1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
//! Finds local items that are "reachable", which means that other crates need access to their
//! compiled code or their *runtime* MIR. (Compile-time MIR is always encoded anyway, so we don't
//! worry about that here.)
//!
//! An item is "reachable" if codegen that happens in downstream crates can end up referencing this
//! item. This obviously includes all public items. However, some of these items cannot be codegen'd
//! (because they are generic), and for some the compiled code is not sufficient (because we want to
//! cross-crate inline them). These items "need cross-crate MIR". When a reachable function `f`
//! needs cross-crate MIR, then its MIR may be codegen'd in a downstream crate, and hence items it
//! mentions need to be considered reachable.
//!
//! Furthermore, if a `const`/`const fn` is reachable, then it can return pointers to other items,
//! making those reachable as well. For instance, consider a `const fn` returning a pointer to an
//! otherwise entirely private function: if a downstream crate calls that `const fn` to compute the
//! initial value of a `static`, then it needs to generate a direct reference to this function --
//! i.e., the function is directly reachable from that downstream crate! Hence we have to recurse
//! into `const` and `const fn`.
//!
//! Conversely, reachability *stops* when it hits a monomorphic non-`const` function that we do not
//! want to cross-crate inline. That function will just be codegen'd in this crate, which means the
//! monomorphization collector will consider it a root and then do another graph traversal to
//! codegen everything called by this function -- but that's a very different graph from what we are
//! considering here as at that point, everything is monomorphic.
use hir::def_id::LocalDefIdSet;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::Node;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::middle::privacy::{self, Level};
use rustc_middle::mir::interpret::{ConstAllocation, ErrorHandled, GlobalAlloc};
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, ExistentialTraitRef, TyCtxt};
use rustc_privacy::DefIdVisitor;
use rustc_session::config::CrateType;
use tracing::debug;
/// Determines whether this item is recursive for reachability. See `is_recursively_reachable_local`
/// below for details.
fn recursively_reachable(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
tcx.generics_of(def_id).requires_monomorphization(tcx)
|| tcx.cross_crate_inlinable(def_id)
|| tcx.is_const_fn(def_id)
}
// Information needed while computing reachability.
struct ReachableContext<'tcx> {
// The type context.
tcx: TyCtxt<'tcx>,
maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
// The set of items which must be exported in the linkage sense.
reachable_symbols: LocalDefIdSet,
// A worklist of item IDs. Each item ID in this worklist will be inlined
// and will be scanned for further references.
// FIXME(eddyb) benchmark if this would be faster as a `VecDeque`.
worklist: Vec<LocalDefId>,
// Whether any output of this compilation is a library
any_library: bool,
}
impl<'tcx> Visitor<'tcx> for ReachableContext<'tcx> {
fn visit_nested_body(&mut self, body: hir::BodyId) {
let old_maybe_typeck_results =
self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
let body = self.tcx.hir().body(body);
self.visit_body(body);
self.maybe_typeck_results = old_maybe_typeck_results;
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
let res = match expr.kind {
hir::ExprKind::Path(ref qpath) => {
// This covers fn ptr casts but also "non-method" calls.
Some(self.typeck_results().qpath_res(qpath, expr.hir_id))
}
hir::ExprKind::MethodCall(..) => {
// Method calls don't involve a full "path", so we need to determine the callee
// based on the receiver type.
// If this is a method call on a generic type, we might not be able to find the
// callee. That's why `reachable_set` also adds all potential callees for such
// calls, i.e. all trait impl items, to the reachable set. So here we only worry
// about the calls we can identify.
self.typeck_results()
.type_dependent_def(expr.hir_id)
.map(|(kind, def_id)| Res::Def(kind, def_id))
}
hir::ExprKind::Closure(&hir::Closure { def_id, .. }) => {
self.reachable_symbols.insert(def_id);
None
}
_ => None,
};
if let Some(res) = res {
self.propagate_item(res);
}
intravisit::walk_expr(self, expr)
}
fn visit_inline_asm(&mut self, asm: &'tcx hir::InlineAsm<'tcx>, id: hir::HirId) {
for (op, _) in asm.operands {
if let hir::InlineAsmOperand::SymStatic { def_id, .. } = op {
if let Some(def_id) = def_id.as_local() {
self.reachable_symbols.insert(def_id);
}
}
}
intravisit::walk_inline_asm(self, asm, id);
}
}
impl<'tcx> ReachableContext<'tcx> {
/// Gets the type-checking results for the current body.
