConstValue::ZeroSized);
    }
    if !matches!(op.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
        return None;
    }
    if let Abi::Scalar(abi::Scalar::Initialized { .. }) = op.layout.abi
        && let Some(scalar) = ecx.read_scalar(op).discard_err()
    {
        if !scalar.try_to_scalar_int().is_ok() {
            return None;
        }
        return Some(ConstValue::Scalar(scalar));
    }
    if let Either::Left(mplace) = op.as_mplace_or_imm() {
        let (size, _align) = ecx.size_and_align_of_mplace(&mplace).discard_err()??;
        let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).discard_err()??;
        if alloc_ref.has_provenance() {
            return None;
        }
        let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
        let (prov, offset) = pointer.into_parts();
        let alloc_id = prov.alloc_id();
        intern_const_alloc_for_constprop(ecx, alloc_id).discard_err()?;
        if let GlobalAlloc::Memory(alloc) = ecx.tcx.global_alloc(alloc_id)
            && alloc.inner().align >= op.layout.align.abi
        {
            return Some(ConstValue::Indirect { alloc_id, offset });
        }
    }
    let alloc_id =
        ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest)).discard_err()?;
    let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO };
    if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() {
        return Some(value);
    }
    None
}
impl<'tcx> VnState<'_, 'tcx> {
    fn try_as_operand(&mut self, index: VnIndex, location: Location) -> Option<Operand<'tcx>> {
        if let Some(const_) = self.try_as_constant(index) {
            Some(Operand::Constant(Box::new(const_)))
        } else if let Some(local) = self.try_as_local(index, location) {
            self.reused_locals.insert(local);
            Some(Operand::Copy(local.into()))
        } else {
            None
        }
    }
    fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
        if let Value::Constant { value, disambiguator: 0 } = *self.get(index) {
            debug_assert!(value.is_deterministic());
            return Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_: value });
        }
        let op = self.evaluated[index].as_ref()?;
        if op.layout.is_unsized() {
            return None;
        }
        let value = op_to_prop_const(&mut self.ecx, op)?;
        assert!(!value.may_have_provenance(self.tcx, op.layout.size));
        let const_ = Const::Val(value, op.layout.ty);
        Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_ })
    }
    fn try_as_local(&mut self, index: VnIndex, loc: Location) -> Option<Local> {
        let other = self.rev_locals.get(index)?;
        other
            .iter()
            .find(|&&other| self.ssa.assignment_dominates(&self.dominators, other, loc))
            .copied()
    }
}
impl<'tcx> MutVisitor<'tcx> for VnState<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
    fn visit_place(&mut self, place: &mut Place<'tcx>, _: PlaceContext, location: Location) {
        self.simplify_place_projection(place, location);
    }
    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
        self.simplify_operand(operand, location);
    }
    fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, location: Location) {
        if let StatementKind::Assign(box (ref mut lhs, ref mut rvalue)) = stmt.kind {
            self.simplify_place_projection(lhs, location);
            if matches!(rvalue, Rvalue::Use(Operand::Constant(_))) {
                return;
            }
            let value = lhs
                .as_local()
                .and_then(|local| self.locals[local])
                .or_else(|| self.simplify_rvalue(rvalue, location));
            let Some(value) = value else { return };
            if let Some(const_) = self.try_as_constant(value) {
                *rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
            } else if let Some(local) = self.try_as_local(value, location)
                && *rvalue != Rvalue::Use(Operand::Move(local.into()))
            {
                *rvalue = Rvalue::Use(Operand::Copy(local.into()));
                self.reused_locals.insert(local);
            }
            return;
        }
        self.super_statement(stmt, location);
    }
}
struct StorageRemover<'tcx> {
    tcx: TyCtxt<'tcx>,
    reused_locals: BitSet<Local>,
}
impl<'tcx> MutVisitor<'tcx> for StorageRemover<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, _: Location) {
        if let Operand::Move(place) = *operand
            && !place.is_indirect_first_projection()
            && self.reused_locals.contains(place.local)
        {
            *operand = Operand::Copy(place);
        }
    }
    fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
        match stmt.kind {
            StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
                if self.reused_locals.contains(l) =>
            {
                stmt.make_nop()
            }
            _ => self.super_statement(stmt, loc),
        }
    }
}