1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
pub mod attr;
mod attr_wrapper;
mod diagnostics;
mod expr;
mod generics;
mod item;
mod nonterminal;
mod pat;
mod path;
mod stmt;
mod ty;

use crate::lexer::UnmatchedDelim;
use attr_wrapper::AttrWrapper;
pub use diagnostics::AttemptLocalParseRecovery;
pub(crate) use expr::ForbiddenLetReason;
pub(crate) use item::FnParseMode;
pub use pat::{CommaRecoveryMode, RecoverColon, RecoverComma};
use path::PathStyle;

use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter, IdentIsRaw, Nonterminal, Token, TokenKind};
use rustc_ast::tokenstream::{AttrsTarget, DelimSpacing, DelimSpan, Spacing};
use rustc_ast::tokenstream::{TokenStream, TokenTree, TokenTreeCursor};
use rustc_ast::util::case::Case;
use rustc_ast::{
    self as ast, AnonConst, AttrArgs, AttrArgsEq, AttrId, ByRef, Const, CoroutineKind, DelimArgs,
    Expr, ExprKind, Extern, HasAttrs, HasTokens, Mutability, Recovered, Safety, StrLit, Visibility,
    VisibilityKind, DUMMY_NODE_ID,
};
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, Diag, FatalError, MultiSpan, PResult};
use rustc_session::parse::ParseSess;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use std::ops::Range;
use std::{fmt, mem, slice};
use thin_vec::ThinVec;
use tracing::debug;

use crate::errors::{
    self, IncorrectVisibilityRestriction, MismatchedClosingDelimiter, NonStringAbiLiteral,
};

#[cfg(test)]
mod tests;

// Ideally, these tests would be in `rustc_ast`. But they depend on having a
// parser, so they are here.
#[cfg(test)]
mod tokenstream {
    mod tests;
}
#[cfg(test)]
mod mut_visit {
    mod tests;
}

bitflags::bitflags! {
    #[derive(Clone, Copy, Debug)]
    struct Restrictions: u8 {
        const STMT_EXPR         = 1 << 0;
        const NO_STRUCT_LITERAL = 1 << 1;
        const CONST_EXPR        = 1 << 2;
        const ALLOW_LET         = 1 << 3;
        const IN_IF_GUARD       = 1 << 4;
        const IS_PAT            = 1 << 5;
    }
}

#[derive(Clone, Copy, PartialEq, Debug)]
enum SemiColonMode {
    Break,
    Ignore,
    Comma,
}

#[derive(Clone, Copy, PartialEq, Debug)]
enum BlockMode {
    Break,
    Ignore,
}

/// Whether or not we should force collection of tokens for an AST node,
/// regardless of whether or not it has attributes
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ForceCollect {
    Yes,
    No,
}

#[macro_export]
macro_rules! maybe_whole {
    ($p:expr, $constructor:ident, |$x:ident| $e:expr) => {
        if let token::Interpolated(nt) = &$p.token.kind
            && let token::$constructor(x) = &**nt
        {
            #[allow(unused_mut)]
            let mut $x = x.clone();
            $p.bump();
            return Ok($e);
        }
    };
}

/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
#[macro_export]
macro_rules! maybe_recover_from_interpolated_ty_qpath {
    ($self: expr, $allow_qpath_recovery: expr) => {
        if $allow_qpath_recovery
            && $self.may_recover()
            && $self.look_ahead(1, |t| t == &token::PathSep)
            && let token::Interpolated(nt) = &$self.token.kind
            && let token::NtTy(ty) = &**nt
        {
            let ty = ty.clone();
            $self.bump();
            return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
        }
    };
}

#[derive(Clone, Copy, Debug)]
pub enum Recovery {
    Allowed,
    Forbidden,
}

#[derive(Clone)]
pub struct Parser<'a> {
    pub psess: &'a ParseSess,
    /// The current token.
    pub token: Token,
    /// The spacing for the current token.
    token_spacing: Spacing,
    /// The previous token.
    pub prev_token: Token,
    pub capture_cfg: bool,
    restrictions: Restrictions,
    expected_tokens: Vec<TokenType>,
    token_cursor: TokenCursor,
    // The number of calls to `bump`, i.e. the position in the token stream.
    num_bump_calls: u32,
    // During parsing we may sometimes need to 'unglue' a glued token into two
    // component tokens (e.g. '>>' into '>' and '>), so the parser can consume
    // them one at a time. This process bypasses the normal capturing mechanism
    // (e.g. `num_bump_calls` will not be incremented), since the 'unglued'
    // tokens due not exist in the original `TokenStream`.
    //
    // If we end up consuming both unglued tokens, this is not an issue. We'll
    // end up capturing the single 'glued' token.
    //
    // However, sometimes we may want to capture just the first 'unglued'
    // token. For example, capturing the `Vec<u8>` in `Option<Vec<u8>>`
    // requires us to unglue the trailing `>>` token. The `break_last_token`
    // field is used to track this token. It gets appended to the captured
    // stream when we evaluate a `LazyAttrTokenStream`.
    break_last_token: bool,
    /// This field is used to keep track of how many left angle brackets we have seen. This is
    /// required in order to detect extra leading left angle brackets (`<` characters) and error
    /// appropriately.
    ///
    /// See the comments in the `parse_path_segment` function for more details.
    unmatched_angle_bracket_count: u16,
    angle_bracket_nesting: u16,

    last_unexpected_token_span: Option<Span>,
    /// If present, this `Parser` is not parsing Rust code but rather a macro call.
    subparser_name: Option<&'static str>,
    capture_state: CaptureState,
    /// This allows us to recover when the user forget to add braces around
    /// multiple statements in the closure body.
    current_closure: Option<ClosureSpans>,
    /// Whether the parser is allowed to do recovery.
    /// This is disabled when parsing macro arguments, see #103534
    recovery: Recovery,
}

// This type is used a lot, e.g. it's cloned when matching many declarative macro rules with nonterminals. Make sure
// it doesn't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(Parser<'_>, 256);

/// Stores span information about a closure.
#[derive(Clone, Debug)]
struct ClosureSpans {
    whole_closure: Span,
    closing_pipe: Span,
    body: Span,
}

/// Indicates a range of tokens that should be replaced by
/// the tokens in the provided `AttrsTarget`. This is used in two
/// places during token collection:
///
/// 1. During the parsing of an AST node that may have a `#[derive]`
/// attribute, we parse a nested AST node that has `#[cfg]` or `#[cfg_attr]`
/// In this case, we use a `ReplaceRange` to replace the entire inner AST node
/// with `FlatToken::AttrsTarget`, allowing us to perform eager cfg-expansion
/// on an `AttrTokenStream`.
///
/// 2. When we parse an inner attribute while collecting tokens. We
/// remove inner attributes from the token stream entirely, and
/// instead track them through the `attrs` field on the AST node.
/// This allows us to easily manipulate them (for example, removing
/// the first macro inner attribute to invoke a proc-macro).
/// When create a `TokenStream`, the inner attributes get inserted
/// into the proper place in the token stream.
type ReplaceRange = (Range<u32>, Option<AttrsTarget>);

