1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
// ignore-tidy-filelength
//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
//! It runs when the crate is fully expanded and its module structure is fully built.
//! So it just walks through the crate and resolves all the expressions, types, etc.
//!
//! If you wonder why there's no `early.rs`, that's because it's split into three files -
//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
use crate::{errors, path_names_to_string, rustdoc, BindingError, Finalize, LexicalScopeBinding};
use crate::{BindingKey, Used};
use crate::{Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult};
use crate::{ResolutionError, Resolver, Segment, TyCtxt, UseError};
use rustc_ast::ptr::P;
use rustc_ast::visit::{visit_opt, walk_list, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
use rustc_ast::*;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
use rustc_errors::{codes::*, Applicability, DiagArgValue, IntoDiagArg, StashKey};
use rustc_hir::def::Namespace::{self, *};
use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, NonMacroAttrKind, PartialRes, PerNS};
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::{MissingLifetimeKind, PrimTy, TraitCandidate};
use rustc_middle::middle::resolve_bound_vars::Set1;
use rustc_middle::ty::DelegationFnSig;
use rustc_middle::{bug, span_bug};
use rustc_session::config::{CrateType, ResolveDocLinks};
use rustc_session::lint::{self, BuiltinLintDiag};
use rustc_session::parse::feature_err;
use rustc_span::source_map::{respan, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{BytePos, Span, SyntaxContext};
use smallvec::{smallvec, SmallVec};
use tracing::{debug, instrument, trace};
use std::assert_matches::debug_assert_matches;
use std::borrow::Cow;
use std::collections::{hash_map::Entry, BTreeSet};
use std::mem::{replace, swap, take};
mod diagnostics;
type Res = def::Res<NodeId>;
type IdentMap<T> = FxHashMap<Ident, T>;
use diagnostics::{ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime};
#[derive(Copy, Clone, Debug)]
struct BindingInfo {
span: Span,
annotation: BindingMode,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum PatternSource {
Match,
Let,
For,
FnParam,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IsRepeatExpr {
No,
Yes,
}
struct IsNeverPattern;
/// Describes whether an `AnonConst` is a type level const arg or
/// some other form of anon const (i.e. inline consts or enum discriminants)
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum AnonConstKind {
EnumDiscriminant,
InlineConst,
ConstArg(IsRepeatExpr),
}
impl PatternSource {
fn descr(self) -> &'static str {
match self {
PatternSource::Match => "match binding",
PatternSource::Let => "let binding",
PatternSource::For => "for binding",
PatternSource::FnParam => "function parameter",
}
}
}
impl IntoDiagArg for PatternSource {
fn into_diag_arg(self) -> DiagArgValue {
DiagArgValue::Str(Cow::Borrowed(self.descr()))
}
}
/// Denotes whether the context for the set of already bound bindings is a `Product`
/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
/// See those functions for more information.
#[derive(PartialEq)]
enum PatBoundCtx {
/// A product pattern context, e.g., `Variant(a, b)`.
Product,
/// An or-pattern context, e.g., `p_0 | ... | p_n`.
Or,
}
/// Does this the item (from the item rib scope) allow generic parameters?
#[derive(Copy, Clone, Debug)]
pub(crate) enum HasGenericParams {
Yes(Span),
No,
}
/// May this constant have generics?
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum ConstantHasGenerics {
Yes,
No(NoConstantGenericsReason),
}
impl ConstantHasGenerics {
fn force_yes_if(self, b: bool) -> Self {
if b { Self::Yes } else { self }
}
}
/// Reason for why an anon const is not allowed to reference generic parameters
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum NoConstantGenericsReason {
/// Const arguments are only allowed to use generic parameters when:
/// - `feature(generic_const_exprs)` is enabled
/// or
/// - the const argument is a sole const generic paramater, i.e. `foo::<{ N }>()`
///
/// If neither of the above are true then this is used as the cause.
NonTrivialConstArg,
/// Enum discriminants are not allowed to reference generic parameters ever, this
/// is used when an anon const is in the following position:
///
/// ```rust,compile_fail
/// enum Foo<const N: isize> {
/// Variant = { N }, // this anon const is not allowed to use generics
/// }
/// ```
IsEnumDiscriminant,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum ConstantItemKind {
Const,
Static,
}
impl ConstantItemKind {
pub(crate) fn as_str(&self) -> &'static str {
match self {
Self::Const => "const",
Self::Static => "static",
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum RecordPartialRes {
Yes,
No,
}
/// The rib kind restricts certain accesses,
/// e.g. to a `Res::Local` of an outer item.
#[derive(Copy, Clone, Debug)]
pub(crate) enum RibKind<'a> {
/// No restriction needs to be applied.
Normal,
/// We passed through an impl or trait and are now in one of its
/// methods or associated types. Allow references to ty params that impl or trait
/// binds. Disallow any other upvars (including other ty params that are
/// upvars).
AssocItem,
/// We passed through a function, closure or coroutine signature. Disallow labels.
FnOrCoroutine,
/// We passed through an item scope. Disallow upvars.
Item(HasGenericParams, DefKind),
/// We're in a constant item. Can't refer to dynamic stuff.
///
/// The item may reference generic parameters in trivial constant expressions.
/// All other constants aren't allowed to use generic params at all.
ConstantItem(ConstantHasGenerics, Option<(Ident, ConstantItemKind)>),
/// We passed through a module.
Module(Module<'a>),
/// We passed through a `macro_rules!` statement
MacroDefinition(DefId),
/// All bindings in this rib are generic parameters that can't be used
/// from the default of a generic parameter because they're not declared
/// before said generic parameter. Also see the `visit_generics` override.
ForwardGenericParamBan,
/// We are inside of the type of a const parameter. Can't refer to any
/// parameters.
ConstParamTy,
/// We are inside a `sym` inline assembly operand. Can only refer to
/// globals.
InlineAsmSym,
}
impl RibKind<'_> {
/// Whether this rib kind contains generic parameters, as opposed to local
/// variables.
pub(crate) fn contains_params(&self) -> bool {
match self {
RibKind::Normal
| RibKind::FnOrCoroutine
| RibKind::ConstantItem(..)
| RibKind::Module(_)
| RibKind::MacroDefinition(_)
| RibKind::ConstParamTy
| RibKind::InlineAsmSym => false,
RibKind::AssocItem | RibKind::Item(..) | RibKind::ForwardGenericParamBan => true,
}
}
/// This rib forbids referring to labels defined in upwards ribs.
fn is_label_barrier(self) -> bool {
match self {
RibKind::Normal | RibKind::MacroDefinition(..) => false,
RibKind::AssocItem
| RibKind::FnOrCoroutine
| RibKind::Item(..)
| RibKind::ConstantItem(..)
| RibKind::Module(..)
| RibKind::ForwardGenericParamBan
| RibKind::ConstParamTy
| RibKind::InlineAsmSym => true,
}
}
}
/// A single local scope.
///
/// A rib represents a scope names can live in. Note that these appear in many places, not just
/// around braces. At any place where the list of accessible names (of the given namespace)
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
/// etc.
///
/// Different [rib kinds](enum@RibKind) are transparent for different names.
///
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
/// resolving, the name is looked up from inside out.
#[derive(Debug)]
pub(crate) struct Rib<'a, R = Res> {
pub bindings: IdentMap<R>,
pub kind: RibKind<'a>,
}
impl<'a, R> Rib<'a, R> {
fn new(kind: RibKind<'a>) -> Rib<'a, R> {
Rib { bindings: Default::default(), kind }
}
}
#[derive(Clone, Copy, Debug)]
enum LifetimeUseSet {
One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
Many,
}
#[derive(Copy, Clone, Debug)]
enum LifetimeRibKind {
// -- Ribs introducing named lifetimes
//
/// This rib declares generic parameters.
/// Only for this kind the `LifetimeRib::bindings` field can be non-empty.
Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },
// -- Ribs introducing unnamed lifetimes
//
/// Create a new anonymous lifetime parameter and reference it.
///
/// If `report_in_path`, report an error when encountering lifetime elision in a path:
/// ```compile_fail
/// struct Foo<'a> { x: &'a () }
/// async fn foo(x: Foo) {}
/// ```
///
/// Note: the error should not trigger when the elided lifetime is in a pattern or
/// expression-position path:
/// ```
/// struct Foo<'a> { x: &'a () }
/// async fn foo(Foo { x: _ }: Foo<'_>) {}
/// ```
AnonymousCreateParameter { binder: NodeId, report_in_path: bool },
/// Replace all anonymous lifetimes by provided lifetime.
Elided(LifetimeRes),
// -- Barrier ribs that stop lifetime lookup, or continue it but produce an error later.
//
/// Give a hard error when either `&` or `'_` is written. Used to
/// rule out things like `where T: Foo<'_>`. Does not imply an
/// error on default object bounds (e.g., `Box<dyn Foo>`).
AnonymousReportError,
/// Resolves elided lifetimes to `'static` if there are no other lifetimes in scope,
/// otherwise give a warning that the previous behavior of introducing a new early-bound
/// lifetime is a bug and will be removed (if `emit_lint` is enabled).
StaticIfNoLifetimeInScope { lint_id: NodeId, emit_lint: bool },
/// Signal we cannot find which should be the anonymous lifetime.
ElisionFailure,
/// This rib forbids usage of generic parameters inside of const parameter types.
///
/// While this is desirable to support eventually, it is difficult to do and so is
/// currently forbidden. See rust-lang/project-const-generics#28 for more info.
ConstParamTy,
/// Usage of generic parameters is forbidden in various positions for anon consts:
/// - const arguments when `generic_const_exprs` is not enabled
/// - enum discriminant values
///
/// This rib emits an error when a lifetime would resolve to a lifetime parameter.
ConcreteAnonConst(NoConstantGenericsReason),
/// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
Item,
}
#[derive(Copy, Clone, Debug)]
enum LifetimeBinderKind {
BareFnType,
PolyTrait,
WhereBound,
Item,
ConstItem,
Function,
Closure,
ImplBlock,
}
impl LifetimeBinderKind {
fn descr(self) -> &'static str {
use LifetimeBinderKind::*;
match self {
BareFnType => "type",
PolyTrait => "bound",
WhereBound => "bound",
Item | ConstItem => "item",
ImplBlock => "impl block",
Function => "function",
Closure => "closure",
}
}
}
#[derive(Debug)]
struct LifetimeRib {
kind: LifetimeRibKind,
// We need to preserve insertion order for async fns.
bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
}
impl LifetimeRib {
fn new(kind: LifetimeRibKind) -> LifetimeRib {
LifetimeRib { bindings: Default::default(), kind }
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum AliasPossibility {
No,
Maybe,
}
#[derive(Copy, Clone, Debug)]
pub(crate) enum PathSource<'a> {
// Type paths `Path`.
Type,
// Trait paths in bounds or impls.
Trait(AliasPossibility),
// Expression paths `path`, with optional parent context.
Expr(Option<&'a Expr>),
// Paths in path patterns `Path`.
Pat,
// Paths in struct expressions and patterns `Path { .. }`.
Struct,
// Paths in tuple struct patterns `Path(..)`.
TupleStruct(Span, &'a [Span]),
// `m::A::B` in `<T as m::A>::B::C`.
TraitItem(Namespace),
// Paths in delegation item
Delegation,
}
impl<'a> PathSource<'a> {
fn namespace(self) -> Namespace {
match self {
PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
PathSource::Expr(..)
| PathSource::Pat
| PathSource::TupleStruct(..)
| PathSource::Delegation => ValueNS,
PathSource::TraitItem(ns) => ns,
}
}
fn defer_to_typeck(self) -> bool {
match self {
PathSource::Type
| PathSource::Expr(..)
| PathSource::Pat
| PathSource::Struct
| PathSource::TupleStruct(..) => true,
PathSource::Trait(_) | PathSource::TraitItem(..) | PathSource::Delegation => false,
}
}
fn descr_expected(self) -> &'static str {
match &self {
PathSource::Type => "type",
PathSource::Trait(_) => "trait",
PathSource::Pat => "unit struct, unit variant or constant",
PathSource::Struct => "struct, variant or union type",
PathSource::TupleStruct(..) => "tuple struct or tuple variant",
PathSource::TraitItem(ns) => match ns {
TypeNS => "associated type",
ValueNS => "method or associated constant",
MacroNS => bug!("associated macro"),
},
PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
// "function" here means "anything callable" rather than `DefKind::Fn`,
// this is not precise but usually more helpful than just "value".
Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
// the case of `::some_crate()`
ExprKind::Path(_, path)
if path.segments.len() == 2
&& path.segments[0].ident.name == kw::PathRoot =>
{
"external crate"
}
ExprKind::Path(_, path) => {
let mut msg = "function";
if let Some(segment) = path.segments.iter().last() {
if let Some(c) = segment.ident.to_string().chars().next() {
if c.is_uppercase() {
msg = "function, tuple struct or tuple variant";
}
}
}
msg
}
_ => "function",
},
_ => "value",
},
PathSource::Delegation => "function",
}
}
fn is_call(self) -> bool {
matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
}
pub(crate) fn is_expected(self, res: Res) -> bool {
match self {
PathSource::Type => matches!(
res,
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::Trait
| DefKind::TraitAlias
| DefKind::TyAlias
| DefKind::AssocTy
| DefKind::TyParam
| DefKind::OpaqueTy
| DefKind::ForeignTy,
_,
) | Res::PrimTy(..)
| Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. }
),
PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
PathSource::Trait(AliasPossibility::Maybe) => {
matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
}
PathSource::Expr(..) => matches!(
res,
Res::Def(
DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
| DefKind::Const
| DefKind::Static { .. }
| DefKind::Fn
| DefKind::AssocFn
| DefKind::AssocConst
| DefKind::ConstParam,
_,
) | Res::Local(..)
| Res::SelfCtor(..)
),
PathSource::Pat => {
res.expected_in_unit_struct_pat()
|| matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
}
PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
PathSource::Struct => matches!(
res,
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Variant
| DefKind::TyAlias
| DefKind::AssocTy,
_,
) | Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. }
),
PathSource::TraitItem(ns) => match res {
Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
_ => false,
},
PathSource::Delegation => matches!(res, Res::Def(DefKind::Fn | DefKind::AssocFn, _)),
}
}
fn error_code(self, has_unexpected_resolution: bool) -> ErrCode {
match (self, has_unexpected_resolution) {
(PathSource::Trait(_), true) => E0404,
(PathSource::Trait(_), false) => E0405,
(PathSource::Type, true) => E0573,
(PathSource::Type, false) => E0412,
(PathSource::Struct, true) => E0574,
(PathSource::Struct, false) => E0422,
(PathSource::Expr(..), true) | (PathSource::Delegation, true) => E0423,
(PathSource::Expr(..), false) | (PathSource::Delegation, false) => E0425,
(PathSource::Pat | PathSource::TupleStruct(..), true) => E0532,
(PathSource::Pat | PathSource::TupleStruct(..), false) => E0531,
(PathSource::TraitItem(..), true) => E0575,
(PathSource::TraitItem(..), false) => E0576,
}
}
}
/// At this point for most items we can answer whether that item is exported or not,
/// but some items like impls require type information to determine exported-ness, so we make a
/// conservative estimate for them (e.g. based on nominal visibility).
#[derive(Clone, Copy)]
enum MaybeExported<'a> {
Ok(NodeId),
Impl(Option<DefId>),
ImplItem(Result<DefId, &'a Visibility>),
NestedUse(&'a Visibility),
}
impl MaybeExported<'_> {
fn eval(self, r: &Resolver<'_, '_>) -> bool {
let def_id = match self {
MaybeExported::Ok(node_id) => Some(r.local_def_id(node_id)),
MaybeExported::Impl(Some(trait_def_id)) | MaybeExported::ImplItem(Ok(trait_def_id)) => {
trait_def_id.as_local()
}
MaybeExported::Impl(None) => return true,
MaybeExported::ImplItem(Err(vis)) | MaybeExported::NestedUse(vis) => {
return vis.kind.is_pub();
}
};
def_id.map_or(true, |def_id| r.effective_visibilities.is_exported(def_id))
}
}
/// Used for recording UnnecessaryQualification.
#[derive(Debug)]
pub(crate) struct UnnecessaryQualification<'a> {
pub binding: LexicalScopeBinding<'a>,
pub node_id: NodeId,
pub path_span: Span,
pub removal_span: Span,
}
#[derive(Default)]
struct DiagMetadata<'ast> {
/// The current trait's associated items' ident, used for diagnostic suggestions.
current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
/// The current self type if inside an impl (used for better errors).
current_self_type: Option<Ty>,
/// The current self item if inside an ADT (used for better errors).
current_self_item: Option<NodeId>,
/// The current trait (used to suggest).
current_item: Option<&'ast Item>,
/// When processing generic arguments and encountering an unresolved ident not found,
/// suggest introducing a type or const param depending on the context.
currently_processing_generic_args: bool,
/// The current enclosing (non-closure) function (used for better errors).
current_function: Option<(FnKind<'ast>, Span)>,
/// A list of labels as of yet unused. Labels will be removed from this map when
/// they are used (in a `break` or `continue` statement)
unused_labels: FxHashMap<NodeId, Span>,
/// Only used for better errors on `let x = { foo: bar };`.
/// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
/// needed for cases where this parses as a correct type ascription.
current_block_could_be_bare_struct_literal: Option<Span>,
/// Only used for better errors on `let <pat>: <expr, not type>;`.
current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
current_pat: Option<&'ast Pat>,
/// Used to detect possible `if let` written without `let` and to provide structured suggestion.
in_if_condition: Option<&'ast Expr>,
/// Used to detect possible new binding written without `let` and to provide structured suggestion.
in_assignment: Option<&'ast Expr>,
is_assign_rhs: bool,
/// If we are setting an associated type in trait impl, is it a non-GAT type?
in_non_gat_assoc_type: Option<bool>,
/// Used to detect possible `.` -> `..` typo when calling methods.
in_range: Option<(&'ast Expr, &'ast Expr)>,
/// If we are currently in a trait object definition. Used to point at the bounds when
/// encountering a struct or enum.
current_trait_object: Option<&'ast [ast::GenericBound]>,
/// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
current_where_predicate: Option<&'ast WherePredicate>,
current_type_path: Option<&'ast Ty>,
/// The current impl items (used to suggest).
current_impl_items: Option<&'ast [P<AssocItem>]>,
/// When processing impl trait
currently_processing_impl_trait: Option<(TraitRef, Ty)>,
/// Accumulate the errors due to missed lifetime elision,
/// and report them all at once for each function.
current_elision_failures: Vec<MissingLifetime>,
}
struct LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
r: &'b mut Resolver<'a, 'tcx>,
/// The module that represents the current item scope.
parent_scope: ParentScope<'a>,
/// The current set of local scopes for types and values.
ribs: PerNS<Vec<Rib<'a>>>,
/// Previous popped `rib`, only used for diagnostic.
last_block_rib: Option<Rib<'a>>,
/// The current set of local scopes, for labels.
label_ribs: Vec<Rib<'a, NodeId>>,
/// The current set of local scopes for lifetimes.
lifetime_ribs: Vec<LifetimeRib>,
/// We are looking for lifetimes in an elision context.
/// The set contains all the resolutions that we encountered so far.
/// They will be used to determine the correct lifetime for the fn return type.
/// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
/// lifetimes.
lifetime_elision_candidates: Option<Vec<(LifetimeRes, LifetimeElisionCandidate)>>,
/// The trait that the current context can refer to.
current_trait_ref: Option<(Module<'a>, TraitRef)>,
/// Fields used to add information to diagnostic errors.
diag_metadata: Box<DiagMetadata<'ast>>,
/// State used to know whether to ignore resolution errors for function bodies.
///
/// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
/// In most cases this will be `None`, in which case errors will always be reported.
/// If it is `true`, then it will be updated when entering a nested function or trait body.
in_func_body: bool,
/// Count the number of places a lifetime is used.
lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
}
/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
impl<'a: 'ast, 'ast, 'tcx> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast, 'tcx> {
fn visit_attribute(&mut self, _: &'ast Attribute) {
// We do not want to resolve expressions that appear in attributes,
// as they do not correspond to actual code.
}
fn visit_item(&mut self, item: &'ast Item) {
let prev = replace(&mut self.diag_metadata.current_item, Some(item));
// Always report errors in items we just entered.
let old_ignore = replace(&mut self.in_func_body, false);
self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
self.in_func_body = old_ignore;
self.diag_metadata.current_item = prev;
}
fn visit_arm(&mut self, arm: &'ast Arm) {
self.resolve_arm(arm);
}
fn visit_block(&mut self, block: &'ast Block) {
let old_macro_rules = self.parent_scope.macro_rules;
self.resolve_block(block);
self.parent_scope.macro_rules = old_macro_rules;
}
fn visit_anon_const(&mut self, _constant: &'ast AnonConst) {
bug!("encountered anon const without a manual call to `resolve_anon_const`");
}
fn visit_expr(&mut self, expr: &'ast Expr) {
self.resolve_expr(expr, None);
}
fn visit_pat(&mut self, p: &'ast Pat) {
let prev = self.diag_metadata.current_pat;
self.diag_metadata.current_pat = Some(p);
visit::walk_pat(self, p);
self.diag_metadata.current_pat = prev;
}
fn visit_local(&mut self, local: &'ast Local) {
let local_spans = match local.pat.kind {
// We check for this to avoid tuple struct fields.
PatKind::Wild => None,
_ => Some((
local.pat.span,
local.ty.as_ref().map(|ty| ty.span),
local.kind.init().map(|init| init.span),
)),
};
let original = replace(&mut self.diag_metadata.current_let_binding, local_spans);
self.resolve_local(local);
self.diag_metadata.current_let_binding = original;
}
fn visit_ty(&mut self, ty: &'ast Ty) {
let prev = self.diag_metadata.current_trait_object;
let prev_ty = self.diag_metadata.current_type_path;
match &ty.kind {
TyKind::Ref(None, _) => {
// Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
// NodeId `ty.id`.
// This span will be used in case of elision failure.
let span = self.r.tcx.sess.source_map().start_point(ty.span);
self.resolve_elided_lifetime(ty.id, span);
visit::walk_ty(self, ty);
}
TyKind::Path(qself, path) => {
self.diag_metadata.current_type_path = Some(ty);
self.smart_resolve_path(ty.id, qself, path, PathSource::Type);
// Check whether we should interpret this as a bare trait object.
if qself.is_none()
&& let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
&& let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) =
partial_res.full_res()
{
// This path is actually a bare trait object. In case of a bare `Fn`-trait
// object with anonymous lifetimes, we need this rib to correctly place the
// synthetic lifetimes.
let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
self.with_generic_param_rib(
&[],
RibKind::Normal,
LifetimeRibKind::Generics {
binder: ty.id,
kind: LifetimeBinderKind::PolyTrait,
span,
},
|this| this.visit_path(path, ty.id),
);
} else {
visit::walk_ty(self, ty)
}
}
TyKind::ImplicitSelf => {
let self_ty = Ident::with_dummy_span(kw::SelfUpper);
let res = self
.resolve_ident_in_lexical_scope(
self_ty,
TypeNS,
Some(Finalize::new(ty.id, ty.span)),
None,
)
.map_or(Res::Err, |d| d.res());
self.r.record_partial_res(ty.id, PartialRes::new(res));
visit::walk_ty(self, ty)
}
TyKind::ImplTrait(node_id, _) => {
let candidates = self.lifetime_elision_candidates.take();
visit::walk_ty(self, ty);
self.record_lifetime_params_for_impl_trait(*node_id);
self.lifetime_elision_candidates = candidates;
}
TyKind::TraitObject(bounds, ..) => {
self.diag_metadata.current_trait_object = Some(&bounds[..]);
visit::walk_ty(self, ty)
}
TyKind::BareFn(bare_fn) => {
let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
self.with_generic_param_rib(
&bare_fn.generic_params,
RibKind::Normal,
LifetimeRibKind::Generics {
binder: ty.id,
kind: LifetimeBinderKind::BareFnType,
span,
},
|this| {
this.visit_generic_params(&bare_fn.generic_params, false);
this.with_lifetime_rib(
LifetimeRibKind::AnonymousCreateParameter {
binder: ty.id,
report_in_path: false,
},
|this| {
this.resolve_fn_signature(
ty.id,
false,
// We don't need to deal with patterns in parameters, because
// they are not possible for foreign or bodiless functions.
bare_fn
.decl
.inputs
.iter()
.map(|Param { ty, .. }| (None, &**ty)),
&bare_fn.decl.output,
)
},
);
},
)
}
TyKind::Array(element_ty, length) => {
self.visit_ty(element_ty);
self.resolve_anon_const(length, AnonConstKind::ConstArg(IsRepeatExpr::No));
}
TyKind::Typeof(ct) => {
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
}
_ => visit::walk_ty(self, ty),
}
self.diag_metadata.current_trait_object = prev;
self.diag_metadata.current_type_path = prev_ty;
}
fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef) {
let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
self.with_generic_param_rib(
&tref.bound_generic_params,
RibKind::Normal,
LifetimeRibKind::Generics {
binder: tref.trait_ref.ref_id,
kind: LifetimeBinderKind::PolyTrait,
span,
},
|this| {
this.visit_generic_params(&tref.bound_generic_params, false);
this.smart_resolve_path(
tref.trait_ref.ref_id,
&None,
&tref.trait_ref.path,
PathSource::Trait(AliasPossibility::Maybe),
);
this.visit_trait_ref(&tref.trait_ref);
},
);
}
fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
self.resolve_doc_links(&foreign_item.attrs, MaybeExported::Ok(foreign_item.id));
let def_kind = self.r.local_def_kind(foreign_item.id);
match foreign_item.kind {
ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: foreign_item.id,
kind: LifetimeBinderKind::Item,
span: generics.span,
},
|this| visit::walk_item(this, foreign_item),
);
}
ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: foreign_item.id,
kind: LifetimeBinderKind::Function,
span: generics.span,
},
|this| visit::walk_item(this, foreign_item),
);
}
ForeignItemKind::Static(..) => {
self.with_static_rib(def_kind, |this| visit::walk_item(this, foreign_item))
}
ForeignItemKind::MacCall(..) => {
panic!("unexpanded macro in resolve!")
}
}
}
fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
let previous_value = self.diag_metadata.current_function;
match fn_kind {
// Bail if the function is foreign, and thus cannot validly have
// a body, or if there's no body for some other reason.
FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
| FnKind::Fn(_, _, sig, _, generics, None) => {
self.visit_fn_header(&sig.header);
self.visit_generics(generics);
self.with_lifetime_rib(
LifetimeRibKind::AnonymousCreateParameter {
binder: fn_id,
report_in_path: false,
},
|this| {
this.resolve_fn_signature(
fn_id,
sig.decl.has_self(),
sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
&sig.decl.output,
);
if let Some((coro_node_id, _)) = sig
.header
.coroutine_kind
.map(|coroutine_kind| coroutine_kind.return_id())
{
this.record_lifetime_params_for_impl_trait(coro_node_id);
}
},
);
return;
}
FnKind::Fn(..) => {
self.diag_metadata.current_function = Some((fn_kind, sp));
}
// Do not update `current_function` for closures: it suggests `self` parameters.
FnKind::Closure(..) => {}
};
debug!("(resolving function) entering function");
// Create a value rib for the function.
self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
// Create a label rib for the function.
this.with_label_rib(RibKind::FnOrCoroutine, |this| {
match fn_kind {
FnKind::Fn(_, _, sig, _, generics, body) => {
this.visit_generics(generics);
let declaration = &sig.decl;
let coro_node_id = sig
.header
.coroutine_kind
.map(|coroutine_kind| coroutine_kind.return_id());
this.with_lifetime_rib(
LifetimeRibKind::AnonymousCreateParameter {
binder: fn_id,
report_in_path: coro_node_id.is_some(),
},
|this| {
this.resolve_fn_signature(
fn_id,
declaration.has_self(),
declaration
.inputs
.iter()
.map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
&declaration.output,
);
if let Some((async_node_id, _)) = coro_node_id {
this.record_lifetime_params_for_impl_trait(async_node_id);
}
},
);
if let Some(body) = body {
// Ignore errors in function bodies if this is rustdoc
// Be sure not to set this until the function signature has been resolved.
let previous_state = replace(&mut this.in_func_body, true);
// We only care block in the same function
this.last_block_rib = None;
// Resolve the function body, potentially inside the body of an async closure
this.with_lifetime_rib(
LifetimeRibKind::Elided(LifetimeRes::Infer),
|this| this.visit_block(body),
);
debug!("(resolving function) leaving function");
this.in_func_body = previous_state;
}
}
FnKind::Closure(binder, declaration, body) => {
this.visit_closure_binder(binder);
this.with_lifetime_rib(
match binder {
// We do not have any explicit generic lifetime parameter.
ClosureBinder::NotPresent => {
LifetimeRibKind::AnonymousCreateParameter {
binder: fn_id,
report_in_path: false,
}
}
ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
},
// Add each argument to the rib.
|this| this.resolve_params(&declaration.inputs),
);
this.with_lifetime_rib(
match binder {
ClosureBinder::NotPresent => {
LifetimeRibKind::Elided(LifetimeRes::Infer)
}
ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
},
|this| visit::walk_fn_ret_ty(this, &declaration.output),
);
// Ignore errors in function bodies if this is rustdoc
// Be sure not to set this until the function signature has been resolved.
let previous_state = replace(&mut this.in_func_body, true);
// Resolve the function body, potentially inside the body of an async closure
this.with_lifetime_rib(
LifetimeRibKind::Elided(LifetimeRes::Infer),
|this| this.visit_expr(body),
);
debug!("(resolving function) leaving function");
this.in_func_body = previous_state;
}
}
})
});
self.diag_metadata.current_function = previous_value;
}
fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
self.resolve_lifetime(lifetime, use_ctxt)
}
fn visit_precise_capturing_arg(&mut self, arg: &'ast PreciseCapturingArg) {
match arg {
// Lower the lifetime regularly; we'll resolve the lifetime and check
// it's a parameter later on in HIR lowering.
PreciseCapturingArg::Lifetime(_) => {}
PreciseCapturingArg::Arg(path, id) => {
// we want `impl use<C>` to try to resolve `C` as both a type parameter or
// a const parameter. Since the resolver specifically doesn't allow having
// two generic params with the same name, even if they're a different namespace,
// it doesn't really matter which we try resolving first, but just like
// `Ty::Param` we just fall back to the value namespace only if it's missing
// from the type namespace.
let mut check_ns = |ns| {
self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns).is_some()
};
// Like `Ty::Param`, we try resolving this as both a const and a type.
if !check_ns(TypeNS) && check_ns(ValueNS) {
self.smart_resolve_path(*id, &None, path, PathSource::Expr(None));
} else {
self.smart_resolve_path(*id, &None, path, PathSource::Type);
}
}
}
visit::walk_precise_capturing_arg(self, arg)
}
fn visit_generics(&mut self, generics: &'ast Generics) {
self.visit_generic_params(&generics.params, self.diag_metadata.current_self_item.is_some());
for p in &generics.where_clause.predicates {
self.visit_where_predicate(p);
}
}
fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
match b {
ClosureBinder::NotPresent => {}
ClosureBinder::For { generic_params, .. } => {
self.visit_generic_params(
generic_params,
self.diag_metadata.current_self_item.is_some(),
);
}
}
}
fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
debug!("visit_generic_arg({:?})", arg);
let prev = replace(&mut self.diag_metadata.currently_processing_generic_args, true);
match arg {
GenericArg::Type(ref ty) => {
// We parse const arguments as path types as we cannot distinguish them during
// parsing. We try to resolve that ambiguity by attempting resolution the type
// namespace first, and if that fails we try again in the value namespace. If
// resolution in the value namespace succeeds, we have an generic const argument on
// our hands.
if let TyKind::Path(None, ref path) = ty.kind {
// We cannot disambiguate multi-segment paths right now as that requires type
// checking.
if path.is_potential_trivial_const_arg() {
let mut check_ns = |ns| {
self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
.is_some()
};
if !check_ns(TypeNS) && check_ns(ValueNS) {
self.resolve_anon_const_manual(
true,
AnonConstKind::ConstArg(IsRepeatExpr::No),
|this| {
this.smart_resolve_path(
ty.id,
&None,
path,
PathSource::Expr(None),
);
this.visit_path(path, ty.id);
},
);
self.diag_metadata.currently_processing_generic_args = prev;
return;
}
}
}
self.visit_ty(ty);
}
GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
GenericArg::Const(ct) => {
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
}
}
self.diag_metadata.currently_processing_generic_args = prev;
}
fn visit_assoc_item_constraint(&mut self, constraint: &'ast AssocItemConstraint) {
self.visit_ident(constraint.ident);
if let Some(ref gen_args) = constraint.gen_args {
// Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
this.visit_generic_args(gen_args)
});
}
match constraint.kind {
AssocItemConstraintKind::Equality { ref term } => match term {
Term::Ty(ty) => self.visit_ty(ty),
Term::Const(c) => {
self.resolve_anon_const(c, AnonConstKind::ConstArg(IsRepeatExpr::No))
}
},
AssocItemConstraintKind::Bound { ref bounds } => {
self.record_lifetime_params_for_impl_trait(constraint.id);
walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
}
}
}
fn visit_path_segment(&mut self, path_segment: &'ast PathSegment) {
if let Some(ref args) = path_segment.args {
match &**args {
GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, args),
GenericArgs::Parenthesized(p_args) => {
// Probe the lifetime ribs to know how to behave.
for rib in self.lifetime_ribs.iter().rev() {
match rib.kind {
// We are inside a `PolyTraitRef`. The lifetimes are
// to be introduced in that (maybe implicit) `for<>` binder.
LifetimeRibKind::Generics {
binder,
kind: LifetimeBinderKind::PolyTrait,
..
} => {
self.with_lifetime_rib(
LifetimeRibKind::AnonymousCreateParameter {
binder,
report_in_path: false,
},
|this| {
this.resolve_fn_signature(
binder,
false,
p_args.inputs.iter().map(|ty| (None, &**ty)),
&p_args.output,
)
},
);
break;
}
// We have nowhere to introduce generics. Code is malformed,
// so use regular lifetime resolution to avoid spurious errors.
LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
visit::walk_generic_args(self, args);
break;
}
LifetimeRibKind::AnonymousCreateParameter { .. }
| LifetimeRibKind::AnonymousReportError
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
| LifetimeRibKind::Elided(_)
| LifetimeRibKind::ElisionFailure
| LifetimeRibKind::ConcreteAnonConst(_)
| LifetimeRibKind::ConstParamTy => {}
}
}
}
GenericArgs::ParenthesizedElided(_) => {}
}
}
}
fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
debug!("visit_where_predicate {:?}", p);
let previous_value = replace(&mut self.diag_metadata.current_where_predicate, Some(p));
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
if let WherePredicate::BoundPredicate(WhereBoundPredicate {
ref bounded_ty,
ref bounds,
ref bound_generic_params,
span: predicate_span,
..
}) = p
{
let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
this.with_generic_param_rib(
bound_generic_params,
RibKind::Normal,
LifetimeRibKind::Generics {
binder: bounded_ty.id,
kind: LifetimeBinderKind::WhereBound,
span,
},
|this| {
this.visit_generic_params(bound_generic_params, false);
this.visit_ty(bounded_ty);
for bound in bounds {
this.visit_param_bound(bound, BoundKind::Bound)
}
},
);
} else {
visit::walk_where_predicate(this, p);
}
});
self.diag_metadata.current_where_predicate = previous_value;
}
fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
for (op, _) in &asm.operands {
match op {
InlineAsmOperand::In { expr, .. }
| InlineAsmOperand::Out { expr: Some(expr), .. }
| InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
InlineAsmOperand::Out { expr: None, .. } => {}
InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
self.visit_expr(in_expr);
if let Some(out_expr) = out_expr {
self.visit_expr(out_expr);
}
}
InlineAsmOperand::Const { anon_const, .. } => {
// Although this is `DefKind::AnonConst`, it is allowed to reference outer
// generic parameters like an inline const.
self.resolve_anon_const(anon_const, AnonConstKind::InlineConst);
}
InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
InlineAsmOperand::Label { block } => self.visit_block(block),
}
}
}
fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
// This is similar to the code for AnonConst.
self.with_rib(ValueNS, RibKind::InlineAsmSym, |this| {
this.with_rib(TypeNS, RibKind::InlineAsmSym, |this| {
this.with_label_rib(RibKind::InlineAsmSym, |this| {
this.smart_resolve_path(sym.id, &sym.qself, &sym.path, PathSource::Expr(None));
visit::walk_inline_asm_sym(this, sym);
});
})
});
}
fn visit_variant(&mut self, v: &'ast Variant) {
self.resolve_doc_links(&v.attrs, MaybeExported::Ok(v.id));
visit::walk_variant(self, v)
}
fn visit_variant_discr(&mut self, discr: &'ast AnonConst) {
self.resolve_anon_const(discr, AnonConstKind::EnumDiscriminant);
}
fn visit_field_def(&mut self, f: &'ast FieldDef) {
self.resolve_doc_links(&f.attrs, MaybeExported::Ok(f.id));
visit::walk_field_def(self, f)
}
}
impl<'a: 'ast, 'b, 'ast, 'tcx> LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
fn new(resolver: &'b mut Resolver<'a, 'tcx>) -> LateResolutionVisitor<'a, 'b, 'ast, 'tcx> {
// During late resolution we only track the module component of the parent scope,
// although it may be useful to track other components as well for diagnostics.
let graph_root = resolver.graph_root;
let parent_scope = ParentScope::module(graph_root, resolver);
let start_rib_kind = RibKind::Module(graph_root);
LateResolutionVisitor {
r: resolver,
parent_scope,
ribs: PerNS {
value_ns: vec![Rib::new(start_rib_kind)],
type_ns: vec![Rib::new(start_rib_kind)],
macro_ns: vec![Rib::new(start_rib_kind)],
},
last_block_rib: None,
label_ribs: Vec::new(),
lifetime_ribs: Vec::new(),
lifetime_elision_candidates: None,
current_trait_ref: None,
diag_metadata: Default::default(),
// errors at module scope should always be reported
in_func_body: false,
lifetime_uses: Default::default(),
}
}
fn maybe_resolve_ident_in_lexical_scope(
&mut self,
ident: Ident,
ns: Namespace,
) -> Option<LexicalScopeBinding<'a>> {
self.r.resolve_ident_in_lexical_scope(
ident,
ns,
&self.parent_scope,
None,
&self.ribs[ns],
None,
)
}
fn resolve_ident_in_lexical_scope(
&mut self,
ident: Ident,
ns: Namespace,
finalize: Option<Finalize>,
ignore_binding: Option<NameBinding<'a>>,
) -> Option<LexicalScopeBinding<'a>> {
self.r.resolve_ident_in_lexical_scope(
ident,
ns,
&self.parent_scope,
finalize,
&self.ribs[ns],
ignore_binding,
)
}
fn resolve_path(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
finalize: Option<Finalize>,
) -> PathResult<'a> {
self.r.resolve_path_with_ribs(
path,
opt_ns,
&self.parent_scope,
finalize,
Some(&self.ribs),
None,
)
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `parent_scope.module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
/// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
fn with_rib<T>(
&mut self,
ns: Namespace,
kind: RibKind<'a>,
work: impl FnOnce(&mut Self) -> T,
) -> T {
self.ribs[ns].push(Rib::new(kind));
let ret = work(self);
self.ribs[ns].pop();
ret
}
fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
// Move down in the graph.
let orig_module = replace(&mut self.parent_scope.module, module);
self.with_rib(ValueNS, RibKind::Module(module), |this| {
this.with_rib(TypeNS, RibKind::Module(module), |this| {
let ret = f(this);
this.parent_scope.module = orig_module;
ret
})
})
} else {
f(self)
}
}
fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
// For type parameter defaults, we have to ban access
// to following type parameters, as the GenericArgs can only
// provide previous type parameters as they're built. We
// put all the parameters on the ban list and then remove
// them one by one as they are processed and become available.
let mut forward_ty_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
let mut forward_const_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
for param in params.iter() {
match param.kind {
GenericParamKind::Type { .. } => {
forward_ty_ban_rib
.bindings
.insert(Ident::with_dummy_span(param.ident.name), Res::Err);
}
GenericParamKind::Const { .. } => {
forward_const_ban_rib
.bindings
.insert(Ident::with_dummy_span(param.ident.name), Res::Err);
}
GenericParamKind::Lifetime => {}
}
}
// rust-lang/rust#61631: The type `Self` is essentially
// another type parameter. For ADTs, we consider it
// well-defined only after all of the ADT type parameters have
// been provided. Therefore, we do not allow use of `Self`
// anywhere in ADT type parameter defaults.
//
// (We however cannot ban `Self` for defaults on *all* generic
// lists; e.g. trait generics can usefully refer to `Self`,
// such as in the case of `trait Add<Rhs = Self>`.)
if add_self_upper {
// (`Some` if + only if we are in ADT's generics.)
forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
}
self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
for param in params {
match param.kind {
GenericParamKind::Lifetime => {
for bound in ¶m.bounds {
this.visit_param_bound(bound, BoundKind::Bound);
}
}
GenericParamKind::Type { ref default } => {
for bound in ¶m.bounds {
this.visit_param_bound(bound, BoundKind::Bound);
}
if let Some(ref ty) = default {
this.ribs[TypeNS].push(forward_ty_ban_rib);
this.ribs[ValueNS].push(forward_const_ban_rib);
this.visit_ty(ty);
forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
}
// Allow all following defaults to refer to this type parameter.
forward_ty_ban_rib
.bindings
.remove(&Ident::with_dummy_span(param.ident.name));
}
GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
// Const parameters can't have param bounds.
assert!(param.bounds.is_empty());
this.ribs[TypeNS].push(Rib::new(RibKind::ConstParamTy));
this.ribs[ValueNS].push(Rib::new(RibKind::ConstParamTy));
this.with_lifetime_rib(LifetimeRibKind::ConstParamTy, |this| {
this.visit_ty(ty)
});
this.ribs[TypeNS].pop().unwrap();
this.ribs[ValueNS].pop().unwrap();
if let Some(ref expr) = default {
this.ribs[TypeNS].push(forward_ty_ban_rib);
this.ribs[ValueNS].push(forward_const_ban_rib);
this.resolve_anon_const(
expr,
AnonConstKind::ConstArg(IsRepeatExpr::No),
);
forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
}
// Allow all following defaults to refer to this const parameter.
forward_const_ban_rib
.bindings
.remove(&Ident::with_dummy_span(param.ident.name));
}
}
}
})
}
#[instrument(level = "debug", skip(self, work))]
fn with_lifetime_rib<T>(
&mut self,
kind: LifetimeRibKind,
work: impl FnOnce(&mut Self) -> T,
) -> T {
self.lifetime_ribs.push(LifetimeRib::new(kind));
let outer_elision_candidates = self.lifetime_elision_candidates.take();
let ret = work(self);
self.lifetime_elision_candidates = outer_elision_candidates;
self.lifetime_ribs.pop();
ret
}
#[instrument(level = "debug", skip(self))]
fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
let ident = lifetime.ident;
if ident.name == kw::StaticLifetime {
self.record_lifetime_res(
lifetime.id,
LifetimeRes::Static,
LifetimeElisionCandidate::Named,
);
return;
}
if ident.name == kw::UnderscoreLifetime {
return self.resolve_anonymous_lifetime(lifetime, false);
}
let mut lifetime_rib_iter = self.lifetime_ribs.iter().rev();
while let Some(rib) = lifetime_rib_iter.next() {
let normalized_ident = ident.normalize_to_macros_2_0();
if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);
if let LifetimeRes::Param { param, binder } = res {
match self.lifetime_uses.entry(param) {
Entry::Vacant(v) => {
debug!("First use of {:?} at {:?}", res, ident.span);
let use_set = self
.lifetime_ribs
.iter()
.rev()
.find_map(|rib| match rib.kind {
// Do not suggest eliding a lifetime where an anonymous
// lifetime would be illegal.
LifetimeRibKind::Item
| LifetimeRibKind::AnonymousReportError
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
| LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
// An anonymous lifetime is legal here, and bound to the right
// place, go ahead.
LifetimeRibKind::AnonymousCreateParameter {
binder: anon_binder,
..
} => Some(if binder == anon_binder {
LifetimeUseSet::One { use_span: ident.span, use_ctxt }
} else {
LifetimeUseSet::Many
}),
// Only report if eliding the lifetime would have the same
// semantics.
LifetimeRibKind::Elided(r) => Some(if res == r {
LifetimeUseSet::One { use_span: ident.span, use_ctxt }
} else {
LifetimeUseSet::Many
}),
LifetimeRibKind::Generics { .. }
| LifetimeRibKind::ConstParamTy => None,
LifetimeRibKind::ConcreteAnonConst(_) => {
span_bug!(ident.span, "unexpected rib kind: {:?}", rib.kind)
}
})
.unwrap_or(LifetimeUseSet::Many);
debug!(?use_ctxt, ?use_set);
v.insert(use_set);
}
Entry::Occupied(mut o) => {
debug!("Many uses of {:?} at {:?}", res, ident.span);
*o.get_mut() = LifetimeUseSet::Many;
}
}
}
return;
}
match rib.kind {
LifetimeRibKind::Item => break,
LifetimeRibKind::ConstParamTy => {
self.emit_non_static_lt_in_const_param_ty_error(lifetime);
self.record_lifetime_res(
lifetime.id,
LifetimeRes::Error,
LifetimeElisionCandidate::Ignore,
);
return;
}
LifetimeRibKind::ConcreteAnonConst(cause) => {
self.emit_forbidden_non_static_lifetime_error(cause, lifetime);
self.record_lifetime_res(
lifetime.id,
LifetimeRes::Error,
LifetimeElisionCandidate::Ignore,
);
return;
}
LifetimeRibKind::AnonymousCreateParameter { .. }
| LifetimeRibKind::Elided(_)
| LifetimeRibKind::Generics { .. }
| LifetimeRibKind::ElisionFailure
| LifetimeRibKind::AnonymousReportError
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {}
}
}
let mut outer_res = None;
for rib in lifetime_rib_iter {
let normalized_ident = ident.normalize_to_macros_2_0();
if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
outer_res = Some(outer);
break;
}
}
self.emit_undeclared_lifetime_error(lifetime, outer_res);
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
}
#[instrument(level = "debug", skip(self))]
fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) {
debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
let kind =
if elided { MissingLifetimeKind::Ampersand } else { MissingLifetimeKind::Underscore };
let missing_lifetime =
MissingLifetime { id: lifetime.id, span: lifetime.ident.span, kind, count: 1 };
let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
for (i, rib) in self.lifetime_ribs.iter().enumerate().rev() {
debug!(?rib.kind);
match rib.kind {
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
let res = self.create_fresh_lifetime(lifetime.ident, binder, kind);
self.record_lifetime_res(lifetime.id, res, elision_candidate);
return;
}
LifetimeRibKind::StaticIfNoLifetimeInScope { lint_id: node_id, emit_lint } => {
let mut lifetimes_in_scope = vec![];
for rib in &self.lifetime_ribs[..i] {
lifetimes_in_scope.extend(rib.bindings.iter().map(|(ident, _)| ident.span));
// Consider any anonymous lifetimes, too
if let LifetimeRibKind::AnonymousCreateParameter { binder, .. } = rib.kind
&& let Some(extra) = self.r.extra_lifetime_params_map.get(&binder)
{
lifetimes_in_scope.extend(extra.iter().map(|(ident, _, _)| ident.span));
}
}
if lifetimes_in_scope.is_empty() {
self.record_lifetime_res(
lifetime.id,
LifetimeRes::Static,
elision_candidate,
);
return;
} else if emit_lint {
self.r.lint_buffer.buffer_lint(
lint::builtin::ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
node_id,
lifetime.ident.span,
lint::BuiltinLintDiag::AssociatedConstElidedLifetime {
elided,
span: lifetime.ident.span,
lifetimes_in_scope: lifetimes_in_scope.into(),
},
);
}
}
LifetimeRibKind::AnonymousReportError => {
if elided {
let mut suggestion = None;
for rib in self.lifetime_ribs[i..].iter().rev() {
if let LifetimeRibKind::Generics {
span,
kind: LifetimeBinderKind::PolyTrait | LifetimeBinderKind::WhereBound,
..
} = &rib.kind
{
suggestion =
Some(errors::ElidedAnonymousLivetimeReportErrorSuggestion {
lo: span.shrink_to_lo(),
hi: lifetime.ident.span.shrink_to_hi(),
});
break;
}
}
// are we trying to use an anonymous lifetime
// on a non GAT associated trait type?
if !self.in_func_body
&& let Some((module, _)) = &self.current_trait_ref
&& let Some(ty) = &self.diag_metadata.current_self_type
&& Some(true) == self.diag_metadata.in_non_gat_assoc_type
&& let crate::ModuleKind::Def(DefKind::Trait, trait_id, _) = module.kind
{
if def_id_matches_path(
self.r.tcx,
trait_id,
&["core", "iter", "traits", "iterator", "Iterator"],
) {
self.r.dcx().emit_err(errors::LendingIteratorReportError {
lifetime: lifetime.ident.span,
ty: ty.span,
});
} else {
self.r.dcx().emit_err(errors::AnonymousLivetimeNonGatReportError {
lifetime: lifetime.ident.span,
});
}
} else {
self.r.dcx().emit_err(errors::ElidedAnonymousLivetimeReportError {
span: lifetime.ident.span,
suggestion,
});
}
} else {
self.r.dcx().emit_err(errors::ExplicitAnonymousLivetimeReportError {
span: lifetime.ident.span,
});
};
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
return;
}
LifetimeRibKind::Elided(res) => {
self.record_lifetime_res(lifetime.id, res, elision_candidate);
return;
}
LifetimeRibKind::ElisionFailure => {
self.diag_metadata.current_elision_failures.push(missing_lifetime);
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
return;
}
LifetimeRibKind::Item => break,
LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
LifetimeRibKind::ConcreteAnonConst(_) => {
// There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
span_bug!(lifetime.ident.span, "unexpected rib kind: {:?}", rib.kind)
}
}
}
self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
}
#[instrument(level = "debug", skip(self))]
fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
let id = self.r.next_node_id();
let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
self.record_lifetime_res(
anchor_id,
LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
LifetimeElisionCandidate::Ignore,
);
self.resolve_anonymous_lifetime(<, true);
}
#[instrument(level = "debug", skip(self))]
fn create_fresh_lifetime(
&mut self,
ident: Ident,
binder: NodeId,
kind: MissingLifetimeKind,
) -> LifetimeRes {
debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
debug!(?ident.span);
// Leave the responsibility to create the `LocalDefId` to lowering.
let param = self.r.next_node_id();
let res = LifetimeRes::Fresh { param, binder, kind };
self.record_lifetime_param(param, res);
// Record the created lifetime parameter so lowering can pick it up and add it to HIR.
self.r
.extra_lifetime_params_map
.entry(binder)
.or_insert_with(Vec::new)
.push((ident, param, res));
res
}
#[instrument(level = "debug", skip(self))]
fn resolve_elided_lifetimes_in_path(
&mut self,
partial_res: PartialRes,
path: &[Segment],
source: PathSource<'_>,
path_span: Span,
) {
let proj_start = path.len() - partial_res.unresolved_segments();
for (i, segment) in path.iter().enumerate() {
if segment.has_lifetime_args {
continue;
}
let Some(segment_id) = segment.id else {
continue;
};
// Figure out if this is a type/trait segment,
// which may need lifetime elision performed.
let type_def_id = match partial_res.base_res() {
Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
self.r.tcx.parent(def_id)
}
Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
self.r.tcx.parent(def_id)
}
Res::Def(DefKind::Struct, def_id)
| Res::Def(DefKind::Union, def_id)
| Res::Def(DefKind::Enum, def_id)
| Res::Def(DefKind::TyAlias, def_id)
| Res::Def(DefKind::Trait, def_id)
if i + 1 == proj_start =>
{
def_id
}
_ => continue,
};
let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
if expected_lifetimes == 0 {
continue;
}
let node_ids = self.r.next_node_ids(expected_lifetimes);
self.record_lifetime_res(
segment_id,
LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
LifetimeElisionCandidate::Ignore,
);
let inferred = match source {
PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => false,
PathSource::Expr(..)
| PathSource::Pat
| PathSource::Struct
| PathSource::TupleStruct(..)
| PathSource::Delegation => true,
};
if inferred {
// Do not create a parameter for patterns and expressions: type checking can infer
// the appropriate lifetime for us.
for id in node_ids {
self.record_lifetime_res(
id,
LifetimeRes::Infer,
LifetimeElisionCandidate::Named,
);
}
continue;
}
let elided_lifetime_span = if segment.has_generic_args {
// If there are brackets, but not generic arguments, then use the opening bracket
segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
} else {
// If there are no brackets, use the identifier span.
