1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
use std::fmt;
use std::iter::once;
use rustc_arena::DroplessArena;
use rustc_hir::def_id::DefId;
use rustc_hir::HirId;
use rustc_index::{Idx, IndexVec};
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::mir::{self, Const};
use rustc_middle::thir::{self, FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{
self, FieldDef, OpaqueTypeKey, ScalarInt, Ty, TyCtxt, TypeVisitableExt, VariantDef,
};
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::{ErrorGuaranteed, Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
use crate::constructor::{
IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
};
use crate::{errors, Captures, PatCx, PrivateUninhabitedField};
use crate::constructor::Constructor::*;
// Re-export rustc-specific versions of all these types.
pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcPatCtxt<'p, 'tcx>>;
pub type ConstructorSet<'p, 'tcx> = crate::constructor::ConstructorSet<RustcPatCtxt<'p, 'tcx>>;
pub type DeconstructedPat<'p, 'tcx> = crate::pat::DeconstructedPat<RustcPatCtxt<'p, 'tcx>>;
pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcPatCtxt<'p, 'tcx>>;
pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcPatCtxt<'p, 'tcx>>;
pub type UsefulnessReport<'p, 'tcx> =
crate::usefulness::UsefulnessReport<'p, RustcPatCtxt<'p, 'tcx>>;
pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcPatCtxt<'p, 'tcx>>;
/// A type which has gone through `cx.reveal_opaque_ty`, i.e. if it was opaque it was replaced by
/// the hidden type if allowed in the current body. This ensures we consistently inspect the hidden
/// types when we should.
///
/// Use `.inner()` or deref to get to the `Ty<'tcx>`.
#[repr(transparent)]
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct RevealedTy<'tcx>(Ty<'tcx>);
impl<'tcx> fmt::Display for RevealedTy<'tcx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(fmt)
}
}
impl<'tcx> fmt::Debug for RevealedTy<'tcx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(fmt)
}
}
impl<'tcx> std::ops::Deref for RevealedTy<'tcx> {
type Target = Ty<'tcx>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'tcx> RevealedTy<'tcx> {
pub fn inner(self) -> Ty<'tcx> {
self.0
}
}
#[derive(Clone)]
pub struct RustcPatCtxt<'p, 'tcx: 'p> {
pub tcx: TyCtxt<'tcx>,
pub typeck_results: &'tcx ty::TypeckResults<'tcx>,
/// The module in which the match occurs. This is necessary for
/// checking inhabited-ness of types because whether a type is (visibly)
/// inhabited can depend on whether it was defined in the current module or
/// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
/// outside its module and should not be matchable with an empty match statement.
pub module: DefId,
pub param_env: ty::ParamEnv<'tcx>,
/// To allocate the result of `self.ctor_sub_tys()`
pub dropless_arena: &'p DroplessArena,
/// Lint level at the match.
pub match_lint_level: HirId,
/// The span of the whole match, if applicable.
pub whole_match_span: Option<Span>,
/// Span of the scrutinee.
pub scrut_span: Span,
/// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
pub refutable: bool,
/// Whether the data at the scrutinee is known to be valid. This is false if the scrutinee comes
/// from a union field, a pointer deref, or a reference deref (pending opsem decisions).
pub known_valid_scrutinee: bool,
}
impl<'p, 'tcx: 'p> fmt::Debug for RustcPatCtxt<'p, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RustcPatCtxt").finish()
}
}
impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
/// Type inference occasionally gives us opaque types in places where corresponding patterns
/// have more specific types. To avoid inconsistencies as well as detect opaque uninhabited
/// types, we use the corresponding concrete type if possible.
#[inline]
pub fn reveal_opaque_ty(&self, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
fn reveal_inner<'tcx>(cx: &RustcPatCtxt<'_, 'tcx>, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
let ty::Alias(ty::Opaque, alias_ty) = *ty.kind() else { bug!() };
if let Some(local_def_id) = alias_ty.def_id.as_local() {
let key = ty::OpaqueTypeKey { def_id: local_def_id, args: alias_ty.args };
if let Some(ty) = cx.reveal_opaque_key(key) {
return RevealedTy(ty);
}
}
RevealedTy(ty)
}
if let ty::Alias(ty::Opaque, _) = ty.kind() {
reveal_inner(self, ty)
} else {
RevealedTy(ty)
}
}
/// Returns the hidden type corresponding to this key if the body under analysis is allowed to
/// know it.