/// Controls how we capture tokens. Capturing can be expensive,
/// so we try to avoid performing capturing in cases where
/// we will never need an `AttrTokenStream`.
#[derive(Copy, Clone, Debug)]
enum Capturing {
    /// We aren't performing any capturing - this is the default mode.
    No,
    /// We are capturing tokens
    Yes,
}

// This state is used by `Parser::collect_tokens_trailing_token`.
#[derive(Clone, Debug)]
struct CaptureState {
    capturing: Capturing,
    replace_ranges: Vec<ReplaceRange>,
    inner_attr_ranges: FxHashMap<AttrId, Range<u32>>,
}

/// Iterator over a `TokenStream` that produces `Token`s. It's a bit odd that
/// we (a) lex tokens into a nice tree structure (`TokenStream`), and then (b)
/// use this type to emit them as a linear sequence. But a linear sequence is
/// what the parser expects, for the most part.
#[derive(Clone, Debug)]
struct TokenCursor {
    // Cursor for the current (innermost) token stream. The delimiters for this
    // token stream are found in `self.stack.last()`; when that is `None` then
    // we are in the outermost token stream which never has delimiters.
    tree_cursor: TokenTreeCursor,

    // Token streams surrounding the current one. The delimiters for stack[n]'s
    // tokens are in `stack[n-1]`. `stack[0]` (when present) has no delimiters
    // because it's the outermost token stream which never has delimiters.
    stack: Vec<(TokenTreeCursor, DelimSpan, DelimSpacing, Delimiter)>,
}

impl TokenCursor {
    fn next(&mut self) -> (Token, Spacing) {
        self.inlined_next()
    }

    /// This always-inlined version should only be used on hot code paths.
    #[inline(always)]
    fn inlined_next(&mut self) -> (Token, Spacing) {
        loop {
            // FIXME: we currently don't return `Delimiter::Invisible` open/close delims. To fix
            // #67062 we will need to, whereupon the `delim != Delimiter::Invisible` conditions
            // below can be removed.
            if let Some(tree) = self.tree_cursor.next_ref() {
                match tree {
                    &TokenTree::Token(ref token, spacing) => {
                        debug_assert!(!matches!(
                            token.kind,
                            token::OpenDelim(_) | token::CloseDelim(_)
                        ));
                        return (token.clone(), spacing);
                    }
                    &TokenTree::Delimited(sp, spacing, delim, ref tts) => {
                        let trees = tts.clone().into_trees();
                        self.stack.push((
                            mem::replace(&mut self.tree_cursor, trees),
                            sp,
                            spacing,
                            delim,
                        ));
                        if delim != Delimiter::Invisible {
                            return (Token::new(token::OpenDelim(delim), sp.open), spacing.open);
                        }
                        // No open delimiter to return; continue on to the next iteration.
                    }
                };
            } else if let Some((tree_cursor, span, spacing, delim)) = self.stack.pop() {
                // We have exhausted this token stream. Move back to its parent token stream.
                self.tree_cursor = tree_cursor;
                if delim != Delimiter::Invisible {
                    return (Token::new(token::CloseDelim(delim), span.close), spacing.close);
                }
                // No close delimiter to return; continue on to the next iteration.
            } else {
                // We have exhausted the outermost token stream. The use of
                // `Spacing::Alone` is arbitrary and immaterial, because the
                // `Eof` token's spacing is never used.
                return (Token::new(token::Eof, DUMMY_SP), Spacing::Alone);
            }
        }
    }
}

#[derive(Debug, Clone, PartialEq)]
enum TokenType {
    Token(TokenKind),
    Keyword(Symbol),
    Operator,
    Lifetime,
    Ident,
    Path,
    Type,
    Const,
}

impl TokenType {
    fn to_string(&self) -> String {
        match self {
            TokenType::Token(t) => format!("`{}`", pprust::token_kind_to_string(t)),
            TokenType::Keyword(kw) => format!("`{kw}`"),
            TokenType::Operator => "an operator".to_string(),
            TokenType::Lifetime => "lifetime".to_string(),
            TokenType::Ident => "identifier".to_string(),
            TokenType::Path => "path".to_string(),
            TokenType::Type => "type".to_string(),
            TokenType::Const => "a const expression".to_string(),
        }
    }
}

/// A sequence separator.
#[derive(Debug)]
struct SeqSep {
    /// The separator token.
    sep: Option<TokenKind>,
    /// `true` if a trailing separator is allowed.
    trailing_sep_allowed: bool,
}

impl SeqSep {
    fn trailing_allowed(t: TokenKind) -> SeqSep {
        SeqSep { sep: Some(t), trailing_sep_allowed: true }
    }

    fn none() -> SeqSep {
        SeqSep { sep: None, trailing_sep_allowed: false }
    }
}

#[derive(Debug)]
pub enum FollowedByType {
    Yes,
    No,
}

#[derive(Copy, Clone, Debug)]
enum Trailing {
    No,
    Yes,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(super) enum TokenDescription {
    ReservedIdentifier,
    Keyword,
    ReservedKeyword,
    DocComment,
}

impl TokenDescription {
    pub(super) fn from_token(token: &Token) -> Option<Self> {
        match token.kind {
            _ if token.is_special_ident() => Some(TokenDescription::ReservedIdentifier),
            _ if token.is_used_keyword() => Some(TokenDescription::Keyword),
            _ if token.is_unused_keyword() => Some(TokenDescription::ReservedKeyword),
            token::DocComment(..) => Some(TokenDescription::DocComment),
            _ => None,
        }
    }
}

pub(super) fn token_descr(token: &Token) -> String {
    let name = pprust::token_to_string(token).to_string();

    let kind = match (TokenDescription::from_token(token), &token.kind) {
        (Some(TokenDescription::ReservedIdentifier), _) => Some("reserved identifier"),
        (Some(TokenDescription::Keyword), _) => Some("keyword"),
        (Some(TokenDescription::ReservedKeyword), _) => Some("reserved keyword"),
        (Some(TokenDescription::DocComment), _) => Some("doc comment"),
        (None, TokenKind::NtIdent(..)) => Some("identifier"),
        (None, TokenKind::NtLifetime(..)) => Some("lifetime"),
        (None, TokenKind::Interpolated(node)) => Some(node.descr()),
        (None, _) => None,
    };

