1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
use super::{Parser, Restrictions, TokenType};
use crate::errors::PathSingleColon;
use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
use crate::{errors, maybe_whole};
use ast::token::IdentIsRaw;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter, Token, TokenKind};
use rustc_ast::{
self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
Path, PathSegment, QSelf,
};
use rustc_errors::{Applicability, Diag, PResult};
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::{BytePos, Span};
use std::mem;
use thin_vec::ThinVec;
use tracing::debug;
/// Specifies how to parse a path.
#[derive(Copy, Clone, PartialEq)]
pub(super) enum PathStyle {
/// In some contexts, notably in expressions, paths with generic arguments are ambiguous
/// with something else. For example, in expressions `segment < ....` can be interpreted
/// as a comparison and `segment ( ....` can be interpreted as a function call.
/// In all such contexts the non-path interpretation is preferred by default for practical
/// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
/// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
///
/// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
/// we encounter it.
Expr,
/// The same as `Expr`, but may be followed by a `:`.
/// For example, this code:
/// ```rust
/// struct S;
///
/// let S: S;
/// // ^ Followed by a `:`
/// ```
Pat,
/// In other contexts, notably in types, no ambiguity exists and paths can be written
/// without the disambiguator, e.g., `x<y>` - unambiguously a path.
/// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
Type,
/// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
/// visibilities or attributes.
/// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
/// (paths in "mod" contexts have to be checked later for absence of generic arguments
/// anyway, due to macros), but it is used to avoid weird suggestions about expected
/// tokens when something goes wrong.
Mod,
}
impl PathStyle {
fn has_generic_ambiguity(&self) -> bool {
matches!(self, Self::Expr | Self::Pat)
}
}
impl<'a> Parser<'a> {
/// Parses a qualified path.
/// Assumes that the leading `<` has been parsed already.
///
/// `qualified_path = <type [as trait_ref]>::path`
///
/// # Examples
/// `<T>::default`
/// `<T as U>::a`
/// `<T as U>::F::a<S>` (without disambiguator)
/// `<T as U>::F::a::<S>` (with disambiguator)
pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
let lo = self.prev_token.span;
let ty = self.parse_ty()?;
// `path` will contain the prefix of the path up to the `>`,
// if any (e.g., `U` in the `<T as U>::*` examples
// above). `path_span` has the span of that path, or an empty
// span in the case of something like `<T>::Bar`.
let (mut path, path_span);
if self.eat_keyword(kw::As) {
let path_lo = self.token.span;
path = self.parse_path(PathStyle::Type)?;
path_span = path_lo.to(self.prev_token.span);
} else {
path_span = self.token.span.to(self.token.span);
path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
}
// See doc comment for `unmatched_angle_bracket_count`.
self.expect(&token::Gt)?;
if self.unmatched_angle_bracket_count > 0 {
self.unmatched_angle_bracket_count -= 1;
debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
}
let is_import_coupler = self.is_import_coupler();
if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
self.expect(&token::PathSep)?;
}
let qself = P(QSelf { ty, path_span, position: path.segments.len() });
if !is_import_coupler {
self.parse_path_segments(&mut path.segments, style, None)?;
}
Ok((
qself,
Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
))
}
/// Recover from an invalid single colon, when the user likely meant a qualified path.
/// We avoid emitting this if not followed by an identifier, as our assumption that the user
/// intended this to be a qualified path may not be correct.
///
/// ```ignore (diagnostics)
/// <Bar as Baz<T>>:Qux
/// ^ help: use double colon
/// ```
fn recover_colon_before_qpath_proj(&mut self) -> bool {
if !self.check_noexpect(&TokenKind::Colon)
|| self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
{
return false;
}
self.bump(); // colon
self.dcx()
.struct_span_err(
self.prev_token.span,
"found single colon before projection in qualified path",
)
.with_span_suggestion(
self.prev_token.span,
"use double colon",
"::",
Applicability::MachineApplicable,
)
.emit();
true
}
pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
self.parse_path_inner(style, None)
}
/// Parses simple paths.