fn reveal_opaque_key(&self, key: OpaqueTypeKey<'tcx>) -> Option<Ty<'tcx>> {
self.typeck_results.concrete_opaque_types.get(&key).map(|x| x.ty)
}
// This can take a non-revealed `Ty` because it reveals opaques itself.
pub fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
!ty.inhabited_predicate(self.tcx).apply_revealing_opaque(
self.tcx,
self.param_env,
self.module,
&|key| self.reveal_opaque_key(key),
)
}
/// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
pub fn is_foreign_non_exhaustive_enum(&self, ty: RevealedTy<'tcx>) -> bool {
match ty.kind() {
ty::Adt(def, ..) => {
def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
}
_ => false,
}
}
/// Whether the range denotes the fictitious values before `isize::MIN` or after
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
pub fn is_range_beyond_boundaries(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> bool {
ty.is_ptr_sized_integral() && {
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `hoist_pat_range_bdy`
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `range.lo`
// otherwise.
let lo = self.hoist_pat_range_bdy(range.lo, ty);
matches!(lo, PatRangeBoundary::PosInfinity)
|| matches!(range.hi, MaybeInfiniteInt::Finite(0))
}
}
pub(crate) fn variant_sub_tys(
&self,
ty: RevealedTy<'tcx>,
variant: &'tcx VariantDef,
) -> impl Iterator<Item = (&'tcx FieldDef, RevealedTy<'tcx>)> + Captures<'p> + Captures<'_>
{
let ty::Adt(_, args) = ty.kind() else { bug!() };
variant.fields.iter().map(move |field| {
let ty = field.ty(self.tcx, args);
// `field.ty()` doesn't normalize after instantiating.
let ty = self.tcx.normalize_erasing_regions(self.param_env, ty);
let ty = self.reveal_opaque_ty(ty);
(field, ty)
})
}
pub(crate) fn variant_index_for_adt(
ctor: &Constructor<'p, 'tcx>,
adt: ty::AdtDef<'tcx>,
) -> VariantIdx {
match *ctor {
Variant(idx) => idx,
Struct | UnionField => {
assert!(!adt.is_enum());
FIRST_VARIANT
}
_ => bug!("bad constructor {:?} for adt {:?}", ctor, adt),
}
}
/// Returns the types of the fields for a given constructor. The result must have a length of
/// `ctor.arity()`.
pub(crate) fn ctor_sub_tys<'a>(
&'a self,
ctor: &'a Constructor<'p, 'tcx>,
ty: RevealedTy<'tcx>,
) -> impl Iterator<Item = (RevealedTy<'tcx>, PrivateUninhabitedField)>
+ ExactSizeIterator
+ Captures<'a> {
fn reveal_and_alloc<'a, 'tcx>(
cx: &'a RustcPatCtxt<'_, 'tcx>,
iter: impl Iterator<Item = Ty<'tcx>>,
) -> &'a [(RevealedTy<'tcx>, PrivateUninhabitedField)] {
cx.dropless_arena.alloc_from_iter(
iter.map(|ty| cx.reveal_opaque_ty(ty))
.map(|ty| (ty, PrivateUninhabitedField(false))),
)
}
let cx = self;
let slice = match ctor {
Struct | Variant(_) | UnionField => match ty.kind() {
ty::Tuple(fs) => reveal_and_alloc(cx, fs.iter()),
ty::Adt(adt, args) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
reveal_and_alloc(cx, once(args.type_at(0)))
} else {
let variant =
&adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
// In the cases of either a `#[non_exhaustive]` field list or a non-public
// field, we skip uninhabited fields in order not to reveal the
// uninhabitedness of the whole variant.