    if let Some(kind) = kind { format!("{kind} `{name}`") } else { format!("`{name}`") }
}

impl<'a> Parser<'a> {
    pub fn new(
        psess: &'a ParseSess,
        stream: TokenStream,
        subparser_name: Option<&'static str>,
    ) -> Self {
        let mut parser = Parser {
            psess,
            token: Token::dummy(),
            token_spacing: Spacing::Alone,
            prev_token: Token::dummy(),
            capture_cfg: false,
            restrictions: Restrictions::empty(),
            expected_tokens: Vec::new(),
            token_cursor: TokenCursor { tree_cursor: stream.into_trees(), stack: Vec::new() },
            num_bump_calls: 0,
            break_last_token: false,
            unmatched_angle_bracket_count: 0,
            angle_bracket_nesting: 0,
            last_unexpected_token_span: None,
            subparser_name,
            capture_state: CaptureState {
                capturing: Capturing::No,
                replace_ranges: Vec::new(),
                inner_attr_ranges: Default::default(),
            },
            current_closure: None,
            recovery: Recovery::Allowed,
        };

        // Make parser point to the first token.
        parser.bump();

        // Change this from 1 back to 0 after the bump. This eases debugging of
        // `Parser::collect_tokens_trailing_token` nicer because it makes the
        // token positions 0-indexed which is nicer than 1-indexed.
        parser.num_bump_calls = 0;

        parser
    }

    #[inline]
    pub fn recovery(mut self, recovery: Recovery) -> Self {
        self.recovery = recovery;
        self
    }

    /// Whether the parser is allowed to recover from broken code.
    ///
    /// If this returns false, recovering broken code into valid code (especially if this recovery does lookahead)
    /// is not allowed. All recovery done by the parser must be gated behind this check.
    ///
    /// Technically, this only needs to restrict eager recovery by doing lookahead at more tokens.
    /// But making the distinction is very subtle, and simply forbidding all recovery is a lot simpler to uphold.
    #[inline]
    fn may_recover(&self) -> bool {
        matches!(self.recovery, Recovery::Allowed)
    }

    /// Version of [`unexpected`](Parser::unexpected) that "returns" any type in the `Ok`
    /// (both those functions never return "Ok", and so can lie like that in the type).
    pub fn unexpected_any<T>(&mut self) -> PResult<'a, T> {
        match self.expect_one_of(&[], &[]) {
            Err(e) => Err(e),
            // We can get `Ok(true)` from `recover_closing_delimiter`
            // which is called in `expected_one_of_not_found`.
            Ok(_) => FatalError.raise(),
        }
    }

    pub fn unexpected(&mut self) -> PResult<'a, ()> {
        self.unexpected_any()
    }

    /// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
    pub fn expect(&mut self, t: &TokenKind) -> PResult<'a, Recovered> {
        if self.expected_tokens.is_empty() {
            if self.token == *t {
                self.bump();
                Ok(Recovered::No)
            } else {
                self.unexpected_try_recover(t)
            }
        } else {
            self.expect_one_of(slice::from_ref(t), &[])
        }
    }

    /// Expect next token to be edible or inedible token. If edible,
    /// then consume it; if inedible, then return without consuming
    /// anything. Signal a fatal error if next token is unexpected.
    fn expect_one_of(
        &mut self,
        edible: &[TokenKind],
        inedible: &[TokenKind],
    ) -> PResult<'a, Recovered> {
        if edible.contains(&self.token.kind) {
            self.bump();
            Ok(Recovered::No)
        } else if inedible.contains(&self.token.kind) {
            // leave it in the input
            Ok(Recovered::No)
        } else if self.token.kind != token::Eof
            && self.last_unexpected_token_span == Some(self.token.span)
        {
            FatalError.raise();
        } else {
            self.expected_one_of_not_found(edible, inedible)
                .map(|error_guaranteed| Recovered::Yes(error_guaranteed))
        }
    }

    // Public for rustfmt usage.
    pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
        self.parse_ident_common(true)
    }

    fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
        let (ident, is_raw) = self.ident_or_err(recover)?;

        if matches!(is_raw, IdentIsRaw::No) && ident.is_reserved() {
            let err = self.expected_ident_found_err();
            if recover {
                err.emit();
            } else {
                return Err(err);
            }
        }
        self.bump();
        Ok(ident)
    }

    fn ident_or_err(&mut self, recover: bool) -> PResult<'a, (Ident, IdentIsRaw)> {
        match self.token.ident() {
            Some(ident) => Ok(ident),
            None => self.expected_ident_found(recover),
        }
    }

    /// Checks if the next token is `tok`, and returns `true` if so.
    ///
    /// This method will automatically add `tok` to `expected_tokens` if `tok` is not
    /// encountered.
    #[inline]
    fn check(&mut self, tok: &TokenKind) -> bool {
        let is_present = self.token == *tok;
        if !is_present {
            self.expected_tokens.push(TokenType::Token(tok.clone()));
        }
        is_present
    }

    #[inline]
    fn check_noexpect(&self, tok: &TokenKind) -> bool {
        self.token == *tok
    }

    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
    ///
    /// the main purpose of this function is to reduce the cluttering of the suggestions list
    /// which using the normal eat method could introduce in some cases.
    #[inline]
    fn eat_noexpect(&mut self, tok: &TokenKind) -> bool {
        let is_present = self.check_noexpect(tok);
        if is_present {
            self.bump()
        }
        is_present
    }

    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
    #[inline]
    pub fn eat(&mut self, tok: &TokenKind) -> bool {
        let is_present = self.check(tok);
        if is_present {
            self.bump()
        }
        is_present
    }

    /// If the next token is the given keyword, returns `true` without eating it.
    /// An expectation is also added for diagnostics purposes.
    #[inline]
    fn check_keyword(&mut self, kw: Symbol) -> bool {
        self.expected_tokens.push(TokenType::Keyword(kw));
        self.token.is_keyword(kw)
    }

    #[inline]
    fn check_keyword_case(&mut self, kw: Symbol, case: Case) -> bool {
        if self.check_keyword(kw) {
            return true;
        }

        if case == Case::Insensitive
            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
            && ident.as_str().to_lowercase() == kw.as_str().to_lowercase()
        {
            true
        } else {
            false
        }
    }

    /// If the next token is the given keyword, eats it and returns `true`.
    /// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
    // Public for rustfmt usage.
    #[inline]
    pub fn eat_keyword(&mut self, kw: Symbol) -> bool {
        if self.check_keyword(kw) {
            self.bump();
            true
        } else {
            false
        }
    }