///
/// `path = [::] segment+`
/// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
///
/// # Examples
/// `a::b::C<D>` (without disambiguator)
/// `a::b::C::<D>` (with disambiguator)
/// `Fn(Args)` (without disambiguator)
/// `Fn::(Args)` (with disambiguator)
pub(super) fn parse_path_inner(
&mut self,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, Path> {
let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
// Ensure generic arguments don't end up in attribute paths, such as:
//
// macro_rules! m {
// ($p:path) => { #[$p] struct S; }
// }
//
// m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
//
if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
{
let span = path
.segments
.iter()
.filter_map(|segment| segment.args.as_ref())
.map(|arg| arg.span())
.collect::<Vec<_>>();
parser.dcx().emit_err(errors::GenericsInPath { span });
// Ignore these arguments to prevent unexpected behaviors.
let segments = path
.segments
.iter()
.map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
.collect();
Path { segments, ..path }
} else {
path
}
};
maybe_whole!(self, NtPath, |path| reject_generics_if_mod_style(self, path.into_inner()));
if let token::Interpolated(nt) = &self.token.kind {
if let token::NtTy(ty) = &**nt {
if let ast::TyKind::Path(None, path) = &ty.kind {
let path = path.clone();
self.bump();
return Ok(reject_generics_if_mod_style(self, path));
}
}
}
let lo = self.token.span;
let mut segments = ThinVec::new();
let mod_sep_ctxt = self.token.span.ctxt();
if self.eat(&token::PathSep) {
segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
}
self.parse_path_segments(&mut segments, style, ty_generics)?;
Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
}
pub(super) fn parse_path_segments(
&mut self,
segments: &mut ThinVec<PathSegment>,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, ()> {
loop {
let segment = self.parse_path_segment(style, ty_generics)?;
if style.has_generic_ambiguity() {
// In order to check for trailing angle brackets, we must have finished
// recursing (`parse_path_segment` can indirectly call this function),
// that is, the next token must be the highlighted part of the below example:
//
// `Foo::<Bar as Baz<T>>::Qux`
// ^ here
//
// As opposed to the below highlight (if we had only finished the first
// recursion):
//
// `Foo::<Bar as Baz<T>>::Qux`
// ^ here
//
// `PathStyle::Expr` is only provided at the root invocation and never in
// `parse_path_segment` to recurse and therefore can be checked to maintain
// this invariant.
self.check_trailing_angle_brackets(&segment, &[&token::PathSep]);
}
segments.push(segment);
if self.is_import_coupler() || !self.eat(&token::PathSep) {
if style == PathStyle::Expr
&& self.may_recover()
&& self.token == token::Colon
&& self.look_ahead(1, |token| token.is_ident() && !token.is_reserved_ident())
{
// Emit a special error message for `a::b:c` to help users
// otherwise, `a: c` might have meant to introduce a new binding
if self.token.span.lo() == self.prev_token.span.hi()
&& self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
{
self.bump(); // bump past the colon
self.dcx().emit_err(PathSingleColon {
span: self.prev_token.span,
suggestion: self.prev_token.span.shrink_to_hi(),
type_ascription: self
.psess
.unstable_features
.is_nightly_build()
.then_some(()),
});
}
continue;
}
return Ok(());
}
}
}
pub(super) fn parse_path_segment(
&mut self,
style: PathStyle,
ty_generics: Option<&Generics>,
) -> PResult<'a, PathSegment> {
let ident = self.parse_path_segment_ident()?;
let is_args_start = |token: &Token| {
matches!(
token.kind,
token::Lt
| token::BinOp(token::Shl)
| token::OpenDelim(Delimiter::Parenthesis)
| token::LArrow
)
};
let check_args_start = |this: &mut Self| {
this.expected_tokens.extend_from_slice(&[
TokenType::Token(token::Lt),
TokenType::Token(token::OpenDelim(Delimiter::Parenthesis)),
]);
is_args_start(&this.token)
};
Ok(
if style == PathStyle::Type && check_args_start(self)
|| style != PathStyle::Mod
&& self.check(&token::PathSep)
&& self.look_ahead(1, |t| is_args_start(t))
{
// We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
// it isn't, then we reset the unmatched angle bracket count as we're about to start
// parsing a new path.
if style == PathStyle::Expr {
self.unmatched_angle_bracket_count = 0;
}
// Generic arguments are found - `<`, `(`, `::<` or `::(`.
self.eat(&token::PathSep);
let lo = self.token.span;
let args = if self.eat_lt() {
// `<'a, T, A = U>`
let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
style,
lo,
ty_generics,
)?;
self.expect_gt().map_err(|mut err| {
// Try to recover a `:` into a `::`
if self.token == token::Colon
&& self.look_ahead(1, |token| {
token.is_ident() && !token.is_reserved_ident()
})
{
err.cancel();
err = self.dcx().create_err(PathSingleColon {
span: self.token.span,
suggestion: self.prev_token.span.shrink_to_hi(),
type_ascription: self
.psess
.unstable_features
.is_nightly_build()
.then_some(()),
});
}
// Attempt to find places where a missing `>` might belong.
