1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//! An infrastructure to mechanically analyse proof trees.
//!
//! It is unavoidable that this representation is somewhat
//! lossy as it should hide quite a few semantically relevant things,
//! e.g. canonicalization and the order of nested goals.
//!
//! @lcnr: However, a lot of the weirdness here is not strictly necessary
//! and could be improved in the future. This is mostly good enough for
//! coherence right now and was annoying to implement, so I am leaving it
//! as is until we start using it for something else.

use rustc_ast_ir::try_visit;
use rustc_ast_ir::visit::VisitorResult;
use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, InferOk};
use rustc_macros::extension;
use rustc_middle::traits::solve::{Certainty, Goal, GoalSource, NoSolution, QueryResult};
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::{TyCtxt, TypeFoldable};
use rustc_middle::{bug, ty};
use rustc_next_trait_solver::resolve::EagerResolver;
use rustc_next_trait_solver::solve::inspect::{self, instantiate_canonical_state};
use rustc_next_trait_solver::solve::{GenerateProofTree, MaybeCause, SolverDelegateEvalExt as _};
use rustc_span::{Span, DUMMY_SP};

use crate::solve::delegate::SolverDelegate;
use crate::traits::ObligationCtxt;

pub struct InspectConfig {
    pub max_depth: usize,
}

pub struct InspectGoal<'a, 'tcx> {
    infcx: &'a SolverDelegate<'tcx>,
    depth: usize,
    orig_values: Vec<ty::GenericArg<'tcx>>,
    goal: Goal<'tcx, ty::Predicate<'tcx>>,
    result: Result<Certainty, NoSolution>,
    evaluation_kind: inspect::CanonicalGoalEvaluationKind<TyCtxt<'tcx>>,
    normalizes_to_term_hack: Option<NormalizesToTermHack<'tcx>>,
    source: GoalSource,
}

/// The expected term of a `NormalizesTo` goal gets replaced
/// with an unconstrained inference variable when computing
/// `NormalizesTo` goals and we return the nested goals to the
/// caller, who also equates the actual term with the expected.
///
/// This is an implementation detail of the trait solver and
/// not something we want to leak to users. We therefore
/// treat `NormalizesTo` goals as if they apply the expected
/// type at the end of each candidate.
#[derive(Copy, Clone)]
struct NormalizesToTermHack<'tcx> {
    term: ty::Term<'tcx>,
    unconstrained_term: ty::Term<'tcx>,
}

impl<'tcx> NormalizesToTermHack<'tcx> {
    /// Relate the `term` with the new `unconstrained_term` created
    /// when computing the proof tree for this `NormalizesTo` goals.
    /// This handles nested obligations.
    fn constrain(
        self,
        infcx: &InferCtxt<'tcx>,
        span: Span,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Result<Certainty, NoSolution> {
        infcx
            .at(&ObligationCause::dummy_with_span(span), param_env)
            .eq(DefineOpaqueTypes::Yes, self.term, self.unconstrained_term)
            .map_err(|_| NoSolution)
            .and_then(|InferOk { value: (), obligations }| {
                let ocx = ObligationCtxt::new(infcx);
                ocx.register_obligations(obligations);
                let errors = ocx.select_all_or_error();
                if errors.is_empty() {
                    Ok(Certainty::Yes)
                } else if errors.iter().all(|e| !e.is_true_error()) {
                    Ok(Certainty::AMBIGUOUS)
                } else {
                    Err(NoSolution)
                }
            })
    }
}

pub struct InspectCandidate<'a, 'tcx> {
    goal: &'a InspectGoal<'a, 'tcx>,
    kind: inspect::ProbeKind<TyCtxt<'tcx>>,
    steps: Vec<&'a inspect::ProbeStep<TyCtxt<'tcx>>>,
    final_state: inspect::CanonicalState<TyCtxt<'tcx>, ()>,
    result: QueryResult<'tcx>,
    shallow_certainty: Certainty,
}

impl<'a, 'tcx> InspectCandidate<'a, 'tcx> {
    pub fn kind(&self) -> inspect::ProbeKind<TyCtxt<'tcx>> {
        self.kind
    }

    pub fn result(&self) -> Result<Certainty, NoSolution> {
        self.result.map(|c| c.value.certainty)
    }

    pub fn goal(&self) -> &'a InspectGoal<'a, 'tcx> {
        self.goal
    }

    /// Certainty passed into `evaluate_added_goals_and_make_canonical_response`.
    ///
    /// If this certainty is `Yes`, then we must be confident that the candidate
    /// must hold iff it's nested goals hold. This is not true if the certainty is
    /// `Maybe(..)`, which suggests we forced ambiguity instead.
    ///
    /// This is *not* the certainty of the candidate's full nested evaluation, which
    /// can be accessed with [`Self::result`] instead.
    pub fn shallow_certainty(&self) -> Certainty {
        self.shallow_certainty
    }