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !adt.did().is_local();
let tys = cx.variant_sub_tys(ty, variant).map(|(field, ty)| {
let is_visible =
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = (cx.tcx.features().exhaustive_patterns
|| cx.tcx.features().min_exhaustive_patterns)
&& cx.is_uninhabited(*ty);
let skip = is_uninhabited && (!is_visible || is_non_exhaustive);
(ty, PrivateUninhabitedField(skip))
});
cx.dropless_arena.alloc_from_iter(tys)
}
}
_ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
},
Ref => match ty.kind() {
ty::Ref(_, rty, _) => reveal_and_alloc(cx, once(*rty)),
_ => bug!("Unexpected type for `Ref` constructor: {ty:?}"),
},
Slice(slice) => match *ty.kind() {
ty::Slice(ty) | ty::Array(ty, _) => {
let arity = slice.arity();
reveal_and_alloc(cx, (0..arity).map(|_| ty))
}
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
},
Bool(..) | IntRange(..) | F16Range(..) | F32Range(..) | F64Range(..)
| F128Range(..) | Str(..) | Opaque(..) | Never | NonExhaustive | Hidden | Missing
| PrivateUninhabited | Wildcard => &[],
Or => {
bug!("called `Fields::wildcards` on an `Or` ctor")
}
};
slice.iter().copied()
}
/// The number of fields for this constructor.
pub(crate) fn ctor_arity(&self, ctor: &Constructor<'p, 'tcx>, ty: RevealedTy<'tcx>) -> usize {
match ctor {
Struct | Variant(_) | UnionField => match ty.kind() {
ty::Tuple(fs) => fs.len(),
ty::Adt(adt, ..) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
1
} else {
let variant_idx = RustcPatCtxt::variant_index_for_adt(&ctor, *adt);
adt.variant(variant_idx).fields.len()
}
}
_ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
},
Ref => 1,
Slice(slice) => slice.arity(),
Bool(..) | IntRange(..) | F16Range(..) | F32Range(..) | F64Range(..)
| F128Range(..) | Str(..) | Opaque(..) | Never | NonExhaustive | Hidden | Missing
| PrivateUninhabited | Wildcard => 0,
Or => bug!("The `Or` constructor doesn't have a fixed arity"),
}
}
/// Creates a set that represents all the constructors of `ty`.
///
/// See [`crate::constructor`] for considerations of emptiness.
pub fn ctors_for_ty(
&self,
ty: RevealedTy<'tcx>,
) -> Result<ConstructorSet<'p, 'tcx>, ErrorGuaranteed> {
let cx = self;
let make_uint_range = |start, end| {
IntRange::from_range(
MaybeInfiniteInt::new_finite_uint(start),
MaybeInfiniteInt::new_finite_uint(end),
RangeEnd::Included,
)
};
// Abort on type error.
ty.error_reported()?;
// This determines the set of all possible constructors for the type `ty`. For numbers,
// arrays and slices we use ranges and variable-length slices when appropriate.
Ok(match ty.kind() {
ty::Bool => ConstructorSet::Bool,
ty::Char => {
// The valid Unicode Scalar Value ranges.
ConstructorSet::Integers {
range_1: make_uint_range('\u{0000}' as u128, '\u{D7FF}' as u128),
range_2: Some(make_uint_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
}
}
&ty::Int(ity) => {
let range = if ty.is_ptr_sized_integral() {
// The min/max values of `isize` are not allowed to be observed.
IntRange {
lo: MaybeInfiniteInt::NegInfinity,
hi: MaybeInfiniteInt::PosInfinity,
}
} else {
let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
let min = 1u128 << (size - 1);
let max = min - 1;
let min = MaybeInfiniteInt::new_finite_int(min, size);
let max = MaybeInfiniteInt::new_finite_int(max, size);
IntRange::from_range(min, max, RangeEnd::Included)
};
ConstructorSet::Integers { range_1: range, range_2: None }
}
&ty::Uint(uty) => {
let range = if ty.is_ptr_sized_integral() {
// The max value of `usize` is not allowed to be observed.
let lo = MaybeInfiniteInt::new_finite_uint(0);
IntRange { lo, hi: MaybeInfiniteInt::PosInfinity }
} else {
let size = Integer::from_uint_ty(&cx.tcx, uty).size();
let max = size.truncate(u128::MAX);
make_uint_range(0, max)
};
ConstructorSet::Integers { range_1: range, range_2: None }
}
ty::Slice(sub_ty) => ConstructorSet::Slice {
array_len: None,
subtype_is_empty: cx.is_uninhabited(*sub_ty),
},
ty::Array(sub_ty, len) => {
// We treat arrays of a constant but unknown length like slices.
