1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
use rustc_index::IndexSlice;
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::*;
use rustc_middle::ty::{ParamEnv, ScalarInt, Ty, TyCtxt};
use rustc_target::abi::Size;
use std::iter;
use super::simplify::simplify_cfg;
pub struct MatchBranchSimplification;
impl<'tcx> MirPass<'tcx> for MatchBranchSimplification {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 1
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let def_id = body.source.def_id();
let param_env = tcx.param_env_reveal_all_normalized(def_id);
let mut should_cleanup = false;
for i in 0..body.basic_blocks.len() {
let bbs = &*body.basic_blocks;
let bb_idx = BasicBlock::from_usize(i);
if !tcx.consider_optimizing(|| format!("MatchBranchSimplification {def_id:?} ")) {
continue;
}
match bbs[bb_idx].terminator().kind {
TerminatorKind::SwitchInt {
discr: ref _discr @ (Operand::Copy(_) | Operand::Move(_)),
ref targets,
..
// We require that the possible target blocks don't contain this block.
} if !targets.all_targets().contains(&bb_idx) => {}
// Only optimize switch int statements
_ => continue,
};
if SimplifyToIf.simplify(tcx, body, bb_idx, param_env).is_some() {
should_cleanup = true;
continue;
}
// unsound: https://github.com/rust-lang/rust/issues/124150
if tcx.sess.opts.unstable_opts.unsound_mir_opts
&& SimplifyToExp::default().simplify(tcx, body, bb_idx, param_env).is_some()
{
should_cleanup = true;
continue;
}
}
if should_cleanup {
simplify_cfg(body);
}
}
}
trait SimplifyMatch<'tcx> {
/// Simplifies a match statement, returning true if the simplification succeeds, false otherwise.
/// Generic code is written here, and we generally don't need a custom implementation.
fn simplify(
&mut self,
tcx: TyCtxt<'tcx>,
body: &mut Body<'tcx>,
switch_bb_idx: BasicBlock,
param_env: ParamEnv<'tcx>,
) -> Option<()> {
let bbs = &body.basic_blocks;
let (discr, targets) = match bbs[switch_bb_idx].terminator().kind {
TerminatorKind::SwitchInt { ref discr, ref targets, .. } => (discr, targets),
_ => unreachable!(),
};
let discr_ty = discr.ty(body.local_decls(), tcx);
self.can_simplify(tcx, targets, param_env, bbs, discr_ty)?;
let mut patch = MirPatch::new(body);
// Take ownership of items now that we know we can optimize.
let discr = discr.clone();
// Introduce a temporary for the discriminant value.
let source_info = bbs[switch_bb_idx].terminator().source_info;
let discr_local = patch.new_temp(discr_ty, source_info.span);
let (_, first) = targets.iter().next().unwrap();
let statement_index = bbs[switch_bb_idx].statements.len();
let parent_end = Location { block: switch_bb_idx, statement_index };
patch.add_statement(parent_end, StatementKind::StorageLive(discr_local));
patch.add_assign(parent_end, Place::from(discr_local), Rvalue::Use(discr));
self.new_stmts(tcx, targets, param_env, &mut patch, parent_end, bbs, discr_local, discr_ty);
patch.add_statement(parent_end, StatementKind::StorageDead(discr_local));
patch.patch_terminator(switch_bb_idx, bbs[first].terminator().kind.clone());
patch.apply(body);
Some(())
}
/// Check that the BBs to be simplified satisfies all distinct and
/// that the terminator are the same.
/// There are also conditions for different ways of simplification.
fn can_simplify(
&mut self,
tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
param_env: ParamEnv<'tcx>,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
discr_ty: Ty<'tcx>,
) -> Option<()>;
fn new_stmts(
&self,
tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
param_env: ParamEnv<'tcx>,
patch: &mut MirPatch<'tcx>,
parent_end: Location,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
discr_local: Local,
discr_ty: Ty<'tcx>,
);
}
struct SimplifyToIf;
/// If a source block is found that switches between two blocks that are exactly
/// the same modulo const bool assignments (e.g., one assigns true another false
/// to the same place), merge a target block statements into the source block,
/// using Eq / Ne comparison with switch value where const bools value differ.
