rustc_data_structures/graph/implementation/
mod.rsuse std::fmt::Debug;
use rustc_index::bit_set::BitSet;
use tracing::debug;
#[cfg(test)]
mod tests;
pub struct Graph<N, E> {
    nodes: Vec<Node<N>>,
    edges: Vec<Edge<E>>,
}
pub struct Node<N> {
    first_edge: [EdgeIndex; 2], pub data: N,
}
#[derive(Debug)]
pub struct Edge<E> {
    next_edge: [EdgeIndex; 2], source: NodeIndex,
    target: NodeIndex,
    pub data: E,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct NodeIndex(pub usize);
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct EdgeIndex(pub usize);
pub const INVALID_EDGE_INDEX: EdgeIndex = EdgeIndex(usize::MAX);
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Direction {
    repr: usize,
}
pub const OUTGOING: Direction = Direction { repr: 0 };
pub const INCOMING: Direction = Direction { repr: 1 };
impl NodeIndex {
    pub fn node_id(self) -> usize {
        self.0
    }
}
impl<N: Debug, E: Debug> Graph<N, E> {
    pub fn new() -> Graph<N, E> {
        Graph { nodes: Vec::new(), edges: Vec::new() }
    }
    pub fn with_capacity(nodes: usize, edges: usize) -> Graph<N, E> {
        Graph { nodes: Vec::with_capacity(nodes), edges: Vec::with_capacity(edges) }
    }
    #[inline]
    pub fn all_nodes(&self) -> &[Node<N>] {
        &self.nodes
    }
    #[inline]
    pub fn len_nodes(&self) -> usize {
        self.nodes.len()
    }
    #[inline]
    pub fn all_edges(&self) -> &[Edge<E>] {
        &self.edges
    }
    #[inline]
    pub fn len_edges(&self) -> usize {
        self.edges.len()
    }
    pub fn next_node_index(&self) -> NodeIndex {
        NodeIndex(self.nodes.len())
    }
    pub fn add_node(&mut self, data: N) -> NodeIndex {
        let idx = self.next_node_index();
        self.nodes.push(Node { first_edge: [INVALID_EDGE_INDEX, INVALID_EDGE_INDEX], data });
        idx
    }
    pub fn mut_node_data(&mut self, idx: NodeIndex) -> &mut N {
        &mut self.nodes[idx.0].data
    }
    pub fn node_data(&self, idx: NodeIndex) -> &N {
        &self.nodes[idx.0].data
    }
    pub fn node(&self, idx: NodeIndex) -> &Node<N> {
        &self.nodes[idx.0]
    }
    pub fn next_edge_index(&self) -> EdgeIndex {
        EdgeIndex(self.edges.len())
    }
    pub fn add_edge(&mut self, source: NodeIndex, target: NodeIndex, data: E) -> EdgeIndex {
        debug!("graph: add_edge({:?}, {:?}, {:?})", source, target, data);
        let idx = self.next_edge_index();
        let source_first = self.nodes[source.0].first_edge[OUTGOING.repr];
        let target_first = self.nodes[target.0].first_edge[INCOMING.repr];
        self.edges.push(Edge { next_edge: [source_first, target_first], source, target, data });
        self.nodes[source.0].first_edge[OUTGOING.repr] = idx;
        self.nodes[target.0].first_edge[INCOMING.repr] = idx;
        idx
    }
    pub fn edge(&self, idx: EdgeIndex) -> &Edge<E> {
        &self.edges[idx.0]
    }
    pub fn enumerated_nodes(&self) -> impl Iterator<Item = (NodeIndex, &Node<N>)> {
        self.nodes.iter().enumerate().map(|(idx, n)| (NodeIndex(idx), n))
    }
    pub fn enumerated_edges(&self) -> impl Iterator<Item = (EdgeIndex, &Edge<E>)> {
        self.edges.iter().enumerate().map(|(idx, e)| (EdgeIndex(idx), e))
    }
    pub fn each_node<'a>(&'a self, mut f: impl FnMut(NodeIndex, &'a Node<N>) -> bool) -> bool {
        self.enumerated_nodes().all(|(node_idx, node)| f(node_idx, node))
    }
    pub fn each_edge<'a>(&'a self, mut f: impl FnMut(EdgeIndex, &'a Edge<E>) -> bool) -> bool {
        self.enumerated_edges().all(|(edge_idx, edge)| f(edge_idx, edge))
    }
    pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<'_, N, E> {
        self.adjacent_edges(source, OUTGOING)
    }
    pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<'_, N, E> {
        self.adjacent_edges(source, INCOMING)
    }
    pub fn adjacent_edges(
        &self,
        source: NodeIndex,
        direction: Direction,
    ) -> AdjacentEdges<'_, N, E> {
        let first_edge = self.node(source).first_edge[direction.repr];
        AdjacentEdges { graph: self, direction, next: first_edge }
    }