ConstructorSet::Slice {
array_len: len.try_eval_target_usize(cx.tcx, cx.param_env).map(|l| l as usize),
subtype_is_empty: cx.is_uninhabited(*sub_ty),
}
}
ty::Adt(def, args) if def.is_enum() => {
let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
if def.variants().is_empty() && !is_declared_nonexhaustive {
ConstructorSet::NoConstructors
} else {
let mut variants =
IndexVec::from_elem(VariantVisibility::Visible, def.variants());
for (idx, v) in def.variants().iter_enumerated() {
let variant_def_id = def.variant(idx).def_id;
// Visibly uninhabited variants.
let is_inhabited = v
.inhabited_predicate(cx.tcx, *def)
.instantiate(cx.tcx, args)
.apply_revealing_opaque(cx.tcx, cx.param_env, cx.module, &|key| {
cx.reveal_opaque_key(key)
});
// Variants that depend on a disabled unstable feature.
let is_unstable = matches!(
cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
EvalResult::Deny { .. }
);
// Foreign `#[doc(hidden)]` variants.
let is_doc_hidden =
cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
let visibility = if !is_inhabited {
// FIXME: handle empty+hidden
VariantVisibility::Empty
} else if is_unstable || is_doc_hidden {
VariantVisibility::Hidden
} else {
VariantVisibility::Visible
};
variants[idx] = visibility;
}
ConstructorSet::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
}
}
ty::Adt(def, _) if def.is_union() => ConstructorSet::Union,
ty::Adt(..) | ty::Tuple(..) => {
ConstructorSet::Struct { empty: cx.is_uninhabited(ty.inner()) }
}
ty::Ref(..) => ConstructorSet::Ref,
ty::Never => ConstructorSet::NoConstructors,
// This type is one for which we cannot list constructors, like `str` or `f64`.
// FIXME(Nadrieril): which of these are actually allowed?
ty::Float(_)
| ty::Str
| ty::Foreign(_)
| ty::RawPtr(_, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Pat(_, _)
| ty::Dynamic(_, _, _)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(_, _)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Error(_) => ConstructorSet::Unlistable,
ty::CoroutineWitness(_, _) | ty::Bound(_, _) | ty::Placeholder(_) | ty::Infer(_) => {
bug!("Encountered unexpected type in `ConstructorSet::for_ty`: {ty:?}")
}
})
}
pub(crate) fn lower_pat_range_bdy(
&self,
bdy: PatRangeBoundary<'tcx>,
ty: RevealedTy<'tcx>,
) -> MaybeInfiniteInt {
match bdy {
PatRangeBoundary::NegInfinity => MaybeInfiniteInt::NegInfinity,
PatRangeBoundary::Finite(value) => {
let bits = value.eval_bits(self.tcx, self.param_env);
match *ty.kind() {
ty::Int(ity) => {
let size = Integer::from_int_ty(&self.tcx, ity).size().bits();
MaybeInfiniteInt::new_finite_int(bits, size)
}
_ => MaybeInfiniteInt::new_finite_uint(bits),
}
}
PatRangeBoundary::PosInfinity => MaybeInfiniteInt::PosInfinity,
}
}
/// Note: the input patterns must have been lowered through
/// `rustc_mir_build::thir::pattern::check_match::MatchVisitor::lower_pattern`.
pub fn lower_pat(&self, pat: &'p Pat<'tcx>) -> DeconstructedPat<'p, 'tcx> {
let cx = self;
let ty = cx.reveal_opaque_ty(pat.ty);
let ctor;
let arity;
let fields: Vec<_>;
match &pat.kind {
PatKind::AscribeUserType { subpattern, .. }
| PatKind::InlineConstant { subpattern, .. } => return self.lower_pat(subpattern),
PatKind::Binding { subpattern: Some(subpat), .. } => return self.lower_pat(subpat),
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
ctor = Wildcard;
fields = vec![];
arity = 0;
}
PatKind::Deref { subpattern } => {
fields = vec![self.lower_pat(subpattern).at_index(0)];
arity = 1;
ctor = match ty.kind() {
// This is a box pattern.
ty::Adt(adt, ..) if adt.is_box() => Struct,
ty::Ref(..) => Ref,
_ => span_bug!(
pat.span,
"pattern has unexpected type: pat: {:?}, ty: {:?}",
pat.kind,
ty.inner()
),
};
}
PatKind::DerefPattern { .. } => {
// FIXME(deref_patterns): At least detect that `box _` is irrefutable.
fields = vec![];
arity = 0;
ctor = Opaque(OpaqueId::new());
}
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
match ty.kind() {
ty::Tuple(fs) => {
ctor = Struct;
arity = fs.len();
fields = subpatterns
.iter()
.map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
.collect();
}
ty::Adt(adt, _) if adt.is_box() => {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
// ignore other fields than the first one. This will trigger an error later
// anyway.