    /// Eats a keyword, optionally ignoring the case.
    /// If the case differs (and is ignored) an error is issued.
    /// This is useful for recovery.
    #[inline]
    fn eat_keyword_case(&mut self, kw: Symbol, case: Case) -> bool {
        if self.eat_keyword(kw) {
            return true;
        }

        if case == Case::Insensitive
            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
            && ident.as_str().to_lowercase() == kw.as_str().to_lowercase()
        {
            self.dcx().emit_err(errors::KwBadCase { span: ident.span, kw: kw.as_str() });
            self.bump();
            return true;
        }

        false
    }

    #[inline]
    fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
        if self.token.is_keyword(kw) {
            self.bump();
            true
        } else {
            false
        }
    }

    /// If the given word is not a keyword, signals an error.
    /// If the next token is not the given word, signals an error.
    /// Otherwise, eats it.
    fn expect_keyword(&mut self, kw: Symbol) -> PResult<'a, ()> {
        if !self.eat_keyword(kw) { self.unexpected() } else { Ok(()) }
    }

    /// Is the given keyword `kw` followed by a non-reserved identifier?
    fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
        self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident())
    }

    #[inline]
    fn check_or_expected(&mut self, ok: bool, typ: TokenType) -> bool {
        if ok {
            true
        } else {
            self.expected_tokens.push(typ);
            false
        }
    }

    fn check_ident(&mut self) -> bool {
        self.check_or_expected(self.token.is_ident(), TokenType::Ident)
    }

    fn check_path(&mut self) -> bool {
        self.check_or_expected(self.token.is_path_start(), TokenType::Path)
    }

    fn check_type(&mut self) -> bool {
        self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
    }

    fn check_const_arg(&mut self) -> bool {
        self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const)
    }

    fn check_const_closure(&self) -> bool {
        self.is_keyword_ahead(0, &[kw::Const])
            && self.look_ahead(1, |t| match &t.kind {
                // async closures do not work with const closures, so we do not parse that here.
                token::Ident(kw::Move | kw::Static, _) | token::OrOr | token::BinOp(token::Or) => {
                    true
                }
                _ => false,
            })
    }

    fn check_inline_const(&self, dist: usize) -> bool {
        self.is_keyword_ahead(dist, &[kw::Const])
            && self.look_ahead(dist + 1, |t| match &t.kind {
                token::Interpolated(nt) => matches!(&**nt, token::NtBlock(..)),
                token::OpenDelim(Delimiter::Brace) => true,
                _ => false,
            })
    }

    /// Checks to see if the next token is either `+` or `+=`.
    /// Otherwise returns `false`.
    #[inline]
    fn check_plus(&mut self) -> bool {
        self.check_or_expected(
            self.token.is_like_plus(),
            TokenType::Token(token::BinOp(token::Plus)),
        )
    }

    /// Eats the expected token if it's present possibly breaking
    /// compound tokens like multi-character operators in process.
    /// Returns `true` if the token was eaten.
    fn break_and_eat(&mut self, expected: TokenKind) -> bool {
        if self.token.kind == expected {
            self.bump();
            return true;
        }
        match self.token.kind.break_two_token_op() {
            Some((first, second)) if first == expected => {
                let first_span = self.psess.source_map().start_point(self.token.span);
                let second_span = self.token.span.with_lo(first_span.hi());
                self.token = Token::new(first, first_span);
                // Keep track of this token - if we end token capturing now,
                // we'll want to append this token to the captured stream.
                //
                // If we consume any additional tokens, then this token
                // is not needed (we'll capture the entire 'glued' token),
                // and `bump` will set this field to `None`
                self.break_last_token = true;
                // Use the spacing of the glued token as the spacing of the
                // unglued second token.
                self.bump_with((Token::new(second, second_span), self.token_spacing));
                true
            }
            _ => {
                self.expected_tokens.push(TokenType::Token(expected));
                false
            }
        }
    }

    /// Eats `+` possibly breaking tokens like `+=` in process.
    fn eat_plus(&mut self) -> bool {
        self.break_and_eat(token::BinOp(token::Plus))
    }

    /// Eats `&` possibly breaking tokens like `&&` in process.
    /// Signals an error if `&` is not eaten.
    fn expect_and(&mut self) -> PResult<'a, ()> {
        if self.break_and_eat(token::BinOp(token::And)) { Ok(()) } else { self.unexpected() }
    }

    /// Eats `|` possibly breaking tokens like `||` in process.
    /// Signals an error if `|` was not eaten.
    fn expect_or(&mut self) -> PResult<'a, ()> {
        if self.break_and_eat(token::BinOp(token::Or)) { Ok(()) } else { self.unexpected() }
    }

    /// Eats `<` possibly breaking tokens like `<<` in process.
    fn eat_lt(&mut self) -> bool {
        let ate = self.break_and_eat(token::Lt);
        if ate {
            // See doc comment for `unmatched_angle_bracket_count`.
            self.unmatched_angle_bracket_count += 1;
            debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
        }
        ate
    }

    /// Eats `<` possibly breaking tokens like `<<` in process.
    /// Signals an error if `<` was not eaten.
    fn expect_lt(&mut self) -> PResult<'a, ()> {
        if self.eat_lt() { Ok(()) } else { self.unexpected() }
    }

    /// Eats `>` possibly breaking tokens like `>>` in process.
    /// Signals an error if `>` was not eaten.
    fn expect_gt(&mut self) -> PResult<'a, ()> {
        if self.break_and_eat(token::Gt) {
            // See doc comment for `unmatched_angle_bracket_count`.
            if self.unmatched_angle_bracket_count > 0 {
                self.unmatched_angle_bracket_count -= 1;
                debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
            }
            Ok(())
        } else {
            self.unexpected()
        }
    }

    /// Checks if the next token is contained within `kets`, and returns `true` if so.
    fn expect_any_with_type(
        &mut self,
        kets_expected: &[&TokenKind],
        kets_not_expected: &[&TokenKind],
    ) -> bool {
        kets_expected.iter().any(|k| self.check(k))
            || kets_not_expected.iter().any(|k| self.check_noexpect(k))
    }

    /// Parses a sequence until the specified delimiters. The function
    /// `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_seq_to_before_tokens<T>(
        &mut self,
        kets_expected: &[&TokenKind],
        kets_not_expected: &[&TokenKind],
        sep: SeqSep,
        mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
        let mut first = true;
        let mut recovered = Recovered::No;
        let mut trailing = Trailing::No;
        let mut v = ThinVec::new();

        while !self.expect_any_with_type(kets_expected, kets_not_expected) {
            if let token::CloseDelim(..) | token::Eof = self.token.kind {
                break;
            }
            if let Some(t) = &sep.sep {
                if first {
                    // no separator for the first element
                    first = false;
                } else {
                    // check for separator
                    match self.expect(t) {
                        Ok(Recovered::No) => {
                            self.current_closure.take();
                        }
                        Ok(Recovered::Yes(guar)) => {
                            self.current_closure.take();
                            recovered = Recovered::Yes(guar);
                            break;
                        }
                        Err(mut expect_err) => {
                            let sp = self.prev_token.span.shrink_to_hi();
                            let token_str = pprust::token_kind_to_string(t);

                            match self.current_closure.take() {
                                Some(closure_spans) if self.token.kind == TokenKind::Semi => {
                                    // Finding a semicolon instead of a comma
                                    // after a closure body indicates that the
                                    // closure body may be a block but the user
                                    // forgot to put braces around its
                                    // statements.