// HACK: we use find_ancestor_inside to properly suggest elided spans in paths
// originating from macros, since the segment's span might be from a macro arg.
segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
};
let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);
let kind = if segment.has_generic_args {
MissingLifetimeKind::Comma
} else {
MissingLifetimeKind::Brackets
};
let missing_lifetime = MissingLifetime {
id: node_ids.start,
span: elided_lifetime_span,
kind,
count: expected_lifetimes,
};
let mut should_lint = true;
for rib in self.lifetime_ribs.iter().rev() {
match rib.kind {
// In create-parameter mode we error here because we don't want to support
// deprecated impl elision in new features like impl elision and `async fn`,
// both of which work using the `CreateParameter` mode:
//
// impl Foo for std::cell::Ref<u32> // note lack of '_
// async fn foo(_: std::cell::Ref<u32>) { ... }
LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. }
| LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {
let sess = self.r.tcx.sess;
let subdiag = rustc_errors::elided_lifetime_in_path_suggestion(
sess.source_map(),
expected_lifetimes,
path_span,
!segment.has_generic_args,
elided_lifetime_span,
);
self.r.dcx().emit_err(errors::ImplicitElidedLifetimeNotAllowedHere {
span: path_span,
subdiag,
});
should_lint = false;
for id in node_ids {
self.record_lifetime_res(
id,
LifetimeRes::Error,
LifetimeElisionCandidate::Named,
);
}
break;
}
// Do not create a parameter for patterns and expressions.
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
// Group all suggestions into the first record.
let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
for id in node_ids {
let res = self.create_fresh_lifetime(ident, binder, kind);
self.record_lifetime_res(
id,
res,
replace(&mut candidate, LifetimeElisionCandidate::Named),
);
}
break;
}
LifetimeRibKind::Elided(res) => {
let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
for id in node_ids {
self.record_lifetime_res(
id,
res,
replace(&mut candidate, LifetimeElisionCandidate::Ignore),
);
}
break;
}
LifetimeRibKind::ElisionFailure => {
self.diag_metadata.current_elision_failures.push(missing_lifetime);
for id in node_ids {
self.record_lifetime_res(
id,
LifetimeRes::Error,
LifetimeElisionCandidate::Ignore,
);
}
break;
}
// `LifetimeRes::Error`, which would usually be used in the case of
// `ReportError`, is unsuitable here, as we don't emit an error yet. Instead,
// we simply resolve to an implicit lifetime, which will be checked later, at
// which point a suitable error will be emitted.
LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
for id in node_ids {
self.record_lifetime_res(
id,
LifetimeRes::Error,
LifetimeElisionCandidate::Ignore,
);
}
self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
break;
}
LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
LifetimeRibKind::ConcreteAnonConst(_) => {
// There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
span_bug!(elided_lifetime_span, "unexpected rib kind: {:?}", rib.kind)
}
}
}
if should_lint {
self.r.lint_buffer.buffer_lint(
lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
segment_id,
elided_lifetime_span,
lint::BuiltinLintDiag::ElidedLifetimesInPaths(
expected_lifetimes,
path_span,
!segment.has_generic_args,
elided_lifetime_span,
),
);
}
}
}
#[instrument(level = "debug", skip(self))]
fn record_lifetime_res(
&mut self,
id: NodeId,
res: LifetimeRes,
candidate: LifetimeElisionCandidate,
) {
if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
panic!("lifetime {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)")
}
match res {
LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static => {
if let Some(ref mut candidates) = self.lifetime_elision_candidates {
candidates.push((res, candidate));
}
}
LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
}
}
#[instrument(level = "debug", skip(self))]
fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
panic!(
"lifetime parameter {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)"
)
}
}
/// Perform resolution of a function signature, accounting for lifetime elision.
#[instrument(level = "debug", skip(self, inputs))]
fn resolve_fn_signature(
&mut self,
fn_id: NodeId,
has_self: bool,
inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
output_ty: &'ast FnRetTy,
) {
// Add each argument to the rib.
let elision_lifetime = self.resolve_fn_params(has_self, inputs);
debug!(?elision_lifetime);
let outer_failures = take(&mut self.diag_metadata.current_elision_failures);
let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
self.r.lifetime_elision_allowed.insert(fn_id);
LifetimeRibKind::Elided(*res)
} else {
LifetimeRibKind::ElisionFailure
};
self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, output_ty));
let elision_failures =
replace(&mut self.diag_metadata.current_elision_failures, outer_failures);
if !elision_failures.is_empty() {
let Err(failure_info) = elision_lifetime else { bug!() };
self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
}
}
/// Resolve inside function parameters and parameter types.
/// Returns the lifetime for elision in fn return type,
/// or diagnostic information in case of elision failure.
fn resolve_fn_params(
&mut self,
has_self: bool,
inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
enum Elision {
/// We have not found any candidate.
None,
/// We have a candidate bound to `self`.
Self_(LifetimeRes),
/// We have a candidate bound to a parameter.
Param(LifetimeRes),
/// We failed elision.
Err,
}
// Save elision state to reinstate it later.
let outer_candidates = self.lifetime_elision_candidates.take();
// Result of elision.
let mut elision_lifetime = Elision::None;
// Information for diagnostics.
let mut parameter_info = Vec::new();
let mut all_candidates = Vec::new();
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
for (index, (pat, ty)) in inputs.enumerate() {
debug!(?pat, ?ty);
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
if let Some(pat) = pat {
this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
}
});
// Record elision candidates only for this parameter.
debug_assert_matches!(self.lifetime_elision_candidates, None);
self.lifetime_elision_candidates = Some(Default::default());
self.visit_ty(ty);
let local_candidates = self.lifetime_elision_candidates.take();
if let Some(candidates) = local_candidates {
let distinct: FxHashSet<_> = candidates.iter().map(|(res, _)| *res).collect();
let lifetime_count = distinct.len();
if lifetime_count != 0 {
parameter_info.push(ElisionFnParameter {
index,
ident: if let Some(pat) = pat
&& let PatKind::Ident(_, ident, _) = pat.kind
{
Some(ident)
} else {
None
},
lifetime_count,
span: ty.span,
});
all_candidates.extend(candidates.into_iter().filter_map(|(_, candidate)| {
match candidate {
LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {
None
}
LifetimeElisionCandidate::Missing(missing) => Some(missing),
}
}));
}
let mut distinct_iter = distinct.into_iter();
if let Some(res) = distinct_iter.next() {
match elision_lifetime {
// We are the first parameter to bind lifetimes.
Elision::None => {
if distinct_iter.next().is_none() {
// We have a single lifetime => success.
elision_lifetime = Elision::Param(res)
} else {
// We have multiple lifetimes => error.
elision_lifetime = Elision::Err;
}
}
// We have 2 parameters that bind lifetimes => error.
Elision::Param(_) => elision_lifetime = Elision::Err,
// `self` elision takes precedence over everything else.
Elision::Self_(_) | Elision::Err => {}
}
}
}
// Handle `self` specially.
if index == 0 && has_self {
let self_lifetime = self.find_lifetime_for_self(ty);
elision_lifetime = match self_lifetime {
// We found `self` elision.
Set1::One(lifetime) => Elision::Self_(lifetime),
// `self` itself had ambiguous lifetimes, e.g.
// &Box<&Self>. In this case we won't consider
// taking an alternative parameter lifetime; just avoid elision
// entirely.
Set1::Many => Elision::Err,
// We do not have `self` elision: disregard the `Elision::Param` that we may
// have found.
Set1::Empty => Elision::None,
}
}
debug!("(resolving function / closure) recorded parameter");
}
// Reinstate elision state.
debug_assert_matches!(self.lifetime_elision_candidates, None);
self.lifetime_elision_candidates = outer_candidates;
if let Elision::Param(res) | Elision::Self_(res) = elision_lifetime {
return Ok(res);
}
// We do not have a candidate.
Err((all_candidates, parameter_info))
}
/// List all the lifetimes that appear in the provided type.
fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
/// Visits a type to find all the &references, and determines the
/// set of lifetimes for all of those references where the referent
/// contains Self.
struct FindReferenceVisitor<'r, 'a, 'tcx> {
r: &'r Resolver<'a, 'tcx>,
impl_self: Option<Res>,
lifetime: Set1<LifetimeRes>,
}
impl<'a> Visitor<'a> for FindReferenceVisitor<'_, '_, '_> {
fn visit_ty(&mut self, ty: &'a Ty) {
trace!("FindReferenceVisitor considering ty={:?}", ty);
if let TyKind::Ref(lt, _) = ty.kind {
// See if anything inside the &thing contains Self
let mut visitor =
SelfVisitor { r: self.r, impl_self: self.impl_self, self_found: false };
visitor.visit_ty(ty);
trace!("FindReferenceVisitor: SelfVisitor self_found={:?}", visitor.self_found);
if visitor.self_found {
let lt_id = if let Some(lt) = lt {
lt.id
} else {
let res = self.r.lifetimes_res_map[&ty.id];
let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
start
};
let lt_res = self.r.lifetimes_res_map[<_id];
trace!("FindReferenceVisitor inserting res={:?}", lt_res);
self.lifetime.insert(lt_res);
}
}
visit::walk_ty(self, ty)
}
// A type may have an expression as a const generic argument.
// We do not want to recurse into those.
fn visit_expr(&mut self, _: &'a Expr) {}
}
/// Visitor which checks the referent of a &Thing to see if the
/// Thing contains Self
struct SelfVisitor<'r, 'a, 'tcx> {
r: &'r Resolver<'a, 'tcx>,
impl_self: Option<Res>,
self_found: bool,
}
impl SelfVisitor<'_, '_, '_> {
// Look for `self: &'a Self` - also desugared from `&'a self`
fn is_self_ty(&self, ty: &Ty) -> bool {
match ty.kind {
TyKind::ImplicitSelf => true,
TyKind::Path(None, _) => {
let path_res = self.r.partial_res_map[&ty.id].full_res();
if let Some(Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }) = path_res {
return true;
}
self.impl_self.is_some() && path_res == self.impl_self
}
_ => false,
}
}
}
impl<'a> Visitor<'a> for SelfVisitor<'_, '_, '_> {
fn visit_ty(&mut self, ty: &'a Ty) {
trace!("SelfVisitor considering ty={:?}", ty);
if self.is_self_ty(ty) {
trace!("SelfVisitor found Self");
self.self_found = true;
}
visit::walk_ty(self, ty)
}
// A type may have an expression as a const generic argument.
// We do not want to recurse into those.
fn visit_expr(&mut self, _: &'a Expr) {}
}
let impl_self = self
.diag_metadata
.current_self_type
.as_ref()
.and_then(|ty| {
if let TyKind::Path(None, _) = ty.kind {
self.r.partial_res_map.get(&ty.id)
} else {
None
}
})
.and_then(|res| res.full_res())
.filter(|res| {
// Permit the types that unambiguously always
// result in the same type constructor being used
// (it can't differ between `Self` and `self`).
matches!(
res,
Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
)
});
let mut visitor = FindReferenceVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
visitor.visit_ty(ty);
trace!("FindReferenceVisitor found={:?}", visitor.lifetime);
visitor.lifetime
}
/// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
/// label and reports an error if the label is not found or is unreachable.
fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'a>> {
let mut suggestion = None;
for i in (0..self.label_ribs.len()).rev() {
let rib = &self.label_ribs[i];
if let RibKind::MacroDefinition(def) = rib.kind {
// If an invocation of this macro created `ident`, give up on `ident`
// and switch to `ident`'s source from the macro definition.
if def == self.r.macro_def(label.span.ctxt()) {
label.span.remove_mark();
}
}
let ident = label.normalize_to_macro_rules();
if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
let definition_span = ident.span;
return if self.is_label_valid_from_rib(i) {
Ok((*id, definition_span))
} else {
Err(ResolutionError::UnreachableLabel {
name: label.name,
definition_span,
suggestion,
})
};
}
// Diagnostics: Check if this rib contains a label with a similar name, keep track of
// the first such label that is encountered.
suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
}
Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
}
/// Determine whether or not a label from the `rib_index`th label rib is reachable.
fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
let ribs = &self.label_ribs[rib_index + 1..];
for rib in ribs {
if rib.kind.is_label_barrier() {
return false;
}
}
true
}
fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
debug!("resolve_adt");
let kind = self.r.local_def_kind(item.id);
self.with_current_self_item(item, |this| {
this.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Item,
span: generics.span,
},
|this| {
let item_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(
Res::SelfTyAlias {
alias_to: item_def_id,
forbid_generic: false,
is_trait_impl: false,
},
|this| {
visit::walk_item(this, item);
},
);
},
);
});
}
fn future_proof_import(&mut self, use_tree: &UseTree) {
let segments = &use_tree.prefix.segments;
if !segments.is_empty() {
let ident = segments[0].ident;
if ident.is_path_segment_keyword() || ident.span.is_rust_2015() {
return;
}
let nss = match use_tree.kind {
UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
_ => &[TypeNS],
};
let report_error = |this: &Self, ns| {
if this.should_report_errs() {
let what = if ns == TypeNS { "type parameters" } else { "local variables" };
this.r.dcx().emit_err(errors::ImportsCannotReferTo { span: ident.span, what });
}
};
for &ns in nss {
match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
Some(LexicalScopeBinding::Res(..)) => {
report_error(self, ns);
}
Some(LexicalScopeBinding::Item(binding)) => {
if let Some(LexicalScopeBinding::Res(..)) =
self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
{
report_error(self, ns);
}
}
None => {}
}
}
} else if let UseTreeKind::Nested { items, .. } = &use_tree.kind {
for (use_tree, _) in items {
self.future_proof_import(use_tree);
}
}
}
fn resolve_item(&mut self, item: &'ast Item) {
let mod_inner_docs =
matches!(item.kind, ItemKind::Mod(..)) && rustdoc::inner_docs(&item.attrs);
if !mod_inner_docs && !matches!(item.kind, ItemKind::Impl(..) | ItemKind::Use(..)) {
self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
}
let name = item.ident.name;
debug!("(resolving item) resolving {} ({:?})", name, item.kind);
let def_kind = self.r.local_def_kind(item.id);
match item.kind {
ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Item,
span: generics.span,
},
|this| visit::walk_item(this, item),
);
}
ItemKind::Fn(box Fn { ref generics, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Function,
span: generics.span,
},
|this| visit::walk_item(this, item),
);
}
ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics) => {
self.resolve_adt(item, generics);
}
ItemKind::Impl(box Impl {
ref generics,
ref of_trait,
ref self_ty,
items: ref impl_items,
..