// See https://github.com/rust-lang/rust/issues/82772,
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
// The problem is that we can't know from the type whether we'll match
// normally or through box-patterns. We'll have to figure out a proper
// solution when we introduce generalized deref patterns. Also need to
// prevent mixing of those two options.
let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
if let Some(pat) = pattern {
fields = vec![self.lower_pat(&pat.pattern).at_index(0)];
} else {
fields = vec![];
}
ctor = Struct;
arity = 1;
}
ty::Adt(adt, _) => {
ctor = match pat.kind {
PatKind::Leaf { .. } if adt.is_union() => UnionField,
PatKind::Leaf { .. } => Struct,
PatKind::Variant { variant_index, .. } => Variant(variant_index),
_ => bug!(),
};
let variant =
&adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
arity = variant.fields.len();
fields = subpatterns
.iter()
.map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
.collect();
}
_ => span_bug!(
pat.span,
"pattern has unexpected type: pat: {:?}, ty: {}",
pat.kind,
ty.inner()
),
}
}
PatKind::Constant { value } => {
match ty.kind() {
ty::Bool => {
ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
Some(b) => Bool(b),
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Char | ty::Int(_) | ty::Uint(_) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
Some(bits) => {
let x = match *ty.kind() {
ty::Int(ity) => {
let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
MaybeInfiniteInt::new_finite_int(bits, size)
}
_ => MaybeInfiniteInt::new_finite_uint(bits),
};
IntRange(IntRange::from_singleton(x))
}
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F16) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
Some(bits) => {
use rustc_apfloat::Float;
let value = rustc_apfloat::ieee::Half::from_bits(bits);
F16Range(value, value, RangeEnd::Included)
}
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F32) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
Some(bits) => {
use rustc_apfloat::Float;
let value = rustc_apfloat::ieee::Single::from_bits(bits);
F32Range(value, value, RangeEnd::Included)
}
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F64) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
Some(bits) => {
use rustc_apfloat::Float;
let value = rustc_apfloat::ieee::Double::from_bits(bits);
F64Range(value, value, RangeEnd::Included)
}
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F128) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
Some(bits) => {
use rustc_apfloat::Float;
let value = rustc_apfloat::ieee::Quad::from_bits(bits);
F128Range(value, value, RangeEnd::Included)
}
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Ref(_, t, _) if t.is_str() => {
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
// with other `Deref` patterns. This could have been done in `const_to_pat`,
// but that causes issues with the rest of the matching code.
// So here, the constructor for a `"foo"` pattern is `&` (represented by
// `Ref`), and has one field. That field has constructor `Str(value)` and no
// subfields.
// Note: `t` is `str`, not `&str`.
let ty = self.reveal_opaque_ty(*t);
let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), 0, ty, pat);
ctor = Ref;
fields = vec![subpattern.at_index(0)];
arity = 1;
}
// All constants that can be structurally matched have already been expanded
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
// opaque.
