1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::*;
use rustc_middle::ty::{Ty, TyCtxt};
use std::fmt::Debug;

use super::simplify::simplify_cfg;

/// This pass optimizes something like
/// ```ignore (syntax-highlighting-only)
/// let x: Option<()>;
/// let y: Option<()>;
/// match (x,y) {
///     (Some(_), Some(_)) => {0},
///     (None, None) => {2},
///     _ => {1}
/// }
/// ```
/// into something like
/// ```ignore (syntax-highlighting-only)
/// let x: Option<()>;
/// let y: Option<()>;
/// let discriminant_x = std::mem::discriminant(x);
/// let discriminant_y = std::mem::discriminant(y);
/// if discriminant_x == discriminant_y {
///     match x {
///         Some(_) => 0,
///         None => 2,
///     }
/// } else {
///     1
/// }
/// ```
///
/// Specifically, it looks for instances of control flow like this:
/// ```text
///
///     =================
///     |      BB1      |
///     |---------------|                  ============================
///     |     ...       |         /------> |            BBC           |
///     |---------------|         |        |--------------------------|
///     |  switchInt(Q) |         |        |   _cl = discriminant(P)  |
///     |       c       | --------/        |--------------------------|
///     |       d       | -------\         |       switchInt(_cl)     |
///     |      ...      |        |         |            c             | ---> BBC.2
///     |    otherwise  | --\    |    /--- |         otherwise        |
///     =================   |    |    |    ============================
///                         |    |    |
///     =================   |    |    |
///     |      BBU      | <-|    |    |    ============================
///     |---------------|        \-------> |            BBD           |
///     |---------------|             |    |--------------------------|
///     |  unreachable  |             |    |   _dl = discriminant(P)  |
///     =================             |    |--------------------------|
///                                   |    |       switchInt(_dl)     |
///     =================             |    |            d             | ---> BBD.2
///     |      BB9      | <--------------- |         otherwise        |
///     |---------------|                  ============================
///     |      ...      |
///     =================
/// ```
/// Where the `otherwise` branch on `BB1` is permitted to either go to `BBU`. In the
/// code:
///  - `BB1` is `parent` and `BBC, BBD` are children
///  - `P` is `child_place`
///  - `child_ty` is the type of `_cl`.
///  - `Q` is `parent_op`.
///  - `parent_ty` is the type of `Q`.
///  - `BB9` is `destination`
/// All this is then transformed into:
/// ```text
///
///     =======================
///     |          BB1        |
///     |---------------------|                  ============================
///     |          ...        |         /------> |           BBEq           |
///     | _s = discriminant(P)|         |        |--------------------------|
///     | _t = Ne(Q, _s)      |         |        |--------------------------|
///     |---------------------|         |        |       switchInt(Q)       |
///     |     switchInt(_t)   |         |        |            c             | ---> BBC.2
///     |        false        | --------/        |            d             | ---> BBD.2
///     |       otherwise     |       /--------- |         otherwise        |
///     =======================       |          ============================
///                                   |
///     =================             |
///     |      BB9      | <-----------/
///     |---------------|
///     |      ...      |
///     =================
/// ```
pub struct EarlyOtherwiseBranch;

impl<'tcx> MirPass<'tcx> for EarlyOtherwiseBranch {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 2
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        trace!("running EarlyOtherwiseBranch on {:?}", body.source);

        let mut should_cleanup = false;

        // Also consider newly generated bbs in the same pass
        for i in 0..body.basic_blocks.len() {
            let bbs = &*body.basic_blocks;
            let parent = BasicBlock::from_usize(i);
            let Some(opt_data) = evaluate_candidate(tcx, body, parent) else { continue };

            if !tcx.consider_optimizing(|| format!("EarlyOtherwiseBranch {opt_data:?}")) {
                break;
            }

            trace!("SUCCESS: found optimization possibility to apply: {opt_data:?}");

            should_cleanup = true;

            let TerminatorKind::SwitchInt { discr: parent_op, targets: parent_targets } =
                &bbs[parent].terminator().kind
            else {
                unreachable!()
            };
            // Always correct since we can only switch on `Copy` types
            let parent_op = match parent_op {
                Operand::Move(x) => Operand::Copy(*x),
                Operand::Copy(x) => Operand::Copy(*x),
                Operand::Constant(x) => Operand::Constant(x.clone()),
            };
            let parent_ty = parent_op.ty(body.local_decls(), tcx);
            let statements_before = bbs[parent].statements.len();
            let parent_end = Location { block: parent, statement_index: statements_before };

            let mut patch = MirPatch::new(body);

            // create temp to store second discriminant in, `_s` in example above
            let second_discriminant_temp =
                patch.new_temp(opt_data.child_ty, opt_data.child_source.span);

            patch.add_statement(parent_end, StatementKind::StorageLive(second_discriminant_temp));