/// As this will ICE if called outside bodies, only call when working with
/// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
#[track_caller]
fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
self.maybe_typeck_results
.expect("`ReachableContext::typeck_results` called outside of body")
}
/// Returns true if the given def ID represents a local item that is recursive for reachability,
/// i.e. whether everything mentioned in here also needs to be considered reachable.
///
/// There are two reasons why an item may be recursively reachable:
/// - It needs cross-crate MIR (see the module-level doc comment above).
/// - It is a `const` or `const fn`. This is *not* because we need the MIR to interpret them
/// (MIR for const-eval and MIR for codegen is separate, and MIR for const-eval is always
/// encoded). Instead, it is because `const fn` can create `fn()` pointers to other items
/// which end up in the evaluated result of the constant and can then be called from other
/// crates. Those items must be considered reachable.
fn is_recursively_reachable_local(&self, def_id: DefId) -> bool {
let Some(def_id) = def_id.as_local() else {
return false;
};
match self.tcx.hir_node_by_def_id(def_id) {
Node::Item(item) => match item.kind {
hir::ItemKind::Fn(..) => recursively_reachable(self.tcx, def_id.into()),
_ => false,
},
Node::TraitItem(trait_method) => match trait_method.kind {
hir::TraitItemKind::Const(_, ref default) => default.is_some(),
hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)) => true,
hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_))
| hir::TraitItemKind::Type(..) => false,
},
Node::ImplItem(impl_item) => match impl_item.kind {
hir::ImplItemKind::Const(..) => true,
hir::ImplItemKind::Fn(..) => {
recursively_reachable(self.tcx, impl_item.hir_id().owner.to_def_id())
}
hir::ImplItemKind::Type(_) => false,
},
Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => true,
_ => false,
}
}
// Step 2: Mark all symbols that the symbols on the worklist touch.
fn propagate(&mut self) {
let mut scanned = LocalDefIdSet::default();
while let Some(search_item) = self.worklist.pop() {
if !scanned.insert(search_item) {
continue;
}
self.propagate_node(&self.tcx.hir_node_by_def_id(search_item), search_item);
}
}
fn propagate_node(&mut self, node: &Node<'tcx>, search_item: LocalDefId) {
if !self.any_library {
// If we are building an executable, only explicitly extern
// types need to be exported.
let codegen_attrs = if self.tcx.def_kind(search_item).has_codegen_attrs() {
self.tcx.codegen_fn_attrs(search_item)
} else {
CodegenFnAttrs::EMPTY
};
let is_extern = codegen_attrs.contains_extern_indicator();
let std_internal =
codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL);
if is_extern || std_internal {
self.reachable_symbols.insert(search_item);
}
} else {
// If we are building a library, then reachable symbols will
// continue to participate in linkage after this product is
// produced. In this case, we traverse the ast node, recursing on
// all reachable nodes from this one.
self.reachable_symbols.insert(search_item);
}
match *node {
Node::Item(item) => {
match item.kind {
hir::ItemKind::Fn(.., body) => {
if recursively_reachable(self.tcx, item.owner_id.into()) {
self.visit_nested_body(body);
}
}
hir::ItemKind::Const(_, _, init) => {
// Only things actually ending up in the final constant value are reachable
// for codegen. Everything else is only needed during const-eval, so even if
// const-eval happens in a downstream crate, all they need is
// `mir_for_ctfe`.
match self.tcx.const_eval_poly_to_alloc(item.owner_id.def_id.into()) {
Ok(alloc) => {
let alloc = self.tcx.global_alloc(alloc.alloc_id).unwrap_memory();
self.propagate_from_alloc(alloc);
}
// We can't figure out which value the constant will evaluate to. In
// lieu of that, we have to consider everything mentioned in the const
// initializer reachable, since it *may* end up in the final value.
Err(ErrorHandled::TooGeneric(_)) => self.visit_nested_body(init),
// If there was an error evaluating the const, nothing can be reachable
// via it, and anyway compilation will fail.