    /// Visit all nested goals of this candidate without rolling
    /// back their inference constraints. This function modifies
    /// the state of the `infcx`.
    pub fn visit_nested_no_probe<V: ProofTreeVisitor<'tcx>>(&self, visitor: &mut V) -> V::Result {
        for goal in self.instantiate_nested_goals(visitor.span()) {
            try_visit!(goal.visit_with(visitor));
        }

        V::Result::output()
    }

    /// Instantiate the nested goals for the candidate without rolling back their
    /// inference constraints. This function modifies the state of the `infcx`.
    ///
    /// See [`Self::instantiate_nested_goals_and_opt_impl_args`] if you need the impl args too.
    pub fn instantiate_nested_goals(&self, span: Span) -> Vec<InspectGoal<'a, 'tcx>> {
        self.instantiate_nested_goals_and_opt_impl_args(span).0
    }

    /// Instantiate the nested goals for the candidate without rolling back their
    /// inference constraints, and optionally the args of an impl if this candidate
    /// came from a `CandidateSource::Impl`. This function modifies the state of the
    /// `infcx`.
    #[instrument(
        level = "debug",
        skip_all,
        fields(goal = ?self.goal.goal, steps = ?self.steps)
    )]
    pub fn instantiate_nested_goals_and_opt_impl_args(
        &self,
        span: Span,
    ) -> (Vec<InspectGoal<'a, 'tcx>>, Option<ty::GenericArgsRef<'tcx>>) {
        let infcx = self.goal.infcx;
        let param_env = self.goal.goal.param_env;
        let mut orig_values = self.goal.orig_values.to_vec();

        let mut instantiated_goals = vec![];
        let mut opt_impl_args = None;
        for step in &self.steps {
            match **step {
                inspect::ProbeStep::AddGoal(source, goal) => instantiated_goals.push((
                    source,
                    instantiate_canonical_state(infcx, span, param_env, &mut orig_values, goal),
                )),
                inspect::ProbeStep::RecordImplArgs { impl_args } => {
                    opt_impl_args = Some(instantiate_canonical_state(
                        infcx,
                        span,
                        param_env,
                        &mut orig_values,
                        impl_args,
                    ));
                }
                inspect::ProbeStep::MakeCanonicalResponse { .. }
                | inspect::ProbeStep::NestedProbe(_) => unreachable!(),
            }
        }

        let () =
            instantiate_canonical_state(infcx, span, param_env, &mut orig_values, self.final_state);

        if let Some(term_hack) = self.goal.normalizes_to_term_hack {
            // FIXME: We ignore the expected term of `NormalizesTo` goals
            // when computing the result of its candidates. This is
            // scuffed.
            let _ = term_hack.constrain(infcx, span, param_env);
        }

        let opt_impl_args =
            opt_impl_args.map(|impl_args| impl_args.fold_with(&mut EagerResolver::new(infcx)));

        let goals = instantiated_goals
            .into_iter()
            .map(|(source, goal)| match goal.predicate.kind().no_bound_vars() {
                Some(ty::PredicateKind::NormalizesTo(ty::NormalizesTo { alias, term })) => {
                    let unconstrained_term = match term.unpack() {
                        ty::TermKind::Ty(_) => infcx.next_ty_var(span).into(),
                        ty::TermKind::Const(_) => infcx.next_const_var(span).into(),
                    };
                    let goal =
                        goal.with(infcx.tcx, ty::NormalizesTo { alias, term: unconstrained_term });
                    // We have to use a `probe` here as evaluating a `NormalizesTo` can constrain the
                    // expected term. This means that candidates which only fail due to nested goals
                    // and which normalize to a different term then the final result could ICE: when
                    // building their proof tree, the expected term was unconstrained, but when
                    // instantiating the candidate it is already constrained to the result of another
                    // candidate.
                    let proof_tree = infcx
                        .probe(|_| infcx.evaluate_root_goal_raw(goal, GenerateProofTree::Yes).1);
                    InspectGoal::new(
                        infcx,
                        self.goal.depth + 1,
                        proof_tree.unwrap(),
                        Some(NormalizesToTermHack { term, unconstrained_term }),
                        source,
                    )
                }
                _ => {
                    // We're using a probe here as evaluating a goal could constrain
                    // inference variables by choosing one candidate. If we then recurse
                    // into another candidate who ends up with different inference
                    // constraints, we get an ICE if we already applied the constraints
                    // from the chosen candidate.
                    let proof_tree = infcx
                        .probe(|_| infcx.evaluate_root_goal(goal, GenerateProofTree::Yes).1)
                        .unwrap();
                    InspectGoal::new(infcx, self.goal.depth + 1, proof_tree, None, source)
                }
            })
            .collect();