///
/// For example:
///
/// ```ignore (MIR)
/// bb0: {
/// switchInt(move _3) -> [42_isize: bb1, otherwise: bb2];
/// }
///
/// bb1: {
/// _2 = const true;
/// goto -> bb3;
/// }
///
/// bb2: {
/// _2 = const false;
/// goto -> bb3;
/// }
/// ```
///
/// into:
///
/// ```ignore (MIR)
/// bb0: {
/// _2 = Eq(move _3, const 42_isize);
/// goto -> bb3;
/// }
/// ```
impl<'tcx> SimplifyMatch<'tcx> for SimplifyToIf {
fn can_simplify(
&mut self,
tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
param_env: ParamEnv<'tcx>,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
_discr_ty: Ty<'tcx>,
) -> Option<()> {
if targets.iter().len() != 1 {
return None;
}
// We require that the possible target blocks all be distinct.
let (_, first) = targets.iter().next().unwrap();
let second = targets.otherwise();
if first == second {
return None;
}
// Check that destinations are identical, and if not, then don't optimize this block
if bbs[first].terminator().kind != bbs[second].terminator().kind {
return None;
}
// Check that blocks are assignments of consts to the same place or same statement,
// and match up 1-1, if not don't optimize this block.
let first_stmts = &bbs[first].statements;
let second_stmts = &bbs[second].statements;
if first_stmts.len() != second_stmts.len() {
return None;
}
for (f, s) in iter::zip(first_stmts, second_stmts) {
match (&f.kind, &s.kind) {
// If two statements are exactly the same, we can optimize.
(f_s, s_s) if f_s == s_s => {}
// If two statements are const bool assignments to the same place, we can optimize.
(
StatementKind::Assign(box (lhs_f, Rvalue::Use(Operand::Constant(f_c)))),
StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
) if lhs_f == lhs_s
&& f_c.const_.ty().is_bool()
&& s_c.const_.ty().is_bool()
&& f_c.const_.try_eval_bool(tcx, param_env).is_some()
&& s_c.const_.try_eval_bool(tcx, param_env).is_some() => {}
// Otherwise we cannot optimize. Try another block.
_ => return None,
}
}
Some(())
}
fn new_stmts(
&self,
tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
param_env: ParamEnv<'tcx>,
patch: &mut MirPatch<'tcx>,
parent_end: Location,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
discr_local: Local,
discr_ty: Ty<'tcx>,
) {
let (val, first) = targets.iter().next().unwrap();
let second = targets.otherwise();
// We already checked that first and second are different blocks,
// and bb_idx has a different terminator from both of them.
let first = &bbs[first];
let second = &bbs[second];
for (f, s) in iter::zip(&first.statements, &second.statements) {
match (&f.kind, &s.kind) {
(f_s, s_s) if f_s == s_s => {
patch.add_statement(parent_end, f.kind.clone());
}
(
StatementKind::Assign(box (lhs, Rvalue::Use(Operand::Constant(f_c)))),
StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(s_c)))),
) => {
// From earlier loop we know that we are dealing with bool constants only:
let f_b = f_c.const_.try_eval_bool(tcx, param_env).unwrap();
let s_b = s_c.const_.try_eval_bool(tcx, param_env).unwrap();
if f_b == s_b {
// Same value in both blocks. Use statement as is.
patch.add_statement(parent_end, f.kind.clone());
} else {
// Different value between blocks. Make value conditional on switch condition.