Err(ErrorHandled::Reported(..)) => {}
}
}
hir::ItemKind::Static(..) => {
if let Ok(alloc) = self.tcx.eval_static_initializer(item.owner_id.def_id) {
self.propagate_from_alloc(alloc);
}
}
// These are normal, nothing reachable about these
// inherently and their children are already in the
// worklist, as determined by the privacy pass
hir::ItemKind::ExternCrate(_)
| hir::ItemKind::Use(..)
| hir::ItemKind::OpaqueTy(..)
| hir::ItemKind::TyAlias(..)
| hir::ItemKind::Macro(..)
| hir::ItemKind::Mod(..)
| hir::ItemKind::ForeignMod { .. }
| hir::ItemKind::Impl { .. }
| hir::ItemKind::Trait(..)
| hir::ItemKind::TraitAlias(..)
| hir::ItemKind::Struct(..)
| hir::ItemKind::Enum(..)
| hir::ItemKind::Union(..)
| hir::ItemKind::GlobalAsm(..) => {}
}
}
Node::TraitItem(trait_method) => {
match trait_method.kind {
hir::TraitItemKind::Const(_, None)
| hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_)) => {
// Keep going, nothing to get exported
}
hir::TraitItemKind::Const(_, Some(body_id))
| hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(body_id)) => {
self.visit_nested_body(body_id);
}
hir::TraitItemKind::Type(..) => {}
}
}
Node::ImplItem(impl_item) => match impl_item.kind {
hir::ImplItemKind::Const(_, body) => {
self.visit_nested_body(body);
}
hir::ImplItemKind::Fn(_, body) => {
if recursively_reachable(self.tcx, impl_item.hir_id().owner.to_def_id()) {
self.visit_nested_body(body)
}
}
hir::ImplItemKind::Type(_) => {}
},
Node::Expr(&hir::Expr {
kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
..
}) => {
self.visit_nested_body(body);
}
// Nothing to recurse on for these
Node::ForeignItem(_)
| Node::Variant(_)
| Node::Ctor(..)
| Node::Field(_)
| Node::Ty(_)
| Node::Crate(_)
| Node::Synthetic => {}
_ => {
bug!(
"found unexpected node kind in worklist: {} ({:?})",
self.tcx.hir().node_to_string(self.tcx.local_def_id_to_hir_id(search_item)),
node,
);
}
}
}
/// Finds things to add to `reachable_symbols` within allocations.
/// In contrast to visit_nested_body this ignores things that were only needed to evaluate
/// the allocation.
fn propagate_from_alloc(&mut self, alloc: ConstAllocation<'tcx>) {
if !self.any_library {
return;
}
for (_, prov) in alloc.0.provenance().ptrs().iter() {
match self.tcx.global_alloc(prov.alloc_id()) {
GlobalAlloc::Static(def_id) => {
self.propagate_item(Res::Def(self.tcx.def_kind(def_id), def_id))
}
GlobalAlloc::Function { instance, .. } => {
// Manually visit to actually see the instance's `DefId`. Type visitors won't see it
self.propagate_item(Res::Def(
self.tcx.def_kind(instance.def_id()),
instance.def_id(),
));
self.visit(instance.args);
}
GlobalAlloc::VTable(ty, trait_ref) => {
self.visit(ty);
// Manually visit to actually see the trait's `DefId`. Type visitors won't see it
if let Some(trait_ref) = trait_ref {
let ExistentialTraitRef { def_id, args } = trait_ref.skip_binder();
self.visit_def_id(def_id, "", &"");
self.visit(args);
}
}
GlobalAlloc::Memory(alloc) => self.propagate_from_alloc(alloc),
}
}
}
fn propagate_item(&mut self, res: Res) {
let Res::Def(kind, def_id) = res else { return };
let Some(def_id) = def_id.as_local() else { return };
match kind {
DefKind::Static { nested: true, .. } => {
// This is the main purpose of this function: add the def_id we find
// to `reachable_symbols`.
if self.reachable_symbols.insert(def_id) {
if let Ok(alloc) = self.tcx.eval_static_initializer(def_id) {
// This cannot cause infinite recursion, because we abort by inserting into the
// work list once we hit a normal static. Nested statics, even if they somehow
// become recursive, are also not infinitely recursing, because of the
// `reachable_symbols` check above.
// We still need to protect against stack overflow due to deeply nested statics.
ensure_sufficient_stack(|| self.propagate_from_alloc(alloc));
}
}
}
// Reachable constants and reachable statics can have their contents inlined
// into other crates. Mark them as reachable and recurse into their body.