}) => {
self.diag_metadata.current_impl_items = Some(impl_items);
self.resolve_implementation(
&item.attrs,
generics,
of_trait,
self_ty,
item.id,
impl_items,
);
self.diag_metadata.current_impl_items = None;
}
ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Item,
span: generics.span,
},
|this| {
let local_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
this.resolve_trait_items(items);
});
},
);
}
ItemKind::TraitAlias(ref generics, ref bounds) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Item,
span: generics.span,
},
|this| {
let local_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
});
},
);
}
ItemKind::Mod(..) => {
self.with_scope(item.id, |this| {
if mod_inner_docs {
this.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
}
let old_macro_rules = this.parent_scope.macro_rules;
visit::walk_item(this, item);
// Maintain macro_rules scopes in the same way as during early resolution
// for diagnostics and doc links.
if item.attrs.iter().all(|attr| {
!attr.has_name(sym::macro_use) && !attr.has_name(sym::macro_escape)
}) {
this.parent_scope.macro_rules = old_macro_rules;
}
});
}
ItemKind::Static(box ast::StaticItem { ref ty, ref expr, .. }) => {
self.with_static_rib(def_kind, |this| {
this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
this.visit_ty(ty);
});
if let Some(expr) = expr {
// We already forbid generic params because of the above item rib,
// so it doesn't matter whether this is a trivial constant.
this.resolve_const_body(expr, Some((item.ident, ConstantItemKind::Static)));
}
});
}
ItemKind::Const(box ast::ConstItem { ref generics, ref ty, ref expr, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::Item(
if self.r.tcx.features().generic_const_items {
HasGenericParams::Yes(generics.span)
} else {
HasGenericParams::No
},
def_kind,
),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::ConstItem,
span: generics.span,
},
|this| {
this.visit_generics(generics);
this.with_lifetime_rib(
LifetimeRibKind::Elided(LifetimeRes::Static),
|this| this.visit_ty(ty),
);
if let Some(expr) = expr {
this.resolve_const_body(
expr,
Some((item.ident, ConstantItemKind::Const)),
);
}
},
);
}
ItemKind::Use(ref use_tree) => {
let maybe_exported = match use_tree.kind {
UseTreeKind::Simple(_) | UseTreeKind::Glob => MaybeExported::Ok(item.id),
UseTreeKind::Nested { .. } => MaybeExported::NestedUse(&item.vis),
};
self.resolve_doc_links(&item.attrs, maybe_exported);
self.future_proof_import(use_tree);
}
ItemKind::MacroDef(ref macro_def) => {
// Maintain macro_rules scopes in the same way as during early resolution
// for diagnostics and doc links.
if macro_def.macro_rules {
let def_id = self.r.local_def_id(item.id);
self.parent_scope.macro_rules = self.r.macro_rules_scopes[&def_id];
}
}
ItemKind::ForeignMod(_) | ItemKind::GlobalAsm(_) => {
visit::walk_item(self, item);
}
ItemKind::Delegation(ref delegation) => {
let span = delegation.path.segments.last().unwrap().ident.span;
self.with_generic_param_rib(
&[],
RibKind::Item(HasGenericParams::Yes(span), def_kind),
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Function,
span,
},
|this| this.resolve_delegation(delegation),
);
}
ItemKind::ExternCrate(..) => {}
ItemKind::MacCall(_) | ItemKind::DelegationMac(..) => {
panic!("unexpanded macro in resolve!")
}
}
}
fn with_generic_param_rib<'c, F>(
&'c mut self,
params: &'c [GenericParam],
kind: RibKind<'a>,
lifetime_kind: LifetimeRibKind,
f: F,
) where
F: FnOnce(&mut Self),
{
debug!("with_generic_param_rib");
let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. } =
lifetime_kind
else {
panic!()
};
let mut function_type_rib = Rib::new(kind);
let mut function_value_rib = Rib::new(kind);
let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
let mut seen_bindings = FxHashMap::default();
// Store all seen lifetimes names from outer scopes.
let mut seen_lifetimes = FxHashSet::default();
// We also can't shadow bindings from the parent item
if let RibKind::AssocItem = kind {
let mut add_bindings_for_ns = |ns| {
let parent_rib = self.ribs[ns]
.iter()
.rfind(|r| matches!(r.kind, RibKind::Item(..)))
.expect("associated item outside of an item");
seen_bindings.extend(parent_rib.bindings.keys().map(|ident| (*ident, ident.span)));
};
add_bindings_for_ns(ValueNS);
add_bindings_for_ns(TypeNS);
}
// Forbid shadowing lifetime bindings
for rib in self.lifetime_ribs.iter().rev() {
seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
if let LifetimeRibKind::Item = rib.kind {
break;
}
}
for param in params {
let ident = param.ident.normalize_to_macros_2_0();
debug!("with_generic_param_rib: {}", param.id);
if let GenericParamKind::Lifetime = param.kind
&& let Some(&original) = seen_lifetimes.get(&ident)
{
diagnostics::signal_lifetime_shadowing(self.r.tcx.sess, original, param.ident);
// Record lifetime res, so lowering knows there is something fishy.
self.record_lifetime_param(param.id, LifetimeRes::Error);
continue;
}
match seen_bindings.entry(ident) {
Entry::Occupied(entry) => {
let span = *entry.get();
let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
self.report_error(param.ident.span, err);
let rib = match param.kind {
GenericParamKind::Lifetime => {
// Record lifetime res, so lowering knows there is something fishy.
self.record_lifetime_param(param.id, LifetimeRes::Error);
continue;
}
GenericParamKind::Type { .. } => &mut function_type_rib,
GenericParamKind::Const { .. } => &mut function_value_rib,
};
// Taint the resolution in case of errors to prevent follow up errors in typeck
self.r.record_partial_res(param.id, PartialRes::new(Res::Err));
rib.bindings.insert(ident, Res::Err);
continue;
}
Entry::Vacant(entry) => {
entry.insert(param.ident.span);
}
}
if param.ident.name == kw::UnderscoreLifetime {
self.r
.dcx()
.emit_err(errors::UnderscoreLifetimeIsReserved { span: param.ident.span });
// Record lifetime res, so lowering knows there is something fishy.
self.record_lifetime_param(param.id, LifetimeRes::Error);
continue;
}
if param.ident.name == kw::StaticLifetime {
self.r.dcx().emit_err(errors::StaticLifetimeIsReserved {
span: param.ident.span,
lifetime: param.ident,
});
// Record lifetime res, so lowering knows there is something fishy.
self.record_lifetime_param(param.id, LifetimeRes::Error);
continue;
}
let def_id = self.r.local_def_id(param.id);
// Plain insert (no renaming).
let (rib, def_kind) = match param.kind {
GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
GenericParamKind::Lifetime => {
let res = LifetimeRes::Param { param: def_id, binder };
self.record_lifetime_param(param.id, res);
function_lifetime_rib.bindings.insert(ident, (param.id, res));
continue;
}
};
let res = match kind {
RibKind::Item(..) | RibKind::AssocItem => Res::Def(def_kind, def_id.to_def_id()),
RibKind::Normal => {
// FIXME(non_lifetime_binders): Stop special-casing
// const params to error out here.
if self.r.tcx.features().non_lifetime_binders
&& matches!(param.kind, GenericParamKind::Type { .. })
{
Res::Def(def_kind, def_id.to_def_id())
} else {
Res::Err
}
}
_ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
};
self.r.record_partial_res(param.id, PartialRes::new(res));
rib.bindings.insert(ident, res);
}
self.lifetime_ribs.push(function_lifetime_rib);
self.ribs[ValueNS].push(function_value_rib);
self.ribs[TypeNS].push(function_type_rib);
f(self);
self.ribs[TypeNS].pop();
self.ribs[ValueNS].pop();
let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();
// Do not account for the parameters we just bound for function lifetime elision.
if let Some(ref mut candidates) = self.lifetime_elision_candidates {
for (_, res) in function_lifetime_rib.bindings.values() {
candidates.retain(|(r, _)| r != res);
}
}
if let LifetimeBinderKind::BareFnType
| LifetimeBinderKind::WhereBound
| LifetimeBinderKind::Function
| LifetimeBinderKind::ImplBlock = generics_kind
{
self.maybe_report_lifetime_uses(generics_span, params)
}
}
fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
self.label_ribs.push(Rib::new(kind));
f(self);
self.label_ribs.pop();
}
fn with_static_rib(&mut self, def_kind: DefKind, f: impl FnOnce(&mut Self)) {
let kind = RibKind::Item(HasGenericParams::No, def_kind);
self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
}
// HACK(min_const_generics, generic_const_exprs): We
// want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
// with a future compat lint for now. We do this by adding an
// additional special case for repeat expressions.
//
// Note that we intentionally still forbid `[0; N + 1]` during
// name resolution so that we don't extend the future
// compat lint to new cases.
#[instrument(level = "debug", skip(self, f))]
fn with_constant_rib(
&mut self,
is_repeat: IsRepeatExpr,
may_use_generics: ConstantHasGenerics,
item: Option<(Ident, ConstantItemKind)>,
f: impl FnOnce(&mut Self),
) {
let f = |this: &mut Self| {
this.with_rib(ValueNS, RibKind::ConstantItem(may_use_generics, item), |this| {
this.with_rib(
TypeNS,
RibKind::ConstantItem(
may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
item,
),
|this| {
this.with_label_rib(RibKind::ConstantItem(may_use_generics, item), f);
},
)
})
};
if let ConstantHasGenerics::No(cause) = may_use_generics {
self.with_lifetime_rib(LifetimeRibKind::ConcreteAnonConst(cause), f)
} else {
f(self)
}
}
fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
// Handle nested impls (inside fn bodies)
let previous_value =
replace(&mut self.diag_metadata.current_self_type, Some(self_type.clone()));
let result = f(self);
self.diag_metadata.current_self_type = previous_value;
result
}
fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
let previous_value = replace(&mut self.diag_metadata.current_self_item, Some(self_item.id));
let result = f(self);
self.diag_metadata.current_self_item = previous_value;
result
}
/// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
let trait_assoc_items =
replace(&mut self.diag_metadata.current_trait_assoc_items, Some(trait_items));
let walk_assoc_item =
|this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
this.with_generic_param_rib(
&generics.params,
RibKind::AssocItem,
LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
|this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
);
};
for item in trait_items {
self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
match &item.kind {
AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
self.with_generic_param_rib(
&generics.params,
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
span: generics.span,
kind: LifetimeBinderKind::ConstItem,
},
|this| {
this.with_lifetime_rib(
LifetimeRibKind::StaticIfNoLifetimeInScope {
lint_id: item.id,
emit_lint: false,
},
|this| {
this.visit_generics(generics);
this.visit_ty(ty);
// Only impose the restrictions of `ConstRibKind` for an
// actual constant expression in a provided default.
if let Some(expr) = expr {
// We allow arbitrary const expressions inside of associated consts,
// even if they are potentially not const evaluatable.
//
// Type parameters can already be used and as associated consts are
// not used as part of the type system, this is far less surprising.
this.resolve_const_body(expr, None);
}
},
)
},
);
}
AssocItemKind::Fn(box Fn { generics, .. }) => {
walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
}
AssocItemKind::Delegation(delegation) => {
self.with_generic_param_rib(
&[],
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Function,
span: delegation.path.segments.last().unwrap().ident.span,
},
|this| this.resolve_delegation(delegation),
);
}
AssocItemKind::Type(box TyAlias { generics, .. }) => self
.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
}),
AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
panic!("unexpanded macro in resolve!")
}
};
}
self.diag_metadata.current_trait_assoc_items = trait_assoc_items;
}
/// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
fn with_optional_trait_ref<T>(
&mut self,
opt_trait_ref: Option<&TraitRef>,
self_type: &'ast Ty,
f: impl FnOnce(&mut Self, Option<DefId>) -> T,
) -> T {
let mut new_val = None;
let mut new_id = None;
if let Some(trait_ref) = opt_trait_ref {
let path: Vec<_> = Segment::from_path(&trait_ref.path);
self.diag_metadata.currently_processing_impl_trait =
Some((trait_ref.clone(), self_type.clone()));
let res = self.smart_resolve_path_fragment(
&None,
&path,
PathSource::Trait(AliasPossibility::No),
Finalize::new(trait_ref.ref_id, trait_ref.path.span),
RecordPartialRes::Yes,
);
self.diag_metadata.currently_processing_impl_trait = None;
if let Some(def_id) = res.expect_full_res().opt_def_id() {
new_id = Some(def_id);
new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
}
}
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
let result = f(self, new_id);
self.current_trait_ref = original_trait_ref;
result
}
fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
let mut self_type_rib = Rib::new(RibKind::Normal);
// Plain insert (no renaming, since types are not currently hygienic)
self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
self.ribs[ns].push(self_type_rib);
f(self);
self.ribs[ns].pop();
}
fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
self.with_self_rib_ns(TypeNS, self_res, f)
}
fn resolve_implementation(
&mut self,
attrs: &[ast::Attribute],
generics: &'ast Generics,
opt_trait_reference: &'ast Option<TraitRef>,
self_type: &'ast Ty,
item_id: NodeId,
impl_items: &'ast [P<AssocItem>],
) {
debug!("resolve_implementation");
// If applicable, create a rib for the type parameters.
self.with_generic_param_rib(
&generics.params,
RibKind::Item(HasGenericParams::Yes(generics.span), self.r.local_def_kind(item_id)),
LifetimeRibKind::Generics {
span: generics.span,
binder: item_id,
kind: LifetimeBinderKind::ImplBlock,
},
|this| {
// Dummy self type for better errors if `Self` is used in the trait path.
this.with_self_rib(Res::SelfTyParam { trait_: LOCAL_CRATE.as_def_id() }, |this| {
this.with_lifetime_rib(
LifetimeRibKind::AnonymousCreateParameter {
binder: item_id,
report_in_path: true
},
|this| {
// Resolve the trait reference, if necessary.
this.with_optional_trait_ref(
opt_trait_reference.as_ref(),
self_type,
|this, trait_id| {
this.resolve_doc_links(attrs, MaybeExported::Impl(trait_id));
let item_def_id = this.r.local_def_id(item_id);
// Register the trait definitions from here.
if let Some(trait_id) = trait_id {
this.r
.trait_impls
.entry(trait_id)
.or_default()
.push(item_def_id);
}
let item_def_id = item_def_id.to_def_id();
let res = Res::SelfTyAlias {
alias_to: item_def_id,
forbid_generic: false,
is_trait_impl: trait_id.is_some()
};
this.with_self_rib(res, |this| {
if let Some(trait_ref) = opt_trait_reference.as_ref() {
// Resolve type arguments in the trait path.
visit::walk_trait_ref(this, trait_ref);
}
// Resolve the self type.
this.visit_ty(self_type);
// Resolve the generic parameters.
this.visit_generics(generics);
// Resolve the items within the impl.
this.with_current_self_type(self_type, |this| {
this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
let mut seen_trait_items = Default::default();
for item in impl_items {
this.resolve_impl_item(&**item, &mut seen_trait_items, trait_id);
}
});
});
});
},
)
},
);
});
},
);
}
fn resolve_impl_item(
&mut self,
item: &'ast AssocItem,
seen_trait_items: &mut FxHashMap<DefId, Span>,
trait_id: Option<DefId>,
) {
use crate::ResolutionError::*;
self.resolve_doc_links(&item.attrs, MaybeExported::ImplItem(trait_id.ok_or(&item.vis)));
match &item.kind {
AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
debug!("resolve_implementation AssocItemKind::Const");
self.with_generic_param_rib(
&generics.params,
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
span: generics.span,
kind: LifetimeBinderKind::ConstItem,
},
|this| {
this.with_lifetime_rib(
LifetimeRibKind::StaticIfNoLifetimeInScope {
lint_id: item.id,
// In impls, it's not a hard error yet due to backcompat.
emit_lint: true,
},
|this| {
// If this is a trait impl, ensure the const
// exists in trait
this.check_trait_item(
item.id,
item.ident,
&item.kind,
ValueNS,
item.span,
seen_trait_items,
|i, s, c| ConstNotMemberOfTrait(i, s, c),
);
this.visit_generics(generics);
this.visit_ty(ty);
if let Some(expr) = expr {
// We allow arbitrary const expressions inside of associated consts,
// even if they are potentially not const evaluatable.
//
// Type parameters can already be used and as associated consts are
// not used as part of the type system, this is far less surprising.
this.resolve_const_body(expr, None);
}
},
);
},
);
}
AssocItemKind::Fn(box Fn { generics, .. }) => {
debug!("resolve_implementation AssocItemKind::Fn");
// We also need a new scope for the impl item type parameters.
self.with_generic_param_rib(
&generics.params,
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
span: generics.span,
kind: LifetimeBinderKind::Function,
},
|this| {
// If this is a trait impl, ensure the method
// exists in trait
this.check_trait_item(
item.id,
item.ident,
&item.kind,
ValueNS,
item.span,
seen_trait_items,
|i, s, c| MethodNotMemberOfTrait(i, s, c),
);
visit::walk_assoc_item(this, item, AssocCtxt::Impl)
},
);
}
AssocItemKind::Type(box TyAlias { generics, .. }) => {
self.diag_metadata.in_non_gat_assoc_type = Some(generics.params.is_empty());
debug!("resolve_implementation AssocItemKind::Type");
// We also need a new scope for the impl item type parameters.
self.with_generic_param_rib(
&generics.params,
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
span: generics.span,
kind: LifetimeBinderKind::Item,
},
|this| {
this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
// If this is a trait impl, ensure the type
// exists in trait
this.check_trait_item(
item.id,
item.ident,
&item.kind,
TypeNS,
item.span,
seen_trait_items,
|i, s, c| TypeNotMemberOfTrait(i, s, c),
);
visit::walk_assoc_item(this, item, AssocCtxt::Impl)
});
},
);
self.diag_metadata.in_non_gat_assoc_type = None;
}
AssocItemKind::Delegation(box delegation) => {
debug!("resolve_implementation AssocItemKind::Delegation");
self.with_generic_param_rib(
&[],
RibKind::AssocItem,
LifetimeRibKind::Generics {
binder: item.id,
kind: LifetimeBinderKind::Function,
span: delegation.path.segments.last().unwrap().ident.span,
},
|this| {
this.check_trait_item(
item.id,
item.ident,
&item.kind,
ValueNS,
item.span,
seen_trait_items,
|i, s, c| MethodNotMemberOfTrait(i, s, c),
);
this.resolve_delegation(delegation)
},
);
}
AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
panic!("unexpanded macro in resolve!")