let size = tcx.layout_of(param_env.and(discr_ty)).unwrap().size;
let const_cmp = Operand::const_from_scalar(
tcx,
discr_ty,
rustc_const_eval::interpret::Scalar::from_uint(val, size),
rustc_span::DUMMY_SP,
);
let op = if f_b { BinOp::Eq } else { BinOp::Ne };
let rhs = Rvalue::BinaryOp(
op,
Box::new((Operand::Copy(Place::from(discr_local)), const_cmp)),
);
patch.add_assign(parent_end, *lhs, rhs);
}
}
_ => unreachable!(),
}
}
}
}
#[derive(Default)]
struct SimplifyToExp {
transfrom_types: Vec<TransfromType>,
}
#[derive(Clone, Copy)]
enum CompareType<'tcx, 'a> {
/// Identical statements.
Same(&'a StatementKind<'tcx>),
/// Assignment statements have the same value.
Eq(&'a Place<'tcx>, Ty<'tcx>, ScalarInt),
/// Enum variant comparison type.
Discr { place: &'a Place<'tcx>, ty: Ty<'tcx>, is_signed: bool },
}
enum TransfromType {
Same,
Eq,
Discr,
}
impl From<CompareType<'_, '_>> for TransfromType {
fn from(compare_type: CompareType<'_, '_>) -> Self {
match compare_type {
CompareType::Same(_) => TransfromType::Same,
CompareType::Eq(_, _, _) => TransfromType::Eq,
CompareType::Discr { .. } => TransfromType::Discr,
}
}
}
/// If we find that the value of match is the same as the assignment,
/// merge a target block statements into the source block,
/// using cast to transform different integer types.
///
/// For example:
///
/// ```ignore (MIR)
/// bb0: {
/// switchInt(_1) -> [1: bb2, 2: bb3, 3: bb4, otherwise: bb1];
/// }
///
/// bb1: {
/// unreachable;
/// }
///
/// bb2: {
/// _0 = const 1_i16;
/// goto -> bb5;
/// }
///
/// bb3: {
/// _0 = const 2_i16;
/// goto -> bb5;
/// }
///
/// bb4: {
/// _0 = const 3_i16;
/// goto -> bb5;
/// }
/// ```
///
/// into:
///
/// ```ignore (MIR)
/// bb0: {
/// _0 = _3 as i16 (IntToInt);
/// goto -> bb5;
/// }
/// ```
impl<'tcx> SimplifyMatch<'tcx> for SimplifyToExp {
fn can_simplify(
&mut self,
tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
param_env: ParamEnv<'tcx>,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
discr_ty: Ty<'tcx>,
) -> Option<()> {
if targets.iter().len() < 2 || targets.iter().len() > 64 {
return None;
}
// We require that the possible target blocks all be distinct.
if !targets.is_distinct() {
return None;
}
if !bbs[targets.otherwise()].is_empty_unreachable() {
return None;
}
let mut target_iter = targets.iter();
let (first_val, first_target) = target_iter.next().unwrap();
let first_terminator_kind = &bbs[first_target].terminator().kind;
// Check that destinations are identical, and if not, then don't optimize this block
if !targets
.iter()
.all(|(_, other_target)| first_terminator_kind == &bbs[other_target].terminator().kind)
{
return None;
}
let discr_size = tcx.layout_of(param_env.and(discr_ty)).unwrap().size;
let first_stmts = &bbs[first_target].statements;
let (second_val, second_target) = target_iter.next().unwrap();
let second_stmts = &bbs[second_target].statements;
if first_stmts.len() != second_stmts.len() {
return None;
}
fn int_equal(l: ScalarInt, r: impl Into<u128>, size: Size) -> bool {
l.to_bits_unchecked() == ScalarInt::try_from_uint(r, size).unwrap().to_bits_unchecked()
}
// We first compare the two branches, and then the other branches need to fulfill the same conditions.
let mut compare_types = Vec::new();
for (f, s) in iter::zip(first_stmts, second_stmts) {
let compare_type = match (&f.kind, &s.kind) {
// If two statements are exactly the same, we can optimize.