        (goals, opt_impl_args)
    }

    /// Visit all nested goals of this candidate, rolling back
    /// all inference constraints.
    pub fn visit_nested_in_probe<V: ProofTreeVisitor<'tcx>>(&self, visitor: &mut V) -> V::Result {
        self.goal.infcx.probe(|_| self.visit_nested_no_probe(visitor))
    }
}

impl<'a, 'tcx> InspectGoal<'a, 'tcx> {
    pub fn infcx(&self) -> &'a InferCtxt<'tcx> {
        self.infcx
    }

    pub fn goal(&self) -> Goal<'tcx, ty::Predicate<'tcx>> {
        self.goal
    }

    pub fn result(&self) -> Result<Certainty, NoSolution> {
        self.result
    }

    pub fn source(&self) -> GoalSource {
        self.source
    }

    pub fn depth(&self) -> usize {
        self.depth
    }

    fn candidates_recur(
        &'a self,
        candidates: &mut Vec<InspectCandidate<'a, 'tcx>>,
        steps: &mut Vec<&'a inspect::ProbeStep<TyCtxt<'tcx>>>,
        probe: &'a inspect::Probe<TyCtxt<'tcx>>,
    ) {
        let mut shallow_certainty = None;
        for step in &probe.steps {
            match *step {
                inspect::ProbeStep::AddGoal(..) | inspect::ProbeStep::RecordImplArgs { .. } => {
                    steps.push(step)
                }
                inspect::ProbeStep::MakeCanonicalResponse { shallow_certainty: c } => {
                    assert!(matches!(
                        shallow_certainty.replace(c),
                        None | Some(Certainty::Maybe(MaybeCause::Ambiguity))
                    ));
                }
                inspect::ProbeStep::NestedProbe(ref probe) => {
                    match probe.kind {
                        // These never assemble candidates for the goal we're trying to solve.
                        inspect::ProbeKind::UpcastProjectionCompatibility
                        | inspect::ProbeKind::ShadowedEnvProbing => continue,

                        inspect::ProbeKind::NormalizedSelfTyAssembly
                        | inspect::ProbeKind::UnsizeAssembly
                        | inspect::ProbeKind::Root { .. }
                        | inspect::ProbeKind::TryNormalizeNonRigid { .. }
                        | inspect::ProbeKind::TraitCandidate { .. }
                        | inspect::ProbeKind::OpaqueTypeStorageLookup { .. } => {
                            // Nested probes have to prove goals added in their parent
                            // but do not leak them, so we truncate the added goals
                            // afterwards.
                            let num_steps = steps.len();
                            self.candidates_recur(candidates, steps, probe);
                            steps.truncate(num_steps);
                        }
                    }
                }
            }
        }

        match probe.kind {
            inspect::ProbeKind::UpcastProjectionCompatibility
            | inspect::ProbeKind::ShadowedEnvProbing => bug!(),

            inspect::ProbeKind::NormalizedSelfTyAssembly | inspect::ProbeKind::UnsizeAssembly => {}