                                    self.recover_missing_braces_around_closure_body(
                                        closure_spans,
                                        expect_err,
                                    )?;

                                    continue;
                                }

                                _ => {
                                    // Attempt to keep parsing if it was a similar separator.
                                    if let Some(tokens) = t.similar_tokens() {
                                        if tokens.contains(&self.token.kind) {
                                            self.bump();
                                        }
                                    }
                                }
                            }

                            // If this was a missing `@` in a binding pattern
                            // bail with a suggestion
                            // https://github.com/rust-lang/rust/issues/72373
                            if self.prev_token.is_ident() && self.token.kind == token::DotDot {
                                let msg = format!(
                                    "if you meant to bind the contents of the rest of the array \
                                     pattern into `{}`, use `@`",
                                    pprust::token_to_string(&self.prev_token)
                                );
                                expect_err
                                    .with_span_suggestion_verbose(
                                        self.prev_token.span.shrink_to_hi().until(self.token.span),
                                        msg,
                                        " @ ",
                                        Applicability::MaybeIncorrect,
                                    )
                                    .emit();
                                break;
                            }

                            // Attempt to keep parsing if it was an omitted separator.
                            self.last_unexpected_token_span = None;
                            match f(self) {
                                Ok(t) => {
                                    // Parsed successfully, therefore most probably the code only
                                    // misses a separator.
                                    expect_err
                                        .with_span_suggestion_short(
                                            sp,
                                            format!("missing `{token_str}`"),
                                            token_str,
                                            Applicability::MaybeIncorrect,
                                        )
                                        .emit();

                                    v.push(t);
                                    continue;
                                }
                                Err(e) => {
                                    // Parsing failed, therefore it must be something more serious
                                    // than just a missing separator.
                                    for xx in &e.children {
                                        // propagate the help message from sub error 'e' to main error 'expect_err;
                                        expect_err.children.push(xx.clone());
                                    }
                                    e.cancel();
                                    if self.token == token::Colon {
                                        // we will try to recover in `maybe_recover_struct_lit_bad_delims`
                                        return Err(expect_err);
                                    } else if let [token::CloseDelim(Delimiter::Parenthesis)] =
                                        kets_expected
                                    {
                                        return Err(expect_err);
                                    } else {
                                        expect_err.emit();
                                        break;
                                    }
                                }
                            }
                        }
                    }
                }
            }
            if sep.trailing_sep_allowed
                && self.expect_any_with_type(kets_expected, kets_not_expected)
            {
                trailing = Trailing::Yes;
                break;
            }

            let t = f(self)?;
            v.push(t);
        }

        Ok((v, trailing, recovered))
    }

    fn recover_missing_braces_around_closure_body(
        &mut self,
        closure_spans: ClosureSpans,
        mut expect_err: Diag<'_>,
    ) -> PResult<'a, ()> {
        let initial_semicolon = self.token.span;

        while self.eat(&TokenKind::Semi) {
            let _ = self.parse_stmt_without_recovery(false, ForceCollect::No).unwrap_or_else(|e| {
                e.cancel();
                None
            });
        }

        expect_err
            .primary_message("closure bodies that contain statements must be surrounded by braces");

        let preceding_pipe_span = closure_spans.closing_pipe;
        let following_token_span = self.token.span;

        let mut first_note = MultiSpan::from(vec![initial_semicolon]);
        first_note.push_span_label(
            initial_semicolon,
            "this `;` turns the preceding closure into a statement",
        );
        first_note.push_span_label(
            closure_spans.body,
            "this expression is a statement because of the trailing semicolon",
        );
        expect_err.span_note(first_note, "statement found outside of a block");

        let mut second_note = MultiSpan::from(vec![closure_spans.whole_closure]);
        second_note.push_span_label(closure_spans.whole_closure, "this is the parsed closure...");
        second_note.push_span_label(
            following_token_span,
            "...but likely you meant the closure to end here",
        );
        expect_err.span_note(second_note, "the closure body may be incorrectly delimited");

        expect_err.span(vec![preceding_pipe_span, following_token_span]);

        let opening_suggestion_str = " {".to_string();
        let closing_suggestion_str = "}".to_string();

        expect_err.multipart_suggestion(
            "try adding braces",
            vec![
                (preceding_pipe_span.shrink_to_hi(), opening_suggestion_str),
                (following_token_span.shrink_to_lo(), closing_suggestion_str),
            ],
            Applicability::MaybeIncorrect,
        );

        expect_err.emit();

        Ok(())
    }

    /// Parses a sequence, not including the delimiters. The function
    /// `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_seq_to_before_end<T>(
        &mut self,
        ket: &TokenKind,
        sep: SeqSep,
        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
        self.parse_seq_to_before_tokens(&[ket], &[], sep, f)
    }

    /// Parses a sequence, including only the closing delimiter. The function
    /// `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_seq_to_end<T>(
        &mut self,
        ket: &TokenKind,
        sep: SeqSep,
        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
        let (val, trailing, recovered) = self.parse_seq_to_before_end(ket, sep, f)?;
        if matches!(recovered, Recovered::No) {
            self.eat(ket);
        }
        Ok((val, trailing))
    }

    /// Parses a sequence, including both delimiters. The function
    /// `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_unspanned_seq<T>(
        &mut self,
        bra: &TokenKind,
        ket: &TokenKind,
        sep: SeqSep,
        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
        self.expect(bra)?;
        self.parse_seq_to_end(ket, sep, f)
    }

    /// Parses a comma-separated sequence, including both delimiters.
    /// The function `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_delim_comma_seq<T>(
        &mut self,
        delim: Delimiter,
        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
        self.parse_unspanned_seq(
            &token::OpenDelim(delim),
            &token::CloseDelim(delim),
            SeqSep::trailing_allowed(token::Comma),
            f,
        )
    }