(f_s, s_s) if f_s == s_s => CompareType::Same(f_s),
// If two statements are assignments with the match values to the same place, we can optimize.
(
StatementKind::Assign(box (lhs_f, Rvalue::Use(Operand::Constant(f_c)))),
StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
) if lhs_f == lhs_s
&& f_c.const_.ty() == s_c.const_.ty()
&& f_c.const_.ty().is_integral() =>
{
match (
f_c.const_.try_eval_scalar_int(tcx, param_env),
s_c.const_.try_eval_scalar_int(tcx, param_env),
) {
(Some(f), Some(s)) if f == s => CompareType::Eq(lhs_f, f_c.const_.ty(), f),
// Enum variants can also be simplified to an assignment statement if their values are equal.
// We need to consider both unsigned and signed scenarios here.
(Some(f), Some(s))
if ((f_c.const_.ty().is_signed() || discr_ty.is_signed())
&& int_equal(f, first_val, discr_size)
&& int_equal(s, second_val, discr_size))
|| (Some(f) == ScalarInt::try_from_uint(first_val, f.size())
&& Some(s)
== ScalarInt::try_from_uint(second_val, s.size())) =>
{
CompareType::Discr {
place: lhs_f,
ty: f_c.const_.ty(),
is_signed: f_c.const_.ty().is_signed() || discr_ty.is_signed(),
}
}
_ => {
return None;
}
}
}
// Otherwise we cannot optimize. Try another block.
_ => return None,
};
compare_types.push(compare_type);
}
// All remaining BBs need to fulfill the same pattern as the two BBs from the previous step.
for (other_val, other_target) in target_iter {
let other_stmts = &bbs[other_target].statements;
if compare_types.len() != other_stmts.len() {
return None;
}
for (f, s) in iter::zip(&compare_types, other_stmts) {
match (*f, &s.kind) {
(CompareType::Same(f_s), s_s) if f_s == s_s => {}
(
CompareType::Eq(lhs_f, f_ty, val),
StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
) if lhs_f == lhs_s
&& s_c.const_.ty() == f_ty
&& s_c.const_.try_eval_scalar_int(tcx, param_env) == Some(val) => {}
(
CompareType::Discr { place: lhs_f, ty: f_ty, is_signed },
StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
) if lhs_f == lhs_s && s_c.const_.ty() == f_ty => {
let Some(f) = s_c.const_.try_eval_scalar_int(tcx, param_env) else {
return None;
};
if is_signed
&& s_c.const_.ty().is_signed()
&& int_equal(f, other_val, discr_size)
{
continue;
}
if Some(f) == ScalarInt::try_from_uint(other_val, f.size()) {
continue;
}
return None;
}
_ => return None,
}
}
}
self.transfrom_types = compare_types.into_iter().map(|c| c.into()).collect();
Some(())
}
fn new_stmts(
&self,
_tcx: TyCtxt<'tcx>,
targets: &SwitchTargets,
_param_env: ParamEnv<'tcx>,
patch: &mut MirPatch<'tcx>,
parent_end: Location,
bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
discr_local: Local,
discr_ty: Ty<'tcx>,
) {
let (_, first) = targets.iter().next().unwrap();
let first = &bbs[first];
for (t, s) in iter::zip(&self.transfrom_types, &first.statements) {
match (t, &s.kind) {
(TransfromType::Same, _) | (TransfromType::Eq, _) => {
patch.add_statement(parent_end, s.kind.clone());
}
(
TransfromType::Discr,
StatementKind::Assign(box (lhs, Rvalue::Use(Operand::Constant(f_c)))),
) => {
let operand = Operand::Copy(Place::from(discr_local));
let r_val = if f_c.const_.ty() == discr_ty {
Rvalue::Use(operand)
} else {
Rvalue::Cast(CastKind::IntToInt, operand, f_c.const_.ty())
};
patch.add_assign(parent_end, *lhs, r_val);
}
_ => unreachable!(),
}
}
}
}