}
}
}
fn check_trait_item<F>(
&mut self,
id: NodeId,
mut ident: Ident,
kind: &AssocItemKind,
ns: Namespace,
span: Span,
seen_trait_items: &mut FxHashMap<DefId, Span>,
err: F,
) where
F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>,
{
// If there is a TraitRef in scope for an impl, then the method must be in the trait.
let Some((module, _)) = self.current_trait_ref else {
return;
};
ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
let key = BindingKey::new(ident, ns);
let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
debug!(?binding);
if binding.is_none() {
// We could not find the trait item in the correct namespace.
// Check the other namespace to report an error.
let ns = match ns {
ValueNS => TypeNS,
TypeNS => ValueNS,
_ => ns,
};
let key = BindingKey::new(ident, ns);
binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
debug!(?binding);
}
let feed_visibility = |this: &mut Self, def_id| {
let vis = this.r.tcx.visibility(def_id);
let vis = if vis.is_visible_locally() {
vis.expect_local()
} else {
this.r.dcx().span_delayed_bug(
span,
"error should be emitted when an unexpected trait item is used",
);
rustc_middle::ty::Visibility::Public
};
this.r.feed_visibility(this.r.feed(id), vis);
};
let Some(binding) = binding else {
// We could not find the method: report an error.
let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
let path_names = path_names_to_string(path);
self.report_error(span, err(ident, path_names, candidate));
feed_visibility(self, module.def_id());
return;
};
let res = binding.res();
let Res::Def(def_kind, id_in_trait) = res else { bug!() };
feed_visibility(self, id_in_trait);
match seen_trait_items.entry(id_in_trait) {
Entry::Occupied(entry) => {
self.report_error(
span,
ResolutionError::TraitImplDuplicate {
name: ident.name,
old_span: *entry.get(),
trait_item_span: binding.span,
},
);
return;
}
Entry::Vacant(entry) => {
entry.insert(span);
}
};
match (def_kind, kind) {
(DefKind::AssocTy, AssocItemKind::Type(..))
| (DefKind::AssocFn, AssocItemKind::Fn(..))
| (DefKind::AssocConst, AssocItemKind::Const(..))
| (DefKind::AssocFn, AssocItemKind::Delegation(..)) => {
self.r.record_partial_res(id, PartialRes::new(res));
return;
}
_ => {}
}
// The method kind does not correspond to what appeared in the trait, report.
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
let (code, kind) = match kind {
AssocItemKind::Const(..) => (E0323, "const"),
AssocItemKind::Fn(..) => (E0324, "method"),
AssocItemKind::Type(..) => (E0325, "type"),
AssocItemKind::Delegation(..) => (E0324, "method"),
AssocItemKind::MacCall(..) | AssocItemKind::DelegationMac(..) => {
span_bug!(span, "unexpanded macro")
}
};
let trait_path = path_names_to_string(path);
self.report_error(
span,
ResolutionError::TraitImplMismatch {
name: ident.name,
kind,
code,
trait_path,
trait_item_span: binding.span,
},
);
}
fn resolve_const_body(&mut self, expr: &'ast Expr, item: Option<(Ident, ConstantItemKind)>) {
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
this.with_constant_rib(IsRepeatExpr::No, ConstantHasGenerics::Yes, item, |this| {
this.visit_expr(expr)
});
})
}
fn resolve_delegation(&mut self, delegation: &'ast Delegation) {
self.smart_resolve_path(
delegation.id,
&delegation.qself,
&delegation.path,
PathSource::Delegation,
);
if let Some(qself) = &delegation.qself {
self.visit_ty(&qself.ty);
}
self.visit_path(&delegation.path, delegation.id);
if let Some(body) = &delegation.body {
self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
// `PatBoundCtx` is not necessary in this context
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
let span = delegation.path.segments.last().unwrap().ident.span;
this.fresh_binding(
Ident::new(kw::SelfLower, span),
delegation.id,
PatternSource::FnParam,
&mut bindings,
);
this.visit_block(body);
});
}
}
fn resolve_params(&mut self, params: &'ast [Param]) {
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
for Param { pat, .. } in params {
this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
}
});
for Param { ty, .. } in params {
self.visit_ty(ty);
}
}
fn resolve_local(&mut self, local: &'ast Local) {
debug!("resolving local ({:?})", local);
// Resolve the type.
visit_opt!(self, visit_ty, &local.ty);
// Resolve the initializer.
if let Some((init, els)) = local.kind.init_else_opt() {
self.visit_expr(init);
// Resolve the `else` block
if let Some(els) = els {
self.visit_block(els);
}
}
// Resolve the pattern.
self.resolve_pattern_top(&local.pat, PatternSource::Let);
}
/// Build a map from pattern identifiers to binding-info's, and check the bindings are
/// consistent when encountering or-patterns and never patterns.
/// This is done hygienically: this could arise for a macro that expands into an or-pattern
/// where one 'x' was from the user and one 'x' came from the macro.
///
/// A never pattern by definition indicates an unreachable case. For example, matching on
/// `Result<T, &!>` could look like:
/// ```rust
/// # #![feature(never_type)]
/// # #![feature(never_patterns)]
/// # fn bar(_x: u32) {}
/// let foo: Result<u32, &!> = Ok(0);
/// match foo {
/// Ok(x) => bar(x),
/// Err(&!),
/// }
/// ```
/// This extends to product types: `(x, !)` is likewise unreachable. So it doesn't make sense to
/// have a binding here, and we tell the user to use `_` instead.
fn compute_and_check_binding_map(
&mut self,
pat: &Pat,
) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
let mut binding_map = FxIndexMap::default();
let mut is_never_pat = false;
pat.walk(&mut |pat| {
match pat.kind {
PatKind::Ident(annotation, ident, ref sub_pat)
if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
{
binding_map.insert(ident, BindingInfo { span: ident.span, annotation });
}
PatKind::Or(ref ps) => {
// Check the consistency of this or-pattern and
// then add all bindings to the larger map.
match self.compute_and_check_or_pat_binding_map(ps) {
Ok(bm) => binding_map.extend(bm),
Err(IsNeverPattern) => is_never_pat = true,
}
return false;
}
PatKind::Never => is_never_pat = true,
_ => {}
}
true
});
if is_never_pat {
for (_, binding) in binding_map {
self.report_error(binding.span, ResolutionError::BindingInNeverPattern);
}
Err(IsNeverPattern)
} else {
Ok(binding_map)
}
}
fn is_base_res_local(&self, nid: NodeId) -> bool {
matches!(
self.r.partial_res_map.get(&nid).map(|res| res.expect_full_res()),
Some(Res::Local(..))
)
}
/// Compute the binding map for an or-pattern. Checks that all of the arms in the or-pattern
/// have exactly the same set of bindings, with the same binding modes for each.
/// Returns the computed binding map and a boolean indicating whether the pattern is a never
/// pattern.
///
/// A never pattern by definition indicates an unreachable case. For example, destructuring a
/// `Result<T, &!>` could look like:
/// ```rust
/// # #![feature(never_type)]
/// # #![feature(never_patterns)]
/// # fn foo() -> Result<bool, &'static !> { Ok(true) }
/// let (Ok(x) | Err(&!)) = foo();
/// # let _ = x;
/// ```
/// Because the `Err(&!)` branch is never reached, it does not need to have the same bindings as
/// the other branches of the or-pattern. So we must ignore never pattern when checking the
/// bindings of an or-pattern.
/// Moreover, if all the subpatterns are never patterns (e.g. `Ok(!) | Err(!)`), then the
/// pattern as a whole counts as a never pattern (since it's definitionallly unreachable).
fn compute_and_check_or_pat_binding_map(
&mut self,
pats: &[P<Pat>],
) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
let mut missing_vars = FxIndexMap::default();
let mut inconsistent_vars = FxIndexMap::default();
// 1) Compute the binding maps of all arms; we must ignore never patterns here.
let not_never_pats = pats
.iter()
.filter_map(|pat| {
let binding_map = self.compute_and_check_binding_map(pat).ok()?;
Some((binding_map, pat))
})
.collect::<Vec<_>>();
// 2) Record any missing bindings or binding mode inconsistencies.
for (map_outer, pat_outer) in not_never_pats.iter() {
// Check against all arms except for the same pattern which is always self-consistent.
let inners = not_never_pats
.iter()
.filter(|(_, pat)| pat.id != pat_outer.id)
.flat_map(|(map, _)| map);
for (key, binding_inner) in inners {
let name = key.name;
match map_outer.get(key) {
None => {
// The inner binding is missing in the outer.
let binding_error =
missing_vars.entry(name).or_insert_with(|| BindingError {
name,
origin: BTreeSet::new(),
target: BTreeSet::new(),
could_be_path: name.as_str().starts_with(char::is_uppercase),
});
binding_error.origin.insert(binding_inner.span);
binding_error.target.insert(pat_outer.span);
}
Some(binding_outer) => {
if binding_outer.annotation != binding_inner.annotation {
// The binding modes in the outer and inner bindings differ.
inconsistent_vars
.entry(name)
.or_insert((binding_inner.span, binding_outer.span));
}
}
}
}
}
// 3) Report all missing variables we found.
for (name, mut v) in missing_vars {
if inconsistent_vars.contains_key(&name) {
v.could_be_path = false;
}
self.report_error(
*v.origin.iter().next().unwrap(),
ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
);
}
// 4) Report all inconsistencies in binding modes we found.
for (name, v) in inconsistent_vars {
self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(name, v.1));
}
// 5) Bubble up the final binding map.
if not_never_pats.is_empty() {
// All the patterns are never patterns, so the whole or-pattern is one too.
Err(IsNeverPattern)
} else {
let mut binding_map = FxIndexMap::default();
for (bm, _) in not_never_pats {
binding_map.extend(bm);
}
Ok(binding_map)
}
}
/// Check the consistency of bindings wrt or-patterns and never patterns.
fn check_consistent_bindings(&mut self, pat: &'ast Pat) {
let mut is_or_or_never = false;
pat.walk(&mut |pat| match pat.kind {
PatKind::Or(..) | PatKind::Never => {
is_or_or_never = true;
false
}
_ => true,
});
if is_or_or_never {
let _ = self.compute_and_check_binding_map(pat);
}
}
fn resolve_arm(&mut self, arm: &'ast Arm) {
self.with_rib(ValueNS, RibKind::Normal, |this| {
this.resolve_pattern_top(&arm.pat, PatternSource::Match);
visit_opt!(this, visit_expr, &arm.guard);
visit_opt!(this, visit_expr, &arm.body);
});
}
/// Arising from `source`, resolve a top level pattern.
fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
self.resolve_pattern(pat, pat_src, &mut bindings);
}
fn resolve_pattern(
&mut self,
pat: &'ast Pat,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) {
// We walk the pattern before declaring the pattern's inner bindings,
// so that we avoid resolving a literal expression to a binding defined
// by the pattern.
visit::walk_pat(self, pat);
self.resolve_pattern_inner(pat, pat_src, bindings);
// This has to happen *after* we determine which pat_idents are variants:
self.check_consistent_bindings(pat);
}
/// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
///
/// ### `bindings`
///
/// A stack of sets of bindings accumulated.
///
/// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
/// be interpreted as re-binding an already bound binding. This results in an error.
/// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
/// in reusing this binding rather than creating a fresh one.
///
/// When called at the top level, the stack must have a single element
/// with `PatBound::Product`. Otherwise, pushing to the stack happens as
/// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
/// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
/// When each `p_i` has been dealt with, the top set is merged with its parent.
/// When a whole or-pattern has been dealt with, the thing happens.
///
/// See the implementation and `fresh_binding` for more details.
fn resolve_pattern_inner(
&mut self,
pat: &Pat,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) {
// Visit all direct subpatterns of this pattern.
pat.walk(&mut |pat| {
debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
match pat.kind {
PatKind::Ident(bmode, ident, ref sub) => {
// First try to resolve the identifier as some existing entity,
// then fall back to a fresh binding.
let has_sub = sub.is_some();
let res = self
.try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
.unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
self.r.record_partial_res(pat.id, PartialRes::new(res));
self.r.record_pat_span(pat.id, pat.span);
}
PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
self.smart_resolve_path(
pat.id,
qself,
path,
PathSource::TupleStruct(
pat.span,
self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
),
);
}
PatKind::Path(ref qself, ref path) => {
self.smart_resolve_path(pat.id, qself, path, PathSource::Pat);
}
PatKind::Struct(ref qself, ref path, ..) => {
self.smart_resolve_path(pat.id, qself, path, PathSource::Struct);
}
PatKind::Or(ref ps) => {
// Add a new set of bindings to the stack. `Or` here records that when a
// binding already exists in this set, it should not result in an error because
// `V1(a) | V2(a)` must be allowed and are checked for consistency later.
bindings.push((PatBoundCtx::Or, Default::default()));
for p in ps {
// Now we need to switch back to a product context so that each
// part of the or-pattern internally rejects already bound names.
// For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
bindings.push((PatBoundCtx::Product, Default::default()));
self.resolve_pattern_inner(p, pat_src, bindings);
// Move up the non-overlapping bindings to the or-pattern.
// Existing bindings just get "merged".
let collected = bindings.pop().unwrap().1;
bindings.last_mut().unwrap().1.extend(collected);
}
// This or-pattern itself can itself be part of a product,
// e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
// Both cases bind `a` again in a product pattern and must be rejected.
let collected = bindings.pop().unwrap().1;
bindings.last_mut().unwrap().1.extend(collected);
// Prevent visiting `ps` as we've already done so above.
return false;
}
_ => {}
}
true
});
}
fn fresh_binding(
&mut self,
ident: Ident,
pat_id: NodeId,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) -> Res {
// Add the binding to the local ribs, if it doesn't already exist in the bindings map.
// (We must not add it if it's in the bindings map because that breaks the assumptions
// later passes make about or-patterns.)
let ident = ident.normalize_to_macro_rules();
let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
// Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
// Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
// This is *required* for consistency which is checked later.
let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
if already_bound_and {
// Overlap in a product pattern somewhere; report an error.
use ResolutionError::*;
let error = match pat_src {
// `fn f(a: u8, a: u8)`:
PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
// `Variant(a, a)`:
_ => IdentifierBoundMoreThanOnceInSamePattern,
};
self.report_error(ident.span, error(ident.name));
}
// Record as bound if it's valid:
let ident_valid = ident.name != kw::Empty;
if ident_valid {
bindings.last_mut().unwrap().1.insert(ident);
}
if already_bound_or {
// `Variant1(a) | Variant2(a)`, ok
// Reuse definition from the first `a`.
self.innermost_rib_bindings(ValueNS)[&ident]
} else {
let res = Res::Local(pat_id);
if ident_valid {
// A completely fresh binding add to the set if it's valid.
self.innermost_rib_bindings(ValueNS).insert(ident, res);
}
res
}
}
fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
&mut self.ribs[ns].last_mut().unwrap().bindings
}
fn try_resolve_as_non_binding(
&mut self,
pat_src: PatternSource,
ann: BindingMode,
ident: Ident,
has_sub: bool,
) -> Option<Res> {
// An immutable (no `mut`) by-value (no `ref`) binding pattern without
// a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
// also be interpreted as a path to e.g. a constant, variant, etc.
let is_syntactic_ambiguity = !has_sub && ann == BindingMode::NONE;
let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
let (res, binding) = match ls_binding {
LexicalScopeBinding::Item(binding)
if is_syntactic_ambiguity && binding.is_ambiguity_recursive() =>
{
// For ambiguous bindings we don't know all their definitions and cannot check
// whether they can be shadowed by fresh bindings or not, so force an error.