else if let Some(arg) = args
.iter()
.rev()
.find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
{
err.span_suggestion_verbose(
arg.span().shrink_to_hi(),
"you might have meant to end the type parameters here",
">",
Applicability::MaybeIncorrect,
);
}
err
})?;
let span = lo.to(self.prev_token.span);
AngleBracketedArgs { args, span }.into()
} else if self.token.kind == token::OpenDelim(Delimiter::Parenthesis)
// FIXME(return_type_notation): Could also recover `...` here.
&& self.look_ahead(1, |tok| tok.kind == token::DotDot)
{
self.bump(); // (
self.bump(); // ..
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?;
let span = lo.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::return_type_notation, span);
if self.eat_noexpect(&token::RArrow) {
let lo = self.prev_token.span;
let ty = self.parse_ty()?;
self.dcx()
.emit_err(errors::BadReturnTypeNotationOutput { span: lo.to(ty.span) });
}
P(ast::GenericArgs::ParenthesizedElided(span))
} else {
// `(T, U) -> R`
let prev_token_before_parsing = self.prev_token.clone();
let token_before_parsing = self.token.clone();
let mut snapshot = None;
if self.may_recover()
&& prev_token_before_parsing.kind == token::PathSep
&& (style == PathStyle::Expr && self.token.can_begin_expr()
|| style == PathStyle::Pat && self.token.can_begin_pattern())
{
snapshot = Some(self.create_snapshot_for_diagnostic());
}
let (inputs, _) = match self.parse_paren_comma_seq(|p| p.parse_ty()) {
Ok(output) => output,
Err(mut error) if prev_token_before_parsing.kind == token::PathSep => {
error.span_label(
prev_token_before_parsing.span.to(token_before_parsing.span),
"while parsing this parenthesized list of type arguments starting here",
);
if let Some(mut snapshot) = snapshot {
snapshot.recover_fn_call_leading_path_sep(
style,
prev_token_before_parsing,
&mut error,
)
}
return Err(error);
}
Err(error) => return Err(error),
};
let inputs_span = lo.to(self.prev_token.span);
let output =
self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
let span = ident.span.to(self.prev_token.span);
ParenthesizedArgs { span, inputs, inputs_span, output }.into()
};
PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
} else {
// Generic arguments are not found.
PathSegment::from_ident(ident)
},
)
}
pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
match self.token.ident() {
Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
self.bump();
Ok(ident)
}
_ => self.parse_ident(),
}
}
/// Recover `$path::(...)` as `$path(...)`.
///
/// ```ignore (diagnostics)
/// foo::(420, "bar")
/// ^^ remove extra separator to make the function call
/// // or
/// match x {
/// Foo::(420, "bar") => { ... },
/// ^^ remove extra separator to turn this into tuple struct pattern
/// _ => { ... },
/// }
/// ```
fn recover_fn_call_leading_path_sep(
&mut self,
style: PathStyle,
prev_token_before_parsing: Token,
error: &mut Diag<'_>,
) {
match style {
PathStyle::Expr
if let Ok(_) = self
.parse_paren_comma_seq(|p| p.parse_expr())
.map_err(|error| error.cancel()) => {}
PathStyle::Pat
if let Ok(_) = self
.parse_paren_comma_seq(|p| {
p.parse_pat_allow_top_alt(
None,
RecoverComma::No,
RecoverColon::No,
CommaRecoveryMode::LikelyTuple,
)
})
.map_err(|error| error.cancel()) => {}
_ => {
return;
}
}
if let token::PathSep | token::RArrow = self.token.kind {
return;
}
error.span_suggestion_verbose(
prev_token_before_parsing.span,
format!(
"consider removing the `::` here to {}",
match style {
PathStyle::Expr => "call the expression",
PathStyle::Pat => "turn this into a tuple struct pattern",
_ => {
return;
}
}
),
"",
Applicability::MaybeIncorrect,
);
}
/// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
/// For the purposes of understanding the parsing logic of generic arguments, this function
/// can be thought of being the same as just calling `self.parse_angle_args()` if the source
/// had the correct amount of leading angle brackets.