DefKind::Const | DefKind::AssocConst | DefKind::Static { .. } => {
self.worklist.push(def_id);
}
_ => {
if self.is_recursively_reachable_local(def_id.to_def_id()) {
self.worklist.push(def_id);
} else {
self.reachable_symbols.insert(def_id);
}
}
}
}
}
impl<'tcx> DefIdVisitor<'tcx> for ReachableContext<'tcx> {
type Result = ();
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
_kind: &str,
_descr: &dyn std::fmt::Display,
) -> Self::Result {
self.propagate_item(Res::Def(self.tcx.def_kind(def_id), def_id))
}
}
fn check_item<'tcx>(
tcx: TyCtxt<'tcx>,
id: hir::ItemId,
worklist: &mut Vec<LocalDefId>,
effective_visibilities: &privacy::EffectiveVisibilities,
) {
if has_custom_linkage(tcx, id.owner_id.def_id) {
worklist.push(id.owner_id.def_id);
}
if !matches!(tcx.def_kind(id.owner_id), DefKind::Impl { of_trait: true }) {
return;
}
// We need only trait impls here, not inherent impls, and only non-exported ones
if effective_visibilities.is_reachable(id.owner_id.def_id) {
return;
}
let items = tcx.associated_item_def_ids(id.owner_id);
worklist.extend(items.iter().map(|ii_ref| ii_ref.expect_local()));
let Some(trait_def_id) = tcx.trait_id_of_impl(id.owner_id.to_def_id()) else {
unreachable!();
};
if !trait_def_id.is_local() {
return;
}
worklist
.extend(tcx.provided_trait_methods(trait_def_id).map(|assoc| assoc.def_id.expect_local()));
}
fn has_custom_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
// Anything which has custom linkage gets thrown on the worklist no
// matter where it is in the crate, along with "special std symbols"
// which are currently akin to allocator symbols.
if !tcx.def_kind(def_id).has_codegen_attrs() {
return false;
}
let codegen_attrs = tcx.codegen_fn_attrs(def_id);
codegen_attrs.contains_extern_indicator()
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
// FIXME(nbdd0121): `#[used]` are marked as reachable here so it's picked up by
// `linked_symbols` in cg_ssa. They won't be exported in binary or cdylib due to their
// `SymbolExportLevel::Rust` export level but may end up being exported in dylibs.
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::USED)
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER)
}
/// See module-level doc comment above.
fn reachable_set(tcx: TyCtxt<'_>, (): ()) -> LocalDefIdSet {
let effective_visibilities = &tcx.effective_visibilities(());
let any_library = tcx
.crate_types()
.iter()
.any(|ty| *ty == CrateType::Rlib || *ty == CrateType::Dylib || *ty == CrateType::ProcMacro);
let mut reachable_context = ReachableContext {
tcx,
maybe_typeck_results: None,
reachable_symbols: Default::default(),
worklist: Vec::new(),
any_library,
};
// Step 1: Seed the worklist with all nodes which were found to be public as
// a result of the privacy pass along with all local lang items and impl items.
// If other crates link to us, they're going to expect to be able to
// use the lang items, so we need to be sure to mark them as
// exported.
reachable_context.worklist = effective_visibilities
.iter()
.filter_map(|(&id, effective_vis)| {
effective_vis.is_public_at_level(Level::ReachableThroughImplTrait).then_some(id)
})
.collect::<Vec<_>>();
for (_, def_id) in tcx.lang_items().iter() {
if let Some(def_id) = def_id.as_local() {
reachable_context.worklist.push(def_id);
}
}
{
// As explained above, we have to mark all functions called from reachable
// `item_might_be_inlined` items as reachable. The issue is, when those functions are
// generic and call a trait method, we have no idea where that call goes! So, we
// conservatively mark all trait impl items as reachable.
// FIXME: One possible strategy for pruning the reachable set is to avoid marking impl
// items of non-exported traits (or maybe all local traits?) unless their respective
// trait items are used from inlinable code through method call syntax or UFCS, or their
// trait is a lang item.
// (But if you implement this, don't forget to take into account that vtables can also
// make trait methods reachable!)
let crate_items = tcx.hir_crate_items(());
for id in crate_items.free_items() {
check_item(tcx, id, &mut reachable_context.worklist, effective_visibilities);
}
for id in crate_items.impl_items() {
if has_custom_linkage(tcx, id.owner_id.def_id) {
reachable_context.worklist.push(id.owner_id.def_id);
}
}
}
// Step 2: Mark all symbols that the symbols on the worklist touch.
reachable_context.propagate();
debug!("Inline reachability shows: {:?}", reachable_context.reachable_symbols);
// Return the set of reachable symbols.
reachable_context.reachable_symbols
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { reachable_set, ..*providers };
}