_ => {
ctor = Opaque(OpaqueId::new());
fields = vec![];
arity = 0;
}
}
}
PatKind::Range(patrange) => {
let PatRange { lo, hi, end, .. } = patrange.as_ref();
let end = match end {
rustc_hir::RangeEnd::Included => RangeEnd::Included,
rustc_hir::RangeEnd::Excluded => RangeEnd::Excluded,
};
ctor = match ty.kind() {
ty::Char | ty::Int(_) | ty::Uint(_) => {
let lo = cx.lower_pat_range_bdy(*lo, ty);
let hi = cx.lower_pat_range_bdy(*hi, ty);
IntRange(IntRange::from_range(lo, hi, end))
}
ty::Float(fty) => {
use rustc_apfloat::Float;
let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
match fty {
ty::FloatTy::F16 => {
use rustc_apfloat::ieee::Half;
let lo = lo.map(Half::from_bits).unwrap_or(-Half::INFINITY);
let hi = hi.map(Half::from_bits).unwrap_or(Half::INFINITY);
F16Range(lo, hi, end)
}
ty::FloatTy::F32 => {
use rustc_apfloat::ieee::Single;
let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
F32Range(lo, hi, end)
}
ty::FloatTy::F64 => {
use rustc_apfloat::ieee::Double;
let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
F64Range(lo, hi, end)
}
ty::FloatTy::F128 => {
use rustc_apfloat::ieee::Quad;
let lo = lo.map(Quad::from_bits).unwrap_or(-Quad::INFINITY);
let hi = hi.map(Quad::from_bits).unwrap_or(Quad::INFINITY);
F128Range(lo, hi, end)
}
}
}
_ => span_bug!(pat.span, "invalid type for range pattern: {}", ty.inner()),
};
fields = vec![];
arity = 0;
}
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
let array_len = match ty.kind() {
ty::Array(_, length) => {
Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
}
ty::Slice(_) => None,
_ => span_bug!(pat.span, "bad ty {} for slice pattern", ty.inner()),
};
let kind = if slice.is_some() {
SliceKind::VarLen(prefix.len(), suffix.len())
} else {
SliceKind::FixedLen(prefix.len() + suffix.len())
};
ctor = Slice(Slice::new(array_len, kind));
fields = prefix
.iter()
.chain(suffix.iter())
.map(|p| self.lower_pat(&*p))
.enumerate()
.map(|(i, p)| p.at_index(i))
.collect();
arity = kind.arity();
}
PatKind::Or { .. } => {
ctor = Or;
let pats = expand_or_pat(pat);
fields = pats
.into_iter()
.map(|p| self.lower_pat(p))
.enumerate()
.map(|(i, p)| p.at_index(i))
.collect();
arity = fields.len();
}
PatKind::Never => {
// A never pattern matches all the values of its type (namely none). Moreover it
// must be compatible with other constructors, since we can use `!` on a type like
// `Result<!, !>` which has other constructors. Hence we lower it as a wildcard.
ctor = Wildcard;
fields = vec![];
arity = 0;
}
PatKind::Error(_) => {
ctor = Opaque(OpaqueId::new());
fields = vec![];
arity = 0;
}
}
DeconstructedPat::new(ctor, fields, arity, ty, pat)
}
/// Convert back to a `thir::PatRangeBoundary` for diagnostic purposes.
/// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
/// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
/// `PosInfinity`.
pub(crate) fn hoist_pat_range_bdy(
&self,
miint: MaybeInfiniteInt,
ty: RevealedTy<'tcx>,
) -> PatRangeBoundary<'tcx> {
use MaybeInfiniteInt::*;
let tcx = self.tcx;
match miint {
NegInfinity => PatRangeBoundary::NegInfinity,
Finite(_) => {
let size = ty.primitive_size(tcx);
let bits = match *ty.kind() {
ty::Int(_) => miint.as_finite_int(size.bits()).unwrap(),
_ => miint.as_finite_uint().unwrap(),
};
match ScalarInt::try_from_uint(bits, size) {
Some(scalar) => {
let value = mir::Const::from_scalar(tcx, scalar.into(), ty.inner());
PatRangeBoundary::Finite(value)
}
// The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
// for a type, the problem isn't that the value is too small. So it must be too
// large.
None => PatRangeBoundary::PosInfinity,
}
}
PosInfinity => PatRangeBoundary::PosInfinity,
}
}
/// Convert back to a `thir::Pat` for diagnostic purposes.
pub(crate) fn hoist_pat_range(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> Pat<'tcx> {
use MaybeInfiniteInt::*;
let cx = self;
let kind = if matches!((range.lo, range.hi), (NegInfinity, PosInfinity)) {
PatKind::Wild
} else if range.is_singleton() {
let lo = cx.hoist_pat_range_bdy(range.lo, ty);
let value = lo.as_finite().unwrap();
PatKind::Constant { value }
} else {
// We convert to an inclusive range for diagnostics.
let mut end = rustc_hir::RangeEnd::Included;
let mut lo = cx.hoist_pat_range_bdy(range.lo, ty);
if matches!(lo, PatRangeBoundary::PosInfinity) {
// The only reason to get `PosInfinity` here is the special case where
// `hoist_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
// fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
// this). We show this to the user as `usize::MAX..` which is slightly incorrect but
// probably clear enough.