    /// Parses a comma-separated sequence delimited by parentheses (e.g. `(x, y)`).
    /// The function `f` must consume tokens until reaching the next separator or
    /// closing bracket.
    fn parse_paren_comma_seq<T>(
        &mut self,
        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
        self.parse_delim_comma_seq(Delimiter::Parenthesis, f)
    }

    /// Advance the parser by one token using provided token as the next one.
    fn bump_with(&mut self, next: (Token, Spacing)) {
        self.inlined_bump_with(next)
    }

    /// This always-inlined version should only be used on hot code paths.
    #[inline(always)]
    fn inlined_bump_with(&mut self, (next_token, next_spacing): (Token, Spacing)) {
        // Update the current and previous tokens.
        self.prev_token = mem::replace(&mut self.token, next_token);
        self.token_spacing = next_spacing;

        // Diagnostics.
        self.expected_tokens.clear();
    }

    /// Advance the parser by one token.
    pub fn bump(&mut self) {
        // Note: destructuring here would give nicer code, but it was found in #96210 to be slower
        // than `.0`/`.1` access.
        let mut next = self.token_cursor.inlined_next();
        self.num_bump_calls += 1;
        // We've retrieved an token from the underlying
        // cursor, so we no longer need to worry about
        // an unglued token. See `break_and_eat` for more details
        self.break_last_token = false;
        if next.0.span.is_dummy() {
            // Tweak the location for better diagnostics, but keep syntactic context intact.
            let fallback_span = self.token.span;
            next.0.span = fallback_span.with_ctxt(next.0.span.ctxt());
        }
        debug_assert!(!matches!(
            next.0.kind,
            token::OpenDelim(Delimiter::Invisible) | token::CloseDelim(Delimiter::Invisible)
        ));
        self.inlined_bump_with(next)
    }

    /// Look-ahead `dist` tokens of `self.token` and get access to that token there.
    /// When `dist == 0` then the current token is looked at. `Eof` will be
    /// returned if the look-ahead is any distance past the end of the tokens.
    pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
        if dist == 0 {
            return looker(&self.token);
        }

        // Typically around 98% of the `dist > 0` cases have `dist == 1`, so we
        // have a fast special case for that.
        if dist == 1 {
            // The index is zero because the tree cursor's index always points
            // to the next token to be gotten.
            match self.token_cursor.tree_cursor.look_ahead(0) {
                Some(tree) => {
                    // Indexing stayed within the current token tree.
                    return match tree {
                        TokenTree::Token(token, _) => looker(token),
                        TokenTree::Delimited(dspan, _, delim, _) => {
                            looker(&Token::new(token::OpenDelim(*delim), dspan.open))
                        }
                    };
                }
                None => {
                    // The tree cursor lookahead went (one) past the end of the
                    // current token tree. Try to return a close delimiter.
                    if let Some(&(_, span, _, delim)) = self.token_cursor.stack.last()
                        && delim != Delimiter::Invisible
                    {
                        // We are not in the outermost token stream, so we have
                        // delimiters. Also, those delimiters are not skipped.
                        return looker(&Token::new(token::CloseDelim(delim), span.close));
                    }
                }
            }
        }

        // Just clone the token cursor and use `next`, skipping delimiters as
        // necessary. Slow but simple.
        let mut cursor = self.token_cursor.clone();
        let mut i = 0;
        let mut token = Token::dummy();
        while i < dist {
            token = cursor.next().0;
            if matches!(
                token.kind,
                token::OpenDelim(Delimiter::Invisible) | token::CloseDelim(Delimiter::Invisible)
            ) {
                continue;
            }
            i += 1;
        }
        looker(&token)
    }

    /// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
    pub(crate) fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
        self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
    }

    /// Parses asyncness: `async` or nothing.
    fn parse_coroutine_kind(&mut self, case: Case) -> Option<CoroutineKind> {
        let span = self.token.uninterpolated_span();
        if self.eat_keyword_case(kw::Async, case) {
            // FIXME(gen_blocks): Do we want to unconditionally parse `gen` and then
            // error if edition <= 2024, like we do with async and edition <= 2018?
            if self.token.uninterpolated_span().at_least_rust_2024()
                && self.eat_keyword_case(kw::Gen, case)
            {
                let gen_span = self.prev_token.uninterpolated_span();
                Some(CoroutineKind::AsyncGen {
                    span: span.to(gen_span),
                    closure_id: DUMMY_NODE_ID,
                    return_impl_trait_id: DUMMY_NODE_ID,
                })
            } else {
                Some(CoroutineKind::Async {
                    span,
                    closure_id: DUMMY_NODE_ID,
                    return_impl_trait_id: DUMMY_NODE_ID,
                })
            }
        } else if self.token.uninterpolated_span().at_least_rust_2024()
            && self.eat_keyword_case(kw::Gen, case)
        {
            Some(CoroutineKind::Gen {
                span,
                closure_id: DUMMY_NODE_ID,
                return_impl_trait_id: DUMMY_NODE_ID,
            })
        } else {
            None
        }
    }

    /// Parses fn unsafety: `unsafe`, `safe` or nothing.
    fn parse_safety(&mut self, case: Case) -> Safety {
        if self.eat_keyword_case(kw::Unsafe, case) {
            Safety::Unsafe(self.prev_token.uninterpolated_span())
        } else if self.eat_keyword_case(kw::Safe, case) {
            self.psess
                .gated_spans
                .gate(sym::unsafe_extern_blocks, self.prev_token.uninterpolated_span());
            Safety::Safe(self.prev_token.uninterpolated_span())
        } else {
            Safety::Default
        }
    }

    /// Parses constness: `const` or nothing.
    fn parse_constness(&mut self, case: Case) -> Const {
        self.parse_constness_(case, false)
    }

    /// Parses constness for closures (case sensitive, feature-gated)
    fn parse_closure_constness(&mut self) -> Const {
        let constness = self.parse_constness_(Case::Sensitive, true);
        if let Const::Yes(span) = constness {
            self.psess.gated_spans.gate(sym::const_closures, span);
        }
        constness
    }

    fn parse_constness_(&mut self, case: Case, is_closure: bool) -> Const {
        // Avoid const blocks and const closures to be parsed as const items
        if (self.check_const_closure() == is_closure)
            && !self
                .look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block())
            && self.eat_keyword_case(kw::Const, case)
        {
            Const::Yes(self.prev_token.uninterpolated_span())
        } else {
            Const::No
        }
    }