    pub fn successor_nodes(&self, source: NodeIndex) -> impl Iterator<Item = NodeIndex> + '_ {
        self.outgoing_edges(source).targets()
    }
    pub fn predecessor_nodes(&self, target: NodeIndex) -> impl Iterator<Item = NodeIndex> + '_ {
        self.incoming_edges(target).sources()
    }
    pub fn depth_traverse(
        &self,
        start: NodeIndex,
        direction: Direction,
    ) -> DepthFirstTraversal<'_, N, E> {
        DepthFirstTraversal::with_start_node(self, start, direction)
    }
    pub fn nodes_in_postorder(
        &self,
        direction: Direction,
        entry_node: NodeIndex,
    ) -> Vec<NodeIndex> {
        let mut visited = BitSet::new_empty(self.len_nodes());
        let mut stack = vec![];
        let mut result = Vec::with_capacity(self.len_nodes());
        let mut push_node = |stack: &mut Vec<_>, node: NodeIndex| {
            if visited.insert(node.0) {
                stack.push((node, self.adjacent_edges(node, direction)));
            }
        };
        for node in
            Some(entry_node).into_iter().chain(self.enumerated_nodes().map(|(node, _)| node))
        {
            push_node(&mut stack, node);
            while let Some((node, mut iter)) = stack.pop() {
                if let Some((_, child)) = iter.next() {
                    let target = child.source_or_target(direction);
                    stack.push((node, iter));
                    push_node(&mut stack, target);
                } else {
                    result.push(node);
                }
            }
        }
        assert_eq!(result.len(), self.len_nodes());
        result
    }
}
pub struct AdjacentEdges<'g, N, E> {
    graph: &'g Graph<N, E>,
    direction: Direction,
    next: EdgeIndex,
}
impl<'g, N: Debug, E: Debug> AdjacentEdges<'g, N, E> {
    fn targets(self) -> impl Iterator<Item = NodeIndex> + 'g {
        self.map(|(_, edge)| edge.target)
    }
    fn sources(self) -> impl Iterator<Item = NodeIndex> + 'g {
        self.map(|(_, edge)| edge.source)
    }
}
impl<'g, N: Debug, E: Debug> Iterator for AdjacentEdges<'g, N, E> {
    type Item = (EdgeIndex, &'g Edge<E>);
    fn next(&mut self) -> Option<(EdgeIndex, &'g Edge<E>)> {
        let edge_index = self.next;
        if edge_index == INVALID_EDGE_INDEX {
            return None;
        }
        let edge = self.graph.edge(edge_index);
        self.next = edge.next_edge[self.direction.repr];
        Some((edge_index, edge))
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.graph.len_edges()))
    }
}
pub struct DepthFirstTraversal<'g, N, E> {
    graph: &'g Graph<N, E>,
    stack: Vec<NodeIndex>,
    visited: BitSet<usize>,
    direction: Direction,
}
impl<'g, N: Debug, E: Debug> DepthFirstTraversal<'g, N, E> {
    pub fn with_start_node(
        graph: &'g Graph<N, E>,
        start_node: NodeIndex,
        direction: Direction,
    ) -> Self {
        let mut visited = BitSet::new_empty(graph.len_nodes());
        visited.insert(start_node.node_id());
        DepthFirstTraversal { graph, stack: vec![start_node], visited, direction }
    }
    fn visit(&mut self, node: NodeIndex) {
        if self.visited.insert(node.node_id()) {
            self.stack.push(node);
        }
    }
}
impl<'g, N: Debug, E: Debug> Iterator for DepthFirstTraversal<'g, N, E> {
    type Item = NodeIndex;
    fn next(&mut self) -> Option<NodeIndex> {
        let next = self.stack.pop();
        if let Some(idx) = next {
            for (_, edge) in self.graph.adjacent_edges(idx, self.direction) {
                let target = edge.source_or_target(self.direction);
                self.visit(target);
            }
        }
        next
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.graph.len_nodes() - self.visited.count();
        (remaining, Some(remaining))
    }
}
impl<'g, N: Debug, E: Debug> ExactSizeIterator for DepthFirstTraversal<'g, N, E> {}
impl<E> Edge<E> {
    pub fn source(&self) -> NodeIndex {
        self.source
    }
    pub fn target(&self) -> NodeIndex {
        self.target
    }
    pub fn source_or_target(&self, direction: Direction) -> NodeIndex {
        if direction == OUTGOING { self.target } else { self.source }
    }
}