let c = ty.numeric_max_val(cx.tcx).unwrap();
let value = mir::Const::from_ty_const(c, ty.0, cx.tcx);
lo = PatRangeBoundary::Finite(value);
}
let hi = if let Some(hi) = range.hi.minus_one() {
hi
} else {
// The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
end = rustc_hir::RangeEnd::Excluded;
range.hi
};
let hi = cx.hoist_pat_range_bdy(hi, ty);
PatKind::Range(Box::new(PatRange { lo, hi, end, ty: ty.inner() }))
};
Pat { ty: ty.inner(), span: DUMMY_SP, kind }
}
/// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
/// appear in diagnostics, like float ranges.
pub fn hoist_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> Pat<'tcx> {
let cx = self;
let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
let mut subpatterns = pat.iter_fields().map(|p| Box::new(cx.hoist_witness_pat(p)));
let kind = match pat.ctor() {
Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
IntRange(range) => return self.hoist_pat_range(range, *pat.ty()),
Struct | Variant(_) | UnionField => match pat.ty().kind() {
ty::Tuple(..) => PatKind::Leaf {
subpatterns: subpatterns
.enumerate()
.map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
.collect(),
},
ty::Adt(adt_def, _) if adt_def.is_box() => {
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
// of `std`). So this branch is only reachable when the feature is enabled and
// the pattern is a box pattern.
PatKind::Deref { subpattern: subpatterns.next().unwrap() }
}
ty::Adt(adt_def, args) => {
let variant_index = RustcPatCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
let subpatterns = subpatterns
.enumerate()
.map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
.collect();
if adt_def.is_enum() {
PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
} else {
PatKind::Leaf { subpatterns }
}
}
_ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), *pat.ty()),
},
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to reconstruct the correct constant pattern here. However a string
// literal pattern will never be reported as a non-exhaustiveness witness, so we
// ignore this issue.
Ref => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
Slice(slice) => {
match slice.kind {
SliceKind::FixedLen(_) => PatKind::Slice {
prefix: subpatterns.collect(),
slice: None,
suffix: Box::new([]),
},
SliceKind::VarLen(prefix, _) => {
let mut subpatterns = subpatterns.peekable();
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
if slice.array_len.is_some() {
// Improves diagnostics a bit: if the type is a known-size array, instead
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
// This is incorrect if the size is not known, since `[_, ..]` captures
// arrays of lengths `>= 1` whereas `[..]` captures any length.
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
prefix.pop();
}
while subpatterns.peek().is_some()
&& is_wildcard(subpatterns.peek().unwrap())
{
subpatterns.next();
}
}
let suffix: Box<[_]> = subpatterns.collect();
let wild = Pat::wildcard_from_ty(pat.ty().inner());
PatKind::Slice {
prefix: prefix.into_boxed_slice(),
slice: Some(Box::new(wild)),
suffix,
}
}
}
}
&Str(value) => PatKind::Constant { value },
Never if self.tcx.features().never_patterns => PatKind::Never,
Never | Wildcard | NonExhaustive | Hidden | PrivateUninhabited => PatKind::Wild,
Missing { .. } => bug!(
"trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
`Missing` should have been processed in `apply_constructors`"
),
F16Range(..) | F32Range(..) | F64Range(..) | F128Range(..) | Opaque(..) | Or => {
bug!("can't convert to pattern: {:?}", pat)
}
};
Pat { ty: pat.ty().inner(), span: DUMMY_SP, kind }
}
}
impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
type Ty = RevealedTy<'tcx>;
type Error = ErrorGuaranteed;
type VariantIdx = VariantIdx;
type StrLit = Const<'tcx>;
type ArmData = HirId;
type PatData = &'p Pat<'tcx>;
fn is_exhaustive_patterns_feature_on(&self) -> bool {
self.tcx.features().exhaustive_patterns
}
fn is_min_exhaustive_patterns_feature_on(&self) -> bool {
self.tcx.features().min_exhaustive_patterns
}
fn ctor_arity(&self, ctor: &crate::constructor::Constructor<Self>, ty: &Self::Ty) -> usize {
self.ctor_arity(ctor, *ty)
}
fn ctor_sub_tys<'a>(
&'a self,
ctor: &'a crate::constructor::Constructor<Self>,
ty: &'a Self::Ty,
) -> impl Iterator<Item = (Self::Ty, PrivateUninhabitedField)> + ExactSizeIterator + Captures<'a>
{
self.ctor_sub_tys(ctor, *ty)
}
fn ctors_for_ty(
&self,
ty: &Self::Ty,
) -> Result<crate::constructor::ConstructorSet<Self>, Self::Error> {
self.ctors_for_ty(*ty)
}
fn write_variant_name(
f: &mut fmt::Formatter<'_>,
ctor: &crate::constructor::Constructor<Self>,
ty: &Self::Ty,
) -> fmt::Result {
if let ty::Adt(adt, _) = ty.kind() {
if adt.is_box() {
write!(f, "Box")?