///
/// ```ignore (diagnostics)
/// bar::<<<<T as Foo>::Output>();
/// ^^ help: remove extra angle brackets
/// ```
fn parse_angle_args_with_leading_angle_bracket_recovery(
&mut self,
style: PathStyle,
lo: Span,
ty_generics: Option<&Generics>,
) -> PResult<'a, ThinVec<AngleBracketedArg>> {
// We need to detect whether there are extra leading left angle brackets and produce an
// appropriate error and suggestion. This cannot be implemented by looking ahead at
// upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
// then there won't be matching `>` tokens to find.
//
// To explain how this detection works, consider the following example:
//
// ```ignore (diagnostics)
// bar::<<<<T as Foo>::Output>();
// ^^ help: remove extra angle brackets
// ```
//
// Parsing of the left angle brackets starts in this function. We start by parsing the
// `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
// `eat_lt`):
//
// *Upcoming tokens:* `<<<<T as Foo>::Output>;`
// *Unmatched count:* 1
// *`parse_path_segment` calls deep:* 0
//
// This has the effect of recursing as this function is called if a `<` character
// is found within the expected generic arguments:
//
// *Upcoming tokens:* `<<<T as Foo>::Output>;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 1
//
// Eventually we will have recursed until having consumed all of the `<` tokens and
// this will be reflected in the count:
//
// *Upcoming tokens:* `T as Foo>::Output>;`
// *Unmatched count:* 4
// `parse_path_segment` calls deep:* 3
//
// The parser will continue until reaching the first `>` - this will decrement the
// unmatched angle bracket count and return to the parent invocation of this function
// having succeeded in parsing:
//
// *Upcoming tokens:* `::Output>;`
// *Unmatched count:* 3
// *`parse_path_segment` calls deep:* 2
//
// This will continue until the next `>` character which will also return successfully
// to the parent invocation of this function and decrement the count:
//
// *Upcoming tokens:* `;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 1
//
// At this point, this function will expect to find another matching `>` character but
// won't be able to and will return an error. This will continue all the way up the
// call stack until the first invocation:
//
// *Upcoming tokens:* `;`
// *Unmatched count:* 2
// *`parse_path_segment` calls deep:* 0
//
// In doing this, we have managed to work out how many unmatched leading left angle
// brackets there are, but we cannot recover as the unmatched angle brackets have
// already been consumed. To remedy this, we keep a snapshot of the parser state
// before we do the above. We can then inspect whether we ended up with a parsing error
// and unmatched left angle brackets and if so, restore the parser state before we
// consumed any `<` characters to emit an error and consume the erroneous tokens to
// recover by attempting to parse again.
//
// In practice, the recursion of this function is indirect and there will be other
// locations that consume some `<` characters - as long as we update the count when
// this happens, it isn't an issue.
let is_first_invocation = style == PathStyle::Expr;
// Take a snapshot before attempting to parse - we can restore this later.
let snapshot = is_first_invocation.then(|| self.clone());
self.angle_bracket_nesting += 1;
debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
match self.parse_angle_args(ty_generics) {
Ok(args) => {
self.angle_bracket_nesting -= 1;
Ok(args)
}
Err(e) if self.angle_bracket_nesting > 10 => {
self.angle_bracket_nesting -= 1;
// When encountering severely malformed code where there are several levels of
// nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
// behavior by bailing out earlier (#117080).
e.emit();
rustc_errors::FatalError.raise();
}
Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
self.angle_bracket_nesting -= 1;
// Swap `self` with our backup of the parser state before attempting to parse
// generic arguments.
let snapshot = mem::replace(self, snapshot.unwrap());
// Eat the unmatched angle brackets.
let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
.fold(true, |a, _| a && self.eat_lt());
if !all_angle_brackets {
// If there are other tokens in between the extraneous `<`s, we cannot simply
// suggest to remove them. This check also prevents us from accidentally ending
// up in the middle of a multibyte character (issue #84104).
let _ = mem::replace(self, snapshot);
Err(e)
} else {
// Cancel error from being unable to find `>`. We know the error
// must have been this due to a non-zero unmatched angle bracket
// count.
e.cancel();
debug!(
"parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
snapshot.count={:?}",
snapshot.unmatched_angle_bracket_count,
);
// Make a span over ${unmatched angle bracket count} characters.