// issues/33118#issuecomment-233962221 (see below) still applies here,
// but we have to ignore it for backward compatibility.
self.r.record_use(ident, binding, Used::Other);
return None;
}
LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
LexicalScopeBinding::Res(res) => (res, None),
};
match res {
Res::SelfCtor(_) // See #70549.
| Res::Def(
DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
_,
) if is_syntactic_ambiguity => {
// Disambiguate in favor of a unit struct/variant or constant pattern.
if let Some(binding) = binding {
self.r.record_use(ident, binding, Used::Other);
}
Some(res)
}
Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static { .. }, _) => {
// This is unambiguously a fresh binding, either syntactically
// (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
// to something unusable as a pattern (e.g., constructor function),
// but we still conservatively report an error, see
// issues/33118#issuecomment-233962221 for one reason why.
let binding = binding.expect("no binding for a ctor or static");
self.report_error(
ident.span,
ResolutionError::BindingShadowsSomethingUnacceptable {
shadowing_binding: pat_src,
name: ident.name,
participle: if binding.is_import() { "imported" } else { "defined" },
article: binding.res().article(),
shadowed_binding: binding.res(),
shadowed_binding_span: binding.span,
},
);
None
}
Res::Def(DefKind::ConstParam, def_id) => {
// Same as for DefKind::Const above, but here, `binding` is `None`, so we
// have to construct the error differently
self.report_error(
ident.span,
ResolutionError::BindingShadowsSomethingUnacceptable {
shadowing_binding: pat_src,
name: ident.name,
participle: "defined",
article: res.article(),
shadowed_binding: res,
shadowed_binding_span: self.r.def_span(def_id),
}
);
None
}
Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
// These entities are explicitly allowed to be shadowed by fresh bindings.
None
}
Res::SelfCtor(_) => {
// We resolve `Self` in pattern position as an ident sometimes during recovery,
// so delay a bug instead of ICEing. (Note: is this no longer true? We now ICE. If
// this triggers, please convert to a delayed bug and add a test.)
self.r.dcx().span_bug(
ident.span,
"unexpected `SelfCtor` in pattern, expected identifier"
);
}
_ => span_bug!(
ident.span,
"unexpected resolution for an identifier in pattern: {:?}",
res,
),
}
}
// High-level and context dependent path resolution routine.
// Resolves the path and records the resolution into definition map.
// If resolution fails tries several techniques to find likely
// resolution candidates, suggest imports or other help, and report
// errors in user friendly way.
fn smart_resolve_path(
&mut self,
id: NodeId,
qself: &Option<P<QSelf>>,
path: &Path,
source: PathSource<'ast>,
) {
self.smart_resolve_path_fragment(
qself,
&Segment::from_path(path),
source,
Finalize::new(id, path.span),
RecordPartialRes::Yes,
);
}
#[instrument(level = "debug", skip(self))]
fn smart_resolve_path_fragment(
&mut self,
qself: &Option<P<QSelf>>,
path: &[Segment],
source: PathSource<'ast>,
finalize: Finalize,
record_partial_res: RecordPartialRes,
) -> PartialRes {
let ns = source.namespace();
let Finalize { node_id, path_span, .. } = finalize;
let report_errors = |this: &mut Self, res: Option<Res>| {
if this.should_report_errs() {
let (err, candidates) =
this.smart_resolve_report_errors(path, None, path_span, source, res);
let def_id = this.parent_scope.module.nearest_parent_mod();
let instead = res.is_some();
let suggestion = if let Some((start, end)) = this.diag_metadata.in_range
&& path[0].ident.span.lo() == end.span.lo()
{
let mut sugg = ".";
let mut span = start.span.between(end.span);
if span.lo() + BytePos(2) == span.hi() {
// There's no space between the start, the range op and the end, suggest
// removal which will look better.
span = span.with_lo(span.lo() + BytePos(1));
sugg = "";
}
Some((
span,
"you might have meant to write `.` instead of `..`",
sugg.to_string(),
Applicability::MaybeIncorrect,
))
} else if res.is_none()
&& let PathSource::Type | PathSource::Expr(_) = source
{
this.suggest_adding_generic_parameter(path, source)
} else {
None
};
let ue = UseError {
err,
candidates,
def_id,
instead,
suggestion,
path: path.into(),
is_call: source.is_call(),
};
this.r.use_injections.push(ue);
}
PartialRes::new(Res::Err)
};
// For paths originating from calls (like in `HashMap::new()`), tries
// to enrich the plain `failed to resolve: ...` message with hints
// about possible missing imports.
//
// Similar thing, for types, happens in `report_errors` above.
let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
// Before we start looking for candidates, we have to get our hands
// on the type user is trying to perform invocation on; basically:
// we're transforming `HashMap::new` into just `HashMap`.
let (following_seg, prefix_path) = match path.split_last() {
Some((last, path)) if !path.is_empty() => (Some(last), path),
_ => return Some(parent_err),
};
let (mut err, candidates) = this.smart_resolve_report_errors(
prefix_path,
following_seg,
path_span,
PathSource::Type,
None,
);
// There are two different error messages user might receive at
// this point:
// - E0412 cannot find type `{}` in this scope
// - E0433 failed to resolve: use of undeclared type or module `{}`
//
// The first one is emitted for paths in type-position, and the
// latter one - for paths in expression-position.
//
// Thus (since we're in expression-position at this point), not to
// confuse the user, we want to keep the *message* from E0433 (so
// `parent_err`), but we want *hints* from E0412 (so `err`).
//
// And that's what happens below - we're just mixing both messages
// into a single one.
let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
// overwrite all properties with the parent's error message
err.messages = take(&mut parent_err.messages);
err.code = take(&mut parent_err.code);
swap(&mut err.span, &mut parent_err.span);
err.children = take(&mut parent_err.children);
err.sort_span = parent_err.sort_span;
err.is_lint = parent_err.is_lint.clone();
// merge the parent's suggestions with the typo suggestions
fn append_result<T, E>(res1: &mut Result<Vec<T>, E>, res2: Result<Vec<T>, E>) {
match res1 {
Ok(vec1) => match res2 {
Ok(mut vec2) => vec1.append(&mut vec2),
Err(e) => *res1 = Err(e),
},
Err(_) => (),
};
}
append_result(&mut err.suggestions, parent_err.suggestions.clone());
parent_err.cancel();
let def_id = this.parent_scope.module.nearest_parent_mod();
if this.should_report_errs() {
if candidates.is_empty() {
if path.len() == 2 && prefix_path.len() == 1 {
// Delay to check whether methond name is an associated function or not
// ```
// let foo = Foo {};
// foo::bar(); // possibly suggest to foo.bar();
//```
err.stash(
prefix_path[0].ident.span,
rustc_errors::StashKey::CallAssocMethod,
);
} else {
// When there is no suggested imports, we can just emit the error
// and suggestions immediately. Note that we bypass the usually error
// reporting routine (ie via `self.r.report_error`) because we need
// to post-process the `ResolutionError` above.
err.emit();
}
} else {
// If there are suggested imports, the error reporting is delayed
this.r.use_injections.push(UseError {
err,
candidates,
def_id,
instead: false,
suggestion: None,
path: prefix_path.into(),
is_call: source.is_call(),
});
}
} else {
err.cancel();
}
// We don't return `Some(parent_err)` here, because the error will
// be already printed either immediately or as part of the `use` injections
None
};
let partial_res = match self.resolve_qpath_anywhere(
qself,
path,
ns,
path_span,
source.defer_to_typeck(),
finalize,
) {
Ok(Some(partial_res)) if let Some(res) = partial_res.full_res() => {
// if we also have an associated type that matches the ident, stash a suggestion
if let Some(items) = self.diag_metadata.current_trait_assoc_items
&& let [Segment { ident, .. }] = path
&& items.iter().any(|item| {
item.ident == *ident && matches!(item.kind, AssocItemKind::Type(_))
})
{
let mut diag = self.r.tcx.dcx().struct_allow("");
diag.span_suggestion_verbose(
path_span.shrink_to_lo(),
"there is an associated type with the same name",
"Self::",
Applicability::MaybeIncorrect,
);
diag.stash(path_span, StashKey::AssociatedTypeSuggestion);
}
if source.is_expected(res) || res == Res::Err {
partial_res
} else {
report_errors(self, Some(res))
}
}
Ok(Some(partial_res)) if source.defer_to_typeck() => {
// Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
// or `<T>::A::B`. If `B` should be resolved in value namespace then
// it needs to be added to the trait map.
if ns == ValueNS {
let item_name = path.last().unwrap().ident;
let traits = self.traits_in_scope(item_name, ns);
self.r.trait_map.insert(node_id, traits);
}
if PrimTy::from_name(path[0].ident.name).is_some() {
let mut std_path = Vec::with_capacity(1 + path.len());
std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
std_path.extend(path);
if let PathResult::Module(_) | PathResult::NonModule(_) =
self.resolve_path(&std_path, Some(ns), None)
{
// Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
let item_span =
path.iter().last().map_or(path_span, |segment| segment.ident.span);
self.r.confused_type_with_std_module.insert(item_span, path_span);
self.r.confused_type_with_std_module.insert(path_span, path_span);
}
}
partial_res
}
Err(err) => {
if let Some(err) = report_errors_for_call(self, err) {
self.report_error(err.span, err.node);
}
PartialRes::new(Res::Err)
}
_ => report_errors(self, None),
};
if record_partial_res == RecordPartialRes::Yes {
// Avoid recording definition of `A::B` in `<T as A>::B::C`.
self.r.record_partial_res(node_id, partial_res);
self.resolve_elided_lifetimes_in_path(partial_res, path, source, path_span);
self.lint_unused_qualifications(path, ns, finalize);
}
partial_res
}
fn self_type_is_available(&mut self) -> bool {
let binding = self
.maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
fn self_value_is_available(&mut self, self_span: Span) -> bool {
let ident = Ident::new(kw::SelfLower, self_span);
let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
/// A wrapper around [`Resolver::report_error`].
///
/// This doesn't emit errors for function bodies if this is rustdoc.
fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) {
if self.should_report_errs() {
self.r.report_error(span, resolution_error);
}
}
#[inline]
/// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items or
// an invalid `use foo::*;` was found, which can cause unbounded ammounts of "item not found"
// errors. We silence them all.
fn should_report_errs(&self) -> bool {
!(self.r.tcx.sess.opts.actually_rustdoc && self.in_func_body)
&& !self.r.glob_error.is_some()
}
// Resolve in alternative namespaces if resolution in the primary namespace fails.
fn resolve_qpath_anywhere(
&mut self,
qself: &Option<P<QSelf>>,
path: &[Segment],
primary_ns: Namespace,
span: Span,
defer_to_typeck: bool,
finalize: Finalize,
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
let mut fin_res = None;
for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
if i == 0 || ns != primary_ns {
match self.resolve_qpath(qself, path, ns, finalize)? {
Some(partial_res)
if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
{
return Ok(Some(partial_res));
}
partial_res => {
if fin_res.is_none() {
fin_res = partial_res;
}
}
}
}
}
assert!(primary_ns != MacroNS);
if qself.is_none() {
let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
if let Ok((_, res)) =
self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
{
return Ok(Some(PartialRes::new(res)));
}
}
Ok(fin_res)
}
/// Handles paths that may refer to associated items.
fn resolve_qpath(
&mut self,
qself: &Option<P<QSelf>>,
path: &[Segment],
ns: Namespace,
finalize: Finalize,
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
debug!(
"resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
qself, path, ns, finalize,
);
if let Some(qself) = qself {
if qself.position == 0 {
// This is a case like `<T>::B`, where there is no
// trait to resolve. In that case, we leave the `B`
// segment to be resolved by type-check.
return Ok(Some(PartialRes::with_unresolved_segments(
Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
path.len(),
)));
}
let num_privacy_errors = self.r.privacy_errors.len();
// Make sure that `A` in `<T as A>::B::C` is a trait.
let trait_res = self.smart_resolve_path_fragment(
&None,
&path[..qself.position],
PathSource::Trait(AliasPossibility::No),
Finalize::new(finalize.node_id, qself.path_span),
RecordPartialRes::No,
);
if trait_res.expect_full_res() == Res::Err {
return Ok(Some(trait_res));
}
// Truncate additional privacy errors reported above,
// because they'll be recomputed below.
self.r.privacy_errors.truncate(num_privacy_errors);
// Make sure `A::B` in `<T as A>::B::C` is a trait item.
//
// Currently, `path` names the full item (`A::B::C`, in
// our example). so we extract the prefix of that that is
// the trait (the slice upto and including
// `qself.position`). And then we recursively resolve that,
// but with `qself` set to `None`.
let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
let partial_res = self.smart_resolve_path_fragment(
&None,
&path[..=qself.position],
PathSource::TraitItem(ns),
Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
RecordPartialRes::No,
);
// The remaining segments (the `C` in our example) will
// have to be resolved by type-check, since that requires doing
// trait resolution.
return Ok(Some(PartialRes::with_unresolved_segments(
partial_res.base_res(),
partial_res.unresolved_segments() + path.len() - qself.position - 1,
)));
}
let result = match self.resolve_path(path, Some(ns), Some(finalize)) {
PathResult::NonModule(path_res) => path_res,
PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
PartialRes::new(module.res().unwrap())
}
// In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
// don't report an error right away, but try to fallback to a primitive type.
// So, we are still able to successfully resolve something like
//
// use std::u8; // bring module u8 in scope
// fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
// u8::max_value() // OK, resolves to associated function <u8>::max_value,
// // not to nonexistent std::u8::max_value
// }
//
// Such behavior is required for backward compatibility.
// The same fallback is used when `a` resolves to nothing.
PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
if (ns == TypeNS || path.len() > 1)
&& PrimTy::from_name(path[0].ident.name).is_some() =>
{
let prim = PrimTy::from_name(path[0].ident.name).unwrap();
let tcx = self.r.tcx();
let gate_err_sym_msg = match prim {
PrimTy::Float(FloatTy::F16) if !tcx.features().f16 => {
Some((sym::f16, "the type `f16` is unstable"))
}
PrimTy::Float(FloatTy::F128) if !tcx.features().f128 => {
Some((sym::f128, "the type `f128` is unstable"))
}
_ => None,
};
if let Some((sym, msg)) = gate_err_sym_msg {
let span = path[0].ident.span;
if !span.allows_unstable(sym) {
feature_err(tcx.sess, sym, span, msg).emit();
}
};
PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
}
PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
PartialRes::new(module.res().unwrap())
}
PathResult::Failed {
is_error_from_last_segment: false,
span,
label,
suggestion,
module,
segment_name,
} => {
return Err(respan(
span,
ResolutionError::FailedToResolve {
segment: Some(segment_name),
label,
suggestion,
module,
},
));
}
PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
};
Ok(Some(result))
}
fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
if let Some(label) = label {
if label.ident.as_str().as_bytes()[1] != b'_' {
self.diag_metadata.unused_labels.insert(id, label.ident.span);
}
if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
diagnostics::signal_label_shadowing(self.r.tcx.sess, orig_span, label.ident)
}
self.with_label_rib(RibKind::Normal, |this| {
let ident = label.ident.normalize_to_macro_rules();
this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
f(this);
});
} else {
f(self);
}
}
fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
self.with_resolved_label(label, id, |this| this.visit_block(block));
}
fn resolve_block(&mut self, block: &'ast Block) {
debug!("(resolving block) entering block");
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.parent_scope.module;
let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
let mut num_macro_definition_ribs = 0;
if let Some(anonymous_module) = anonymous_module {
debug!("(resolving block) found anonymous module, moving down");
self.ribs[ValueNS].push(Rib::new(RibKind::Module(anonymous_module)));
self.ribs[TypeNS].push(Rib::new(RibKind::Module(anonymous_module)));
self.parent_scope.module = anonymous_module;
} else {
self.ribs[ValueNS].push(Rib::new(RibKind::Normal));
}
let prev = self.diag_metadata.current_block_could_be_bare_struct_literal.take();
if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
(block.could_be_bare_literal, &block.stmts[..])