} else {
let variant = adt.variant(Self::variant_index_for_adt(ctor, *adt));
write!(f, "{}", variant.name)?;
}
}
Ok(())
}
fn bug(&self, fmt: fmt::Arguments<'_>) -> Self::Error {
span_bug!(self.scrut_span, "{}", fmt)
}
fn lint_overlapping_range_endpoints(
&self,
pat: &crate::pat::DeconstructedPat<Self>,
overlaps_on: IntRange,
overlaps_with: &[&crate::pat::DeconstructedPat<Self>],
) {
let overlap_as_pat = self.hoist_pat_range(&overlaps_on, *pat.ty());
let overlaps: Vec<_> = overlaps_with
.iter()
.map(|pat| pat.data().span)
.map(|span| errors::Overlap { range: overlap_as_pat.clone(), span })
.collect();
let pat_span = pat.data().span;
self.tcx.emit_node_span_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
self.match_lint_level,
pat_span,
errors::OverlappingRangeEndpoints { overlap: overlaps, range: pat_span },
);
}
fn complexity_exceeded(&self) -> Result<(), Self::Error> {
let span = self.whole_match_span.unwrap_or(self.scrut_span);
Err(self.tcx.dcx().span_err(span, "reached pattern complexity limit"))
}
fn lint_non_contiguous_range_endpoints(
&self,
pat: &crate::pat::DeconstructedPat<Self>,
gap: IntRange,
gapped_with: &[&crate::pat::DeconstructedPat<Self>],
) {
let &thir_pat = pat.data();
let thir::PatKind::Range(range) = &thir_pat.kind else { return };
// Only lint when the left range is an exclusive range.
if range.end != rustc_hir::RangeEnd::Excluded {
return;
}
// `pat` is an exclusive range like `lo..gap`. `gapped_with` contains ranges that start with
// `gap+1`.
let suggested_range: thir::Pat<'_> = {
// Suggest `lo..=gap` instead.
let mut suggested_range = thir_pat.clone();
let thir::PatKind::Range(range) = &mut suggested_range.kind else { unreachable!() };
range.end = rustc_hir::RangeEnd::Included;
suggested_range
};
let gap_as_pat = self.hoist_pat_range(&gap, *pat.ty());
if gapped_with.is_empty() {
// If `gapped_with` is empty, `gap == T::MAX`.
self.tcx.emit_node_span_lint(
lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
self.match_lint_level,
thir_pat.span,
errors::ExclusiveRangeMissingMax {
// Point at this range.
first_range: thir_pat.span,
// That's the gap that isn't covered.
max: gap_as_pat.clone(),
// Suggest `lo..=max` instead.
suggestion: suggested_range.to_string(),
},
);
} else {
self.tcx.emit_node_span_lint(
lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
self.match_lint_level,
thir_pat.span,
errors::ExclusiveRangeMissingGap {
// Point at this range.
first_range: thir_pat.span,
// That's the gap that isn't covered.
gap: gap_as_pat.clone(),
// Suggest `lo..=gap` instead.
suggestion: suggested_range.to_string(),
// All these ranges skipped over `gap` which we think is probably a
// mistake.
gap_with: gapped_with
.iter()
.map(|pat| errors::GappedRange {
span: pat.data().span,
gap: gap_as_pat.clone(),
first_range: thir_pat.clone(),
})
.collect(),
},
);
}
}
}
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
if let PatKind::Or { pats } = &pat.kind {
for pat in pats.iter() {
expand(pat, vec);
}
} else {
vec.push(pat)
}
}
let mut pats = Vec::new();
expand(pat, &mut pats);
pats
}