// This is safe because `all_angle_brackets` ensures that there are only `<`s,
// i.e. no multibyte characters, in this range.
let span = lo
.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
self.dcx().emit_err(errors::UnmatchedAngle {
span,
plural: snapshot.unmatched_angle_bracket_count > 1,
});
// Try again without unmatched angle bracket characters.
self.parse_angle_args(ty_generics)
}
}
Err(e) => {
self.angle_bracket_nesting -= 1;
Err(e)
}
}
}
/// Parses (possibly empty) list of generic arguments / associated item constraints,
/// possibly including trailing comma.
pub(super) fn parse_angle_args(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, ThinVec<AngleBracketedArg>> {
let mut args = ThinVec::new();
while let Some(arg) = self.parse_angle_arg(ty_generics)? {
args.push(arg);
if !self.eat(&token::Comma) {
if self.check_noexpect(&TokenKind::Semi)
&& self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
{
// Add `>` to the list of expected tokens.
self.check(&token::Gt);
// Handle `,` to `;` substitution
let mut err = self.unexpected().unwrap_err();
self.bump();
err.span_suggestion_verbose(
self.prev_token.span.until(self.token.span),
"use a comma to separate type parameters",
", ",
Applicability::MachineApplicable,
);
err.emit();
continue;
}
if !self.token.kind.should_end_const_arg() {
if self.handle_ambiguous_unbraced_const_arg(&mut args)? {
// We've managed to (partially) recover, so continue trying to parse
// arguments.
continue;
}
}
break;
}
}
Ok(args)
}
/// Parses a single argument in the angle arguments `<...>` of a path segment.
fn parse_angle_arg(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, Option<AngleBracketedArg>> {
let lo = self.token.span;
let arg = self.parse_generic_arg(ty_generics)?;
match arg {
Some(arg) => {
// we are using noexpect here because we first want to find out if either `=` or `:`
// is present and then use that info to push the other token onto the tokens list
let separated =
self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
if separated && (self.check(&token::Colon) | self.check(&token::Eq)) {
let arg_span = arg.span();
let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
Ok(ident_gen_args) => ident_gen_args,
Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
};
if binder {
// FIXME(compiler-errors): this could be improved by suggesting lifting
// this up to the trait, at least before this becomes real syntax.
// e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
return Err(self.dcx().struct_span_err(
arg_span,
"`for<...>` is not allowed on associated type bounds",
));
}
let kind = if self.eat(&token::Colon) {
AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
} else if self.eat(&token::Eq) {
self.parse_assoc_equality_term(
ident,
gen_args.as_ref(),
self.prev_token.span,
)?
} else {
unreachable!();
};
let span = lo.to(self.prev_token.span);
let constraint =
AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
Ok(Some(AngleBracketedArg::Constraint(constraint)))
} else {
// we only want to suggest `:` and `=` in contexts where the previous token
// is an ident and the current token or the next token is an ident
if self.prev_token.is_ident()
&& (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
{
self.check(&token::Colon);
self.check(&token::Eq);
}
Ok(Some(AngleBracketedArg::Arg(arg)))
}
}
_ => Ok(None),
}
}
/// Parse the term to the right of an associated item equality constraint.
///
/// That is, parse `$term` in `Item = $term` where `$term` is a type or
/// a const expression (wrapped in curly braces if complex).
fn parse_assoc_equality_term(
&mut self,
ident: Ident,
gen_args: Option<&GenericArgs>,
eq: Span,
) -> PResult<'a, AssocItemConstraintKind> {
let arg = self.parse_generic_arg(None)?;
let span = ident.span.to(self.prev_token.span);
let term = match arg {
Some(GenericArg::Type(ty)) => ty.into(),
Some(GenericArg::Const(c)) => {
self.psess.gated_spans.gate(sym::associated_const_equality, span);
c.into()
}
Some(GenericArg::Lifetime(lt)) => {
let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
span: lt.ident.span,
lifetime: lt.ident,
binding_label: span,
colon_sugg: gen_args
.map_or(ident.span, |args| args.span())
.between(lt.ident.span),
});
self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
}
None => {
let after_eq = eq.shrink_to_hi();
let before_next = self.token.span.shrink_to_lo();
let mut err = self
.dcx()
.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
if matches!(self.token.kind, token::Comma | token::Gt) {
err.span_suggestion(
self.psess.source_map().next_point(eq).to(before_next),
"to constrain the associated type, add a type after `=`",
" TheType",
Applicability::HasPlaceholders,
);
err.span_suggestion(
eq.to(before_next),
format!("remove the `=` if `{ident}` is a type"),
"",
Applicability::MaybeIncorrect,
)
} else {
err.span_label(
self.token.span,
format!("expected type, found {}", super::token_descr(&self.token)),
)
};
return Err(err);
}
};
Ok(AssocItemConstraintKind::Equality { term })
}
/// We do not permit arbitrary expressions as const arguments. They must be one of:
/// - An expression surrounded in `{}`.