            // We add a candidate even for the root evaluation if there
            // is only one way to prove a given goal, e.g. for `WellFormed`.
            inspect::ProbeKind::Root { result }
            | inspect::ProbeKind::TryNormalizeNonRigid { result }
            | inspect::ProbeKind::TraitCandidate { source: _, result }
            | inspect::ProbeKind::OpaqueTypeStorageLookup { result } => {
                // We only add a candidate if `shallow_certainty` was set, which means
                // that we ended up calling `evaluate_added_goals_and_make_canonical_response`.
                if let Some(shallow_certainty) = shallow_certainty {
                    candidates.push(InspectCandidate {
                        goal: self,
                        kind: probe.kind,
                        steps: steps.clone(),
                        final_state: probe.final_state,
                        shallow_certainty,
                        result,
                    });
                }
            }
        }
    }

    pub fn candidates(&'a self) -> Vec<InspectCandidate<'a, 'tcx>> {
        let mut candidates = vec![];
        let last_eval_step = match self.evaluation_kind {
            inspect::CanonicalGoalEvaluationKind::Overflow
            | inspect::CanonicalGoalEvaluationKind::CycleInStack
            | inspect::CanonicalGoalEvaluationKind::ProvisionalCacheHit => {
                warn!("unexpected root evaluation: {:?}", self.evaluation_kind);
                return vec![];
            }
            inspect::CanonicalGoalEvaluationKind::Evaluation { final_revision } => final_revision,
        };

        let mut nested_goals = vec![];
        self.candidates_recur(&mut candidates, &mut nested_goals, &last_eval_step.evaluation);

        candidates
    }

    /// Returns the single candidate applicable for the current goal, if it exists.
    ///
    /// Returns `None` if there are either no or multiple applicable candidates.
    pub fn unique_applicable_candidate(&'a self) -> Option<InspectCandidate<'a, 'tcx>> {
        // FIXME(-Znext-solver): This does not handle impl candidates
        // hidden by env candidates.
        let mut candidates = self.candidates();
        candidates.retain(|c| c.result().is_ok());
        candidates.pop().filter(|_| candidates.is_empty())
    }

    fn new(
        infcx: &'a InferCtxt<'tcx>,
        depth: usize,
        root: inspect::GoalEvaluation<TyCtxt<'tcx>>,
        normalizes_to_term_hack: Option<NormalizesToTermHack<'tcx>>,
        source: GoalSource,
    ) -> Self {
        let infcx = <&SolverDelegate<'tcx>>::from(infcx);

        let inspect::GoalEvaluation { uncanonicalized_goal, orig_values, evaluation } = root;
        let result = evaluation.result.and_then(|ok| {
            if let Some(term_hack) = normalizes_to_term_hack {
                infcx
                    .probe(|_| term_hack.constrain(infcx, DUMMY_SP, uncanonicalized_goal.param_env))
                    .map(|certainty| ok.value.certainty.unify_with(certainty))
            } else {
                Ok(ok.value.certainty)
            }
        });

        InspectGoal {
            infcx,
            depth,
            orig_values,
            goal: uncanonicalized_goal.fold_with(&mut EagerResolver::new(infcx)),
            result,
            evaluation_kind: evaluation.kind,
            normalizes_to_term_hack,
            source,
        }
    }

    pub(crate) fn visit_with<V: ProofTreeVisitor<'tcx>>(&self, visitor: &mut V) -> V::Result {
        if self.depth < visitor.config().max_depth {
            try_visit!(visitor.visit_goal(self));
        }

        V::Result::output()
    }
}

/// The public API to interact with proof trees.
pub trait ProofTreeVisitor<'tcx> {
    type Result: VisitorResult = ();

    fn span(&self) -> Span;

    fn config(&self) -> InspectConfig {
        InspectConfig { max_depth: 10 }
    }

    fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) -> Self::Result;
}

#[extension(pub trait ProofTreeInferCtxtExt<'tcx>)]
impl<'tcx> InferCtxt<'tcx> {
    fn visit_proof_tree<V: ProofTreeVisitor<'tcx>>(
        &self,
        goal: Goal<'tcx, ty::Predicate<'tcx>>,
        visitor: &mut V,
    ) -> V::Result {
        self.visit_proof_tree_at_depth(goal, 0, visitor)
    }

    fn visit_proof_tree_at_depth<V: ProofTreeVisitor<'tcx>>(
        &self,
        goal: Goal<'tcx, ty::Predicate<'tcx>>,
        depth: usize,
        visitor: &mut V,
    ) -> V::Result {
        let (_, proof_tree) =
            <&SolverDelegate<'tcx>>::from(self).evaluate_root_goal(goal, GenerateProofTree::Yes);
        let proof_tree = proof_tree.unwrap();
        visitor.visit_goal(&InspectGoal::new(self, depth, proof_tree, None, GoalSource::Misc))
    }
}