&& let ExprKind::Type(..) = expr.kind
{
self.diag_metadata.current_block_could_be_bare_struct_literal = Some(block.span);
}
// Descend into the block.
for stmt in &block.stmts {
if let StmtKind::Item(ref item) = stmt.kind
&& let ItemKind::MacroDef(..) = item.kind
{
num_macro_definition_ribs += 1;
let res = self.r.local_def_id(item.id).to_def_id();
self.ribs[ValueNS].push(Rib::new(RibKind::MacroDefinition(res)));
self.label_ribs.push(Rib::new(RibKind::MacroDefinition(res)));
}
self.visit_stmt(stmt);
}
self.diag_metadata.current_block_could_be_bare_struct_literal = prev;
// Move back up.
self.parent_scope.module = orig_module;
for _ in 0..num_macro_definition_ribs {
self.ribs[ValueNS].pop();
self.label_ribs.pop();
}
self.last_block_rib = self.ribs[ValueNS].pop();
if anonymous_module.is_some() {
self.ribs[TypeNS].pop();
}
debug!("(resolving block) leaving block");
}
fn resolve_anon_const(&mut self, constant: &'ast AnonConst, anon_const_kind: AnonConstKind) {
debug!(
"resolve_anon_const(constant: {:?}, anon_const_kind: {:?})",
constant, anon_const_kind
);
self.resolve_anon_const_manual(
constant.value.is_potential_trivial_const_arg(),
anon_const_kind,
|this| this.resolve_expr(&constant.value, None),
)
}
/// There are a few places that we need to resolve an anon const but we did not parse an
/// anon const so cannot provide an `&'ast AnonConst`. Right now this is just unbraced
/// const arguments that were parsed as type arguments, and `legact_const_generics` which
/// parse as normal function argument expressions. To avoid duplicating the code for resolving
/// an anon const we have this function which lets the caller manually call `resolve_expr` or
/// `smart_resolve_path`.
fn resolve_anon_const_manual(
&mut self,
is_trivial_const_arg: bool,
anon_const_kind: AnonConstKind,
resolve_expr: impl FnOnce(&mut Self),
) {
let is_repeat_expr = match anon_const_kind {
AnonConstKind::ConstArg(is_repeat_expr) => is_repeat_expr,
_ => IsRepeatExpr::No,
};
let may_use_generics = match anon_const_kind {
AnonConstKind::EnumDiscriminant => {
ConstantHasGenerics::No(NoConstantGenericsReason::IsEnumDiscriminant)
}
AnonConstKind::InlineConst => ConstantHasGenerics::Yes,
AnonConstKind::ConstArg(_) => {
if self.r.tcx.features().generic_const_exprs || is_trivial_const_arg {
ConstantHasGenerics::Yes
} else {
ConstantHasGenerics::No(NoConstantGenericsReason::NonTrivialConstArg)
}
}
};
self.with_constant_rib(is_repeat_expr, may_use_generics, None, |this| {
this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
resolve_expr(this);
});
});
}
fn resolve_expr_field(&mut self, f: &'ast ExprField, e: &'ast Expr) {
self.resolve_expr(&f.expr, Some(e));
self.visit_ident(f.ident);
walk_list!(self, visit_attribute, f.attrs.iter());
}
fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.kind {
ExprKind::Path(ref qself, ref path) => {
self.smart_resolve_path(expr.id, qself, path, PathSource::Expr(parent));
visit::walk_expr(self, expr);
}
ExprKind::Struct(ref se) => {
self.smart_resolve_path(expr.id, &se.qself, &se.path, PathSource::Struct);
// This is the same as `visit::walk_expr(self, expr);`, but we want to pass the
// parent in for accurate suggestions when encountering `Foo { bar }` that should
// have been `Foo { bar: self.bar }`.
if let Some(qself) = &se.qself {
self.visit_ty(&qself.ty);
}
self.visit_path(&se.path, expr.id);
walk_list!(self, resolve_expr_field, &se.fields, expr);
match &se.rest {
StructRest::Base(expr) => self.visit_expr(expr),
StructRest::Rest(_span) => {}
StructRest::None => {}
}
}
ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
match self.resolve_label(label.ident) {
Ok((node_id, _)) => {
// Since this res is a label, it is never read.
self.r.label_res_map.insert(expr.id, node_id);
self.diag_metadata.unused_labels.remove(&node_id);
}
Err(error) => {
self.report_error(label.ident.span, error);
}
}
// visit `break` argument if any
visit::walk_expr(self, expr);
}
ExprKind::Break(None, Some(ref e)) => {
// We use this instead of `visit::walk_expr` to keep the parent expr around for
// better diagnostics.
self.resolve_expr(e, Some(expr));
}
ExprKind::Let(ref pat, ref scrutinee, _, _) => {
self.visit_expr(scrutinee);
self.resolve_pattern_top(pat, PatternSource::Let);
}
ExprKind::If(ref cond, ref then, ref opt_else) => {
self.with_rib(ValueNS, RibKind::Normal, |this| {
let old = this.diag_metadata.in_if_condition.replace(cond);
this.visit_expr(cond);
this.diag_metadata.in_if_condition = old;
this.visit_block(then);
});
if let Some(expr) = opt_else {
self.visit_expr(expr);
}
}
ExprKind::Loop(ref block, label, _) => {
self.resolve_labeled_block(label, expr.id, block)
}
ExprKind::While(ref cond, ref block, label) => {
self.with_resolved_label(label, expr.id, |this| {
this.with_rib(ValueNS, RibKind::Normal, |this| {
let old = this.diag_metadata.in_if_condition.replace(cond);
this.visit_expr(cond);
this.diag_metadata.in_if_condition = old;
this.visit_block(block);
})
});
}
ExprKind::ForLoop { ref pat, ref iter, ref body, label, kind: _ } => {
self.visit_expr(iter);
self.with_rib(ValueNS, RibKind::Normal, |this| {
this.resolve_pattern_top(pat, PatternSource::For);
this.resolve_labeled_block(label, expr.id, body);
});
}
ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
// Equivalent to `visit::walk_expr` + passing some context to children.
ExprKind::Field(ref subexpression, _) => {
self.resolve_expr(subexpression, Some(expr));
}
ExprKind::MethodCall(box MethodCall { ref seg, ref receiver, ref args, .. }) => {
self.resolve_expr(receiver, Some(expr));
for arg in args {
self.resolve_expr(arg, None);
}
self.visit_path_segment(seg);
}
ExprKind::Call(ref callee, ref arguments) => {
self.resolve_expr(callee, Some(expr));
let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
for (idx, argument) in arguments.iter().enumerate() {
// Constant arguments need to be treated as AnonConst since
// that is how they will be later lowered to HIR.
if const_args.contains(&idx) {
self.resolve_anon_const_manual(
argument.is_potential_trivial_const_arg(),
AnonConstKind::ConstArg(IsRepeatExpr::No),
|this| this.resolve_expr(argument, None),
);
} else {
self.resolve_expr(argument, None);
}
}
}
ExprKind::Type(ref _type_expr, ref _ty) => {
visit::walk_expr(self, expr);
}
// For closures, RibKind::FnOrCoroutine is added in visit_fn
ExprKind::Closure(box ast::Closure {
binder: ClosureBinder::For { ref generic_params, span },
..
}) => {
self.with_generic_param_rib(
generic_params,
RibKind::Normal,
LifetimeRibKind::Generics {
binder: expr.id,
kind: LifetimeBinderKind::Closure,
span,
},
|this| visit::walk_expr(this, expr),
);
}
ExprKind::Closure(..) => visit::walk_expr(self, expr),
ExprKind::Gen(..) => {
self.with_label_rib(RibKind::FnOrCoroutine, |this| visit::walk_expr(this, expr));
}
ExprKind::Repeat(ref elem, ref ct) => {
self.visit_expr(elem);
self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::Yes));
}
ExprKind::ConstBlock(ref ct) => {
self.resolve_anon_const(ct, AnonConstKind::InlineConst);
}
ExprKind::Index(ref elem, ref idx, _) => {
self.resolve_expr(elem, Some(expr));
self.visit_expr(idx);
}
ExprKind::Assign(ref lhs, ref rhs, _) => {
if !self.diag_metadata.is_assign_rhs {
self.diag_metadata.in_assignment = Some(expr);
}
self.visit_expr(lhs);
self.diag_metadata.is_assign_rhs = true;
self.diag_metadata.in_assignment = None;
self.visit_expr(rhs);
self.diag_metadata.is_assign_rhs = false;
}
ExprKind::Range(Some(ref start), Some(ref end), RangeLimits::HalfOpen) => {
self.diag_metadata.in_range = Some((start, end));
self.resolve_expr(start, Some(expr));
self.resolve_expr(end, Some(expr));
self.diag_metadata.in_range = None;
}
_ => {
visit::walk_expr(self, expr);
}
}
}
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
match expr.kind {
ExprKind::Field(_, ident) => {
// #6890: Even though you can't treat a method like a field,
// we need to add any trait methods we find that match the
// field name so that we can do some nice error reporting
// later on in typeck.
let traits = self.traits_in_scope(ident, ValueNS);
self.r.trait_map.insert(expr.id, traits);
}
ExprKind::MethodCall(ref call) => {
debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
let traits = self.traits_in_scope(call.seg.ident, ValueNS);
self.r.trait_map.insert(expr.id, traits);
}
_ => {
// Nothing to do.
}
}
}
fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
self.r.traits_in_scope(
self.current_trait_ref.as_ref().map(|(module, _)| *module),
&self.parent_scope,
ident.span.ctxt(),
Some((ident.name, ns)),
)
}
/// Construct the list of in-scope lifetime parameters for impl trait lowering.
/// We include all lifetime parameters, either named or "Fresh".
/// The order of those parameters does not matter, as long as it is
/// deterministic.
fn record_lifetime_params_for_impl_trait(&mut self, impl_trait_node_id: NodeId) {
let mut extra_lifetime_params = vec![];
for rib in self.lifetime_ribs.iter().rev() {
extra_lifetime_params
.extend(rib.bindings.iter().map(|(&ident, &(node_id, res))| (ident, node_id, res)));
match rib.kind {
LifetimeRibKind::Item => break,
LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
if let Some(earlier_fresh) = self.r.extra_lifetime_params_map.get(&binder) {
extra_lifetime_params.extend(earlier_fresh);
}
}
_ => {}
}
}
self.r.extra_lifetime_params_map.insert(impl_trait_node_id, extra_lifetime_params);
}
fn resolve_and_cache_rustdoc_path(&mut self, path_str: &str, ns: Namespace) -> Option<Res> {
// FIXME: This caching may be incorrect in case of multiple `macro_rules`
// items with the same name in the same module.
// Also hygiene is not considered.
let mut doc_link_resolutions = std::mem::take(&mut self.r.doc_link_resolutions);
let res = *doc_link_resolutions
.entry(self.parent_scope.module.nearest_parent_mod().expect_local())
.or_default()
.entry((Symbol::intern(path_str), ns))
.or_insert_with_key(|(path, ns)| {
let res = self.r.resolve_rustdoc_path(path.as_str(), *ns, self.parent_scope);
if let Some(res) = res
&& let Some(def_id) = res.opt_def_id()
&& !def_id.is_local()
{
if self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
&& matches!(
self.r.tcx.sess.opts.resolve_doc_links,
ResolveDocLinks::ExportedMetadata
)
{
// Encoding foreign def ids in proc macro crate metadata will ICE.
return None;
}
}
res
});
self.r.doc_link_resolutions = doc_link_resolutions;
res
}
fn resolve_doc_links(&mut self, attrs: &[Attribute], maybe_exported: MaybeExported<'_>) {
match self.r.tcx.sess.opts.resolve_doc_links {
ResolveDocLinks::None => return,
ResolveDocLinks::ExportedMetadata
if !self.r.tcx.crate_types().iter().copied().any(CrateType::has_metadata)
|| !maybe_exported.eval(self.r) =>
{
return;
}
ResolveDocLinks::Exported
if !maybe_exported.eval(self.r)
&& !rustdoc::has_primitive_or_keyword_docs(attrs) =>
{
return;
}
ResolveDocLinks::ExportedMetadata
| ResolveDocLinks::Exported
| ResolveDocLinks::All => {}
}
if !attrs.iter().any(|attr| attr.may_have_doc_links()) {
return;
}
let mut need_traits_in_scope = false;
for path_str in rustdoc::attrs_to_preprocessed_links(attrs) {
// Resolve all namespaces due to no disambiguator or for diagnostics.
let mut any_resolved = false;
let mut need_assoc = false;
for ns in [TypeNS, ValueNS, MacroNS] {
if let Some(res) = self.resolve_and_cache_rustdoc_path(&path_str, ns) {
// Rustdoc ignores tool attribute resolutions and attempts
// to resolve their prefixes for diagnostics.
any_resolved = !matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Tool));
} else if ns != MacroNS {
need_assoc = true;
}
}
// Resolve all prefixes for type-relative resolution or for diagnostics.
if need_assoc || !any_resolved {
let mut path = &path_str[..];
while let Some(idx) = path.rfind("::") {
path = &path[..idx];
need_traits_in_scope = true;
for ns in [TypeNS, ValueNS, MacroNS] {
self.resolve_and_cache_rustdoc_path(path, ns);
}
}
}
}
if need_traits_in_scope {
// FIXME: hygiene is not considered.
let mut doc_link_traits_in_scope = std::mem::take(&mut self.r.doc_link_traits_in_scope);
doc_link_traits_in_scope
.entry(self.parent_scope.module.nearest_parent_mod().expect_local())
.or_insert_with(|| {
self.r
.traits_in_scope(None, &self.parent_scope, SyntaxContext::root(), None)
.into_iter()
.filter_map(|tr| {
if !tr.def_id.is_local()
&& self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
&& matches!(
self.r.tcx.sess.opts.resolve_doc_links,
ResolveDocLinks::ExportedMetadata
)
{
// Encoding foreign def ids in proc macro crate metadata will ICE.
return None;
}
Some(tr.def_id)
})
.collect()
});
self.r.doc_link_traits_in_scope = doc_link_traits_in_scope;
}
}
fn lint_unused_qualifications(&mut self, path: &[Segment], ns: Namespace, finalize: Finalize) {
// Don't lint on global paths because the user explicitly wrote out the full path.
if let Some(seg) = path.first()
&& seg.ident.name == kw::PathRoot
{
return;
}
if finalize.path_span.from_expansion()
|| path.iter().any(|seg| seg.ident.span.from_expansion())
{
return;
}
let end_pos =
path.iter().position(|seg| seg.has_generic_args).map_or(path.len(), |pos| pos + 1);
let unqualified = path[..end_pos].iter().enumerate().skip(1).rev().find_map(|(i, seg)| {
// Preserve the current namespace for the final path segment, but use the type
// namespace for all preceding segments
//
// e.g. for `std::env::args` check the `ValueNS` for `args` but the `TypeNS` for
// `std` and `env`
//
// If the final path segment is beyond `end_pos` all the segments to check will
// use the type namespace
let ns = if i + 1 == path.len() { ns } else { TypeNS };
let res = self.r.partial_res_map.get(&seg.id?)?.full_res()?;
let binding = self.resolve_ident_in_lexical_scope(seg.ident, ns, None, None)?;
(res == binding.res()).then_some((seg, binding))
});
if let Some((seg, binding)) = unqualified {
self.r.potentially_unnecessary_qualifications.push(UnnecessaryQualification {
binding,
node_id: finalize.node_id,
path_span: finalize.path_span,
removal_span: path[0].ident.span.until(seg.ident.span),
});
}
}
}
/// Walks the whole crate in DFS order, visiting each item, counting the declared number of
/// lifetime generic parameters and function parameters.
struct ItemInfoCollector<'a, 'b, 'tcx> {
r: &'b mut Resolver<'a, 'tcx>,
}
impl ItemInfoCollector<'_, '_, '_> {
fn collect_fn_info(&mut self, sig: &FnSig, id: NodeId) {
let sig = DelegationFnSig {
header: sig.header,
param_count: sig.decl.inputs.len(),
has_self: sig.decl.has_self(),
c_variadic: sig.decl.c_variadic(),
};
self.r.delegation_fn_sigs.insert(self.r.local_def_id(id), sig);
}
}
impl<'ast> Visitor<'ast> for ItemInfoCollector<'_, '_, '_> {
fn visit_item(&mut self, item: &'ast Item) {
match &item.kind {
ItemKind::TyAlias(box TyAlias { ref generics, .. })
| ItemKind::Const(box ConstItem { ref generics, .. })
| ItemKind::Fn(box Fn { ref generics, .. })
| ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics)
| ItemKind::Impl(box Impl { ref generics, .. })
| ItemKind::Trait(box Trait { ref generics, .. })
| ItemKind::TraitAlias(ref generics, _) => {
if let ItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
self.collect_fn_info(sig, item.id);
}
let def_id = self.r.local_def_id(item.id);
let count = generics
.params
.iter()
.filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
.count();
self.r.item_generics_num_lifetimes.insert(def_id, count);
}
ItemKind::Mod(..)
| ItemKind::ForeignMod(..)
| ItemKind::Static(..)
| ItemKind::Use(..)
| ItemKind::ExternCrate(..)
| ItemKind::MacroDef(..)
| ItemKind::GlobalAsm(..)
| ItemKind::MacCall(..)
| ItemKind::DelegationMac(..) => {}
ItemKind::Delegation(..) => {
// Delegated functions have lifetimes, their count is not necessarily zero.
// But skipping the delegation items here doesn't mean that the count will be considered zero,
// it means there will be a panic when retrieving the count,
// but for delegation items we are never actually retrieving that count in practice.
}
}
visit::walk_item(self, item)
}
fn visit_assoc_item(&mut self, item: &'ast AssocItem, ctxt: AssocCtxt) {
if let AssocItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
self.collect_fn_info(sig, item.id);
}
visit::walk_assoc_item(self, item, ctxt);
}
}
impl<'a, 'tcx> Resolver<'a, 'tcx> {
pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
visit::walk_crate(&mut ItemInfoCollector { r: self }, krate);
let mut late_resolution_visitor = LateResolutionVisitor::new(self);
late_resolution_visitor.resolve_doc_links(&krate.attrs, MaybeExported::Ok(CRATE_NODE_ID));
visit::walk_crate(&mut late_resolution_visitor, krate);
for (id, span) in late_resolution_visitor.diag_metadata.unused_labels.iter() {
self.lint_buffer.buffer_lint(
lint::builtin::UNUSED_LABELS,
*id,
*span,
BuiltinLintDiag::UnusedLabel,
);
}
}
}
/// Check if definition matches a path
fn def_id_matches_path(tcx: TyCtxt<'_>, mut def_id: DefId, expected_path: &[&str]) -> bool {
let mut path = expected_path.iter().rev();
while let (Some(parent), Some(next_step)) = (tcx.opt_parent(def_id), path.next()) {
if !tcx.opt_item_name(def_id).map_or(false, |n| n.as_str() == *next_step) {
return false;
}
def_id = parent;
}
return true;
}