    /// Parses inline const expressions.
    fn parse_const_block(&mut self, span: Span, pat: bool) -> PResult<'a, P<Expr>> {
        if pat {
            self.psess.gated_spans.gate(sym::inline_const_pat, span);
        }
        self.eat_keyword(kw::Const);
        let (attrs, blk) = self.parse_inner_attrs_and_block()?;
        let anon_const = AnonConst {
            id: DUMMY_NODE_ID,
            value: self.mk_expr(blk.span, ExprKind::Block(blk, None)),
        };
        let blk_span = anon_const.value.span;
        Ok(self.mk_expr_with_attrs(span.to(blk_span), ExprKind::ConstBlock(anon_const), attrs))
    }

    /// Parses mutability (`mut` or nothing).
    fn parse_mutability(&mut self) -> Mutability {
        if self.eat_keyword(kw::Mut) { Mutability::Mut } else { Mutability::Not }
    }

    /// Parses reference binding mode (`ref`, `ref mut`, or nothing).
    fn parse_byref(&mut self) -> ByRef {
        if self.eat_keyword(kw::Ref) { ByRef::Yes(self.parse_mutability()) } else { ByRef::No }
    }

    /// Possibly parses mutability (`const` or `mut`).
    fn parse_const_or_mut(&mut self) -> Option<Mutability> {
        if self.eat_keyword(kw::Mut) {
            Some(Mutability::Mut)
        } else if self.eat_keyword(kw::Const) {
            Some(Mutability::Not)
        } else {
            None
        }
    }

    fn parse_field_name(&mut self) -> PResult<'a, Ident> {
        if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
        {
            if let Some(suffix) = suffix {
                self.expect_no_tuple_index_suffix(self.token.span, suffix);
            }
            self.bump();
            Ok(Ident::new(symbol, self.prev_token.span))
        } else {
            self.parse_ident_common(true)
        }
    }

    fn parse_delim_args(&mut self) -> PResult<'a, P<DelimArgs>> {
        if let Some(args) = self.parse_delim_args_inner() {
            Ok(P(args))
        } else {
            self.unexpected_any()
        }
    }

    fn parse_attr_args(&mut self) -> PResult<'a, AttrArgs> {
        Ok(if let Some(args) = self.parse_delim_args_inner() {
            AttrArgs::Delimited(args)
        } else {
            if self.eat(&token::Eq) {
                let eq_span = self.prev_token.span;
                AttrArgs::Eq(eq_span, AttrArgsEq::Ast(self.parse_expr_force_collect()?))
            } else {
                AttrArgs::Empty
            }
        })
    }

    fn parse_delim_args_inner(&mut self) -> Option<DelimArgs> {
        let delimited = self.check(&token::OpenDelim(Delimiter::Parenthesis))
            || self.check(&token::OpenDelim(Delimiter::Bracket))
            || self.check(&token::OpenDelim(Delimiter::Brace));

        delimited.then(|| {
            let TokenTree::Delimited(dspan, _, delim, tokens) = self.parse_token_tree() else {
                unreachable!()
            };
            DelimArgs { dspan, delim, tokens }
        })
    }

    /// Parses a single token tree from the input.
    pub fn parse_token_tree(&mut self) -> TokenTree {
        match self.token.kind {
            token::OpenDelim(..) => {
                // Grab the tokens within the delimiters.
                let stream = self.token_cursor.tree_cursor.stream.clone();
                let (_, span, spacing, delim) = *self.token_cursor.stack.last().unwrap();

                // Advance the token cursor through the entire delimited
                // sequence. After getting the `OpenDelim` we are *within* the
                // delimited sequence, i.e. at depth `d`. After getting the
                // matching `CloseDelim` we are *after* the delimited sequence,
                // i.e. at depth `d - 1`.
                let target_depth = self.token_cursor.stack.len() - 1;
                loop {
                    // Advance one token at a time, so `TokenCursor::next()`
                    // can capture these tokens if necessary.
                    self.bump();
                    if self.token_cursor.stack.len() == target_depth {
                        debug_assert!(matches!(self.token.kind, token::CloseDelim(_)));
                        break;
                    }
                }

                // Consume close delimiter
                self.bump();
                TokenTree::Delimited(span, spacing, delim, stream)
            }
            token::CloseDelim(_) | token::Eof => unreachable!(),
            _ => {
                let prev_spacing = self.token_spacing;
                self.bump();
                TokenTree::Token(self.prev_token.clone(), prev_spacing)
            }
        }
    }

    pub fn parse_tokens(&mut self) -> TokenStream {
        let mut result = Vec::new();
        loop {
            match self.token.kind {
                token::Eof | token::CloseDelim(..) => break,
                _ => result.push(self.parse_token_tree()),
            }
        }
        TokenStream::new(result)
    }

    /// Evaluates the closure with restrictions in place.
    ///
    /// Afters the closure is evaluated, restrictions are reset.
    fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
        let old = self.restrictions;
        self.restrictions = res;
        let res = f(self);
        self.restrictions = old;
        res
    }

    /// Parses `pub` and `pub(in path)` plus shortcuts `pub(crate)` for `pub(in crate)`, `pub(self)`
    /// for `pub(in self)` and `pub(super)` for `pub(in super)`.
    /// If the following element can't be a tuple (i.e., it's a function definition), then
    /// it's not a tuple struct field), and the contents within the parentheses aren't valid,
    /// so emit a proper diagnostic.
    // Public for rustfmt usage.
    pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
        maybe_whole!(self, NtVis, |vis| vis.into_inner());

        if !self.eat_keyword(kw::Pub) {
            // We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
            // keyword to grab a span from for inherited visibility; an empty span at the
            // beginning of the current token would seem to be the "Schelling span".
            return Ok(Visibility {
                span: self.token.span.shrink_to_lo(),
                kind: VisibilityKind::Inherited,
                tokens: None,
            });
        }
        let lo = self.prev_token.span;

        if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
            // We don't `self.bump()` the `(` yet because this might be a struct definition where
            // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
            // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
            // by the following tokens.
            if self.is_keyword_ahead(1, &[kw::In]) {
                // Parse `pub(in path)`.
                self.bump(); // `(`
                self.bump(); // `in`
                let path = self.parse_path(PathStyle::Mod)?; // `path`
                self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
                let vis = VisibilityKind::Restricted {
                    path: P(path),
                    id: ast::DUMMY_NODE_ID,
                    shorthand: false,
                };
                return Ok(Visibility {
                    span: lo.to(self.prev_token.span),
                    kind: vis,
                    tokens: None,
                });
            } else if self.look_ahead(2, |t| t == &token::CloseDelim(Delimiter::Parenthesis))
                && self.is_keyword_ahead(1, &[kw::Crate, kw::Super, kw::SelfLower])
            {
                // Parse `pub(crate)`, `pub(self)`, or `pub(super)`.
                self.bump(); // `(`
                let path = self.parse_path(PathStyle::Mod)?; // `crate`/`super`/`self`
                self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`
                let vis = VisibilityKind::Restricted {
                    path: P(path),
                    id: ast::DUMMY_NODE_ID,
                    shorthand: true,
                };
                return Ok(Visibility {
                    span: lo.to(self.prev_token.span),
                    kind: vis,
                    tokens: None,
                });
            } else if let FollowedByType::No = fbt {
                // Provide this diagnostic if a type cannot follow;
                // in particular, if this is not a tuple struct.
                self.recover_incorrect_vis_restriction()?;
                // Emit diagnostic, but continue with public visibility.
            }
        }

        Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
    }

    /// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
    fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
        self.bump(); // `(`
        let path = self.parse_path(PathStyle::Mod)?;
        self.expect(&token::CloseDelim(Delimiter::Parenthesis))?; // `)`

        let path_str = pprust::path_to_string(&path);
        self.dcx()
            .emit_err(IncorrectVisibilityRestriction { span: path.span, inner_str: path_str });

        Ok(())
    }

    /// Parses `extern string_literal?`.
    fn parse_extern(&mut self, case: Case) -> Extern {
        if self.eat_keyword_case(kw::Extern, case) {
            let mut extern_span = self.prev_token.span;
            let abi = self.parse_abi();
            if let Some(abi) = abi {
                extern_span = extern_span.to(abi.span);
            }
            Extern::from_abi(abi, extern_span)
        } else {
            Extern::None
        }
    }

    /// Parses a string literal as an ABI spec.
    fn parse_abi(&mut self) -> Option<StrLit> {
        match self.parse_str_lit() {
            Ok(str_lit) => Some(str_lit),
            Err(Some(lit)) => match lit.kind {
                ast::LitKind::Err(_) => None,
                _ => {
                    self.dcx().emit_err(NonStringAbiLiteral { span: lit.span });
                    None
                }
            },
            Err(None) => None,
        }
    }

    fn collect_tokens_no_attrs<R: HasAttrs + HasTokens>(
        &mut self,
        f: impl FnOnce(&mut Self) -> PResult<'a, R>,
    ) -> PResult<'a, R> {
        // The only reason to call `collect_tokens_no_attrs` is if you want tokens, so use
        // `ForceCollect::Yes`
        self.collect_tokens_trailing_token(
            AttrWrapper::empty(),
            ForceCollect::Yes,
            |this, _attrs| Ok((f(this)?, false)),
        )
    }

    /// `::{` or `::*`
    fn is_import_coupler(&mut self) -> bool {
        self.check(&token::PathSep)
            && self.look_ahead(1, |t| {
                *t == token::OpenDelim(Delimiter::Brace) || *t == token::BinOp(token::Star)
            })
    }

    // Debug view of the parser's token stream, up to `{lookahead}` tokens.
    // Only used when debugging.
    #[allow(unused)]
    pub(crate) fn debug_lookahead(&self, lookahead: usize) -> impl fmt::Debug + '_ {
        struct DebugParser<'dbg> {
            parser: &'dbg Parser<'dbg>,
            lookahead: usize,
        }

        impl fmt::Debug for DebugParser<'_> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                let Self { parser, lookahead } = self;
                let mut dbg_fmt = f.debug_struct("Parser"); // or at least, one view of

                // we don't need N spans, but we want at least one, so print all of prev_token
                dbg_fmt.field("prev_token", &parser.prev_token);
                let mut tokens = vec![];
                for i in 0..*lookahead {
                    let tok = parser.look_ahead(i, |tok| tok.kind.clone());
                    let is_eof = tok == TokenKind::Eof;
                    tokens.push(tok);
                    if is_eof {
                        // Don't look ahead past EOF.
                        break;
                    }
                }
                dbg_fmt.field_with("tokens", |field| field.debug_list().entries(tokens).finish());
                dbg_fmt.field("approx_token_stream_pos", &parser.num_bump_calls);

                // some fields are interesting for certain values, as they relate to macro parsing
                if let Some(subparser) = parser.subparser_name {
                    dbg_fmt.field("subparser_name", &subparser);
                }
                if let Recovery::Forbidden = parser.recovery {
                    dbg_fmt.field("recovery", &parser.recovery);
                }

                // imply there's "more to know" than this view
                dbg_fmt.finish_non_exhaustive()
            }
        }

        DebugParser { parser: self, lookahead }
    }

    pub fn clear_expected_tokens(&mut self) {
        self.expected_tokens.clear();
    }

    pub fn approx_token_stream_pos(&self) -> u32 {
        self.num_bump_calls
    }
}

pub(crate) fn make_unclosed_delims_error(
    unmatched: UnmatchedDelim,
    psess: &ParseSess,
) -> Option<Diag<'_>> {
    // `None` here means an `Eof` was found. We already emit those errors elsewhere, we add them to
    // `unmatched_delims` only for error recovery in the `Parser`.
    let found_delim = unmatched.found_delim?;
    let mut spans = vec![unmatched.found_span];
    if let Some(sp) = unmatched.unclosed_span {
        spans.push(sp);
    };
    let err = psess.dcx().create_err(MismatchedClosingDelimiter {
        spans,
        delimiter: pprust::token_kind_to_string(&token::CloseDelim(found_delim)).to_string(),
        unmatched: unmatched.found_span,
        opening_candidate: unmatched.candidate_span,
        unclosed: unmatched.unclosed_span,
    });
    Some(err)
}

/// A helper struct used when building an `AttrTokenStream` from
/// a `LazyAttrTokenStream`. Both delimiter and non-delimited tokens
/// are stored as `FlatToken::Token`. A vector of `FlatToken`s
/// is then 'parsed' to build up an `AttrTokenStream` with nested
/// `AttrTokenTree::Delimited` tokens.
#[derive(Debug, Clone)]
enum FlatToken {
    /// A token - this holds both delimiter (e.g. '{' and '}')
    /// and non-delimiter tokens
    Token((Token, Spacing)),
    /// Holds the `AttrsTarget` for an AST node. The `AttrsTarget` is inserted
    /// directly into the constructed `AttrTokenStream` as an
    /// `AttrTokenTree::AttrsTarget`.
    AttrsTarget(AttrsTarget),
    /// A special 'empty' token that is ignored during the conversion
    /// to an `AttrTokenStream`. This is used to simplify the
    /// handling of replace ranges.
    Empty,
}

// Metavar captures of various kinds.
#[derive(Clone, Debug)]
pub enum ParseNtResult {
    Tt(TokenTree),
    Ident(Ident, IdentIsRaw),
    Lifetime(Ident),

    /// This case will eventually be removed, along with `Token::Interpolate`.
    Nt(Lrc<Nonterminal>),
}