/// - A literal.
/// - A numeric literal prefixed by `-`.
/// - A single-segment path.
pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
match &expr.kind {
ast::ExprKind::Block(_, _)
| ast::ExprKind::Lit(_)
| ast::ExprKind::IncludedBytes(..) => true,
ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
matches!(expr.kind, ast::ExprKind::Lit(_))
}
// We can only resolve single-segment paths at the moment, because multi-segment paths
// require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
ast::ExprKind::Path(None, path)
if path.segments.len() == 1 && path.segments[0].args.is_none() =>
{
true
}
_ => false,
}
}
/// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
/// the caller.
pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
// Parse const argument.
let value = if let token::OpenDelim(Delimiter::Brace) = self.token.kind {
self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
} else {
self.handle_unambiguous_unbraced_const_arg()?
};
Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
}
/// Parse a generic argument in a path segment.
/// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
pub(super) fn parse_generic_arg(
&mut self,
ty_generics: Option<&Generics>,
) -> PResult<'a, Option<GenericArg>> {
let start = self.token.span;
let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
// Parse lifetime argument.
GenericArg::Lifetime(self.expect_lifetime())
} else if self.check_const_arg() {
// Parse const argument.
GenericArg::Const(self.parse_const_arg()?)
} else if self.check_type() {
// Parse type argument.
// Proactively create a parser snapshot enabling us to rewind and try to reparse the
// input as a const expression in case we fail to parse a type. If we successfully
// do so, we will report an error that it needs to be wrapped in braces.
let mut snapshot = None;
if self.may_recover() && self.token.can_begin_expr() {
snapshot = Some(self.create_snapshot_for_diagnostic());
}
match self.parse_ty() {
Ok(ty) => {
// Since the type parser recovers from some malformed slice and array types and
// successfully returns a type, we need to look for `TyKind::Err`s in the
// type to determine if error recovery has occurred and if the input is not a
// syntactically valid type after all.
if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
&& let ast::TyKind::Err(_) = inner_ty.kind
&& let Some(snapshot) = snapshot
&& let Some(expr) =
self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
{
return Ok(Some(
self.dummy_const_arg_needs_braces(
self.dcx()
.struct_span_err(expr.span, "invalid const generic expression"),
expr.span,
),
));
}
GenericArg::Type(ty)
}
Err(err) => {
if let Some(snapshot) = snapshot
&& let Some(expr) =
self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
{
return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
}
// Try to recover from possible `const` arg without braces.
return self.recover_const_arg(start, err).map(Some);
}
}
} else if self.token.is_keyword(kw::Const) {
return self.recover_const_param_declaration(ty_generics);
} else {
// Fall back by trying to parse a const-expr expression. If we successfully do so,
// then we should report an error that it needs to be wrapped in braces.
let snapshot = self.create_snapshot_for_diagnostic();
let attrs = self.parse_outer_attributes()?;
match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
Ok(expr) => {
return Ok(Some(self.dummy_const_arg_needs_braces(
self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
expr.span,
)));
}
Err(err) => {
self.restore_snapshot(snapshot);
err.cancel();
return Ok(None);
}
}
};
Ok(Some(arg))
}
/// Given a arg inside of generics, we try to destructure it as if it were the LHS in
/// `LHS = ...`, i.e. an associated item binding.
/// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
/// identifier, and any GAT arguments.
fn get_ident_from_generic_arg(
&self,
gen_arg: &GenericArg,
) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
if let GenericArg::Type(ty) = gen_arg {
if let ast::TyKind::Path(qself, path) = &ty.kind
&& qself.is_none()
&& let [seg] = path.segments.as_slice()
{
return Ok((false, seg.ident, seg.args.as_deref().cloned()));
} else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
&& let [ast::GenericBound::Trait(trait_ref, ast::TraitBoundModifiers::NONE)] =
bounds.as_slice()
&& let [seg] = trait_ref.trait_ref.path.segments.as_slice()
{
return Ok((true, seg.ident, seg.args.as_deref().cloned()));
}
}
Err(())
}
}