            // create assignment of discriminant
            patch.add_assign(
                parent_end,
                Place::from(second_discriminant_temp),
                Rvalue::Discriminant(opt_data.child_place),
            );

            // create temp to store inequality comparison between the two discriminants, `_t` in
            // example above
            let nequal = BinOp::Ne;
            let comp_res_type = nequal.ty(tcx, parent_ty, opt_data.child_ty);
            let comp_temp = patch.new_temp(comp_res_type, opt_data.child_source.span);
            patch.add_statement(parent_end, StatementKind::StorageLive(comp_temp));

            // create inequality comparison between the two discriminants
            let comp_rvalue = Rvalue::BinaryOp(
                nequal,
                Box::new((parent_op.clone(), Operand::Move(Place::from(second_discriminant_temp)))),
            );
            patch.add_statement(
                parent_end,
                StatementKind::Assign(Box::new((Place::from(comp_temp), comp_rvalue))),
            );

            let eq_new_targets = parent_targets.iter().map(|(value, child)| {
                let TerminatorKind::SwitchInt { targets, .. } = &bbs[child].terminator().kind
                else {
                    unreachable!()
                };
                (value, targets.target_for_value(value))
            });
            // The otherwise either is the same target branch or an unreachable.
            let eq_targets = SwitchTargets::new(eq_new_targets, parent_targets.otherwise());

            // Create `bbEq` in example above
            let eq_switch = BasicBlockData::new(Some(Terminator {
                source_info: bbs[parent].terminator().source_info,
                kind: TerminatorKind::SwitchInt {
                    // switch on the first discriminant, so we can mark the second one as dead
                    discr: parent_op,
                    targets: eq_targets,
                },
            }));

            let eq_bb = patch.new_block(eq_switch);

            // Jump to it on the basis of the inequality comparison
            let true_case = opt_data.destination;
            let false_case = eq_bb;
            patch.patch_terminator(
                parent,
                TerminatorKind::if_(Operand::Move(Place::from(comp_temp)), true_case, false_case),
            );

            // generate StorageDead for the second_discriminant_temp not in use anymore
            patch.add_statement(parent_end, StatementKind::StorageDead(second_discriminant_temp));

            // Generate a StorageDead for comp_temp in each of the targets, since we moved it into
            // the switch
            for bb in [false_case, true_case].iter() {
                patch.add_statement(
                    Location { block: *bb, statement_index: 0 },
                    StatementKind::StorageDead(comp_temp),
                );
            }

            patch.apply(body);
        }

        // Since this optimization adds new basic blocks and invalidates others,
        // clean up the cfg to make it nicer for other passes
        if should_cleanup {
            simplify_cfg(body);
        }
    }
}

#[derive(Debug)]
struct OptimizationData<'tcx> {
    destination: BasicBlock,
    child_place: Place<'tcx>,
    child_ty: Ty<'tcx>,
    child_source: SourceInfo,
}

fn evaluate_candidate<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    parent: BasicBlock,
) -> Option<OptimizationData<'tcx>> {
    let bbs = &body.basic_blocks;
    let TerminatorKind::SwitchInt { targets, discr: parent_discr } = &bbs[parent].terminator().kind
    else {
        return None;
    };
    let parent_ty = parent_discr.ty(body.local_decls(), tcx);
    if !bbs[targets.otherwise()].is_empty_unreachable() {
        // Someone could write code like this:
        // ```rust
        // let Q = val;
        // if discriminant(P) == otherwise {
        //     let ptr = &mut Q as *mut _ as *mut u8;
        //     // It may be difficult for us to effectively determine whether values are valid.
        //     // Invalid values can come from all sorts of corners.
        //     unsafe { *ptr = 10; }
        // }
        //
        // match P {
        //    A => match Q {
        //        A => {
        //            // code
        //        }
        //        _ => {
        //            // don't use Q
        //        }
        //    }
        //    _ => {
        //        // don't use Q
        //    }
        // };
        // ```
        //
        // Hoisting the `discriminant(Q)` out of the `A` arm causes us to compute the discriminant of an
        // invalid value, which is UB.
        // In order to fix this, **we would either need to show that the discriminant computation of
        // `place` is computed in all branches**.
        // FIXME(#95162) For the moment, we adopt a conservative approach and
        // consider only the `otherwise` branch has no statements and an unreachable terminator.
        return None;
    }
    let (_, child) = targets.iter().next()?;
    let child_terminator = &bbs[child].terminator();
    let TerminatorKind::SwitchInt { targets: child_targets, discr: child_discr } =
        &child_terminator.kind
    else {
        return None;
    };
    let child_ty = child_discr.ty(body.local_decls(), tcx);
    if child_ty != parent_ty {
        return None;
    }
    let Some(StatementKind::Assign(boxed)) = &bbs[child].statements.first().map(|x| &x.kind) else {
        return None;
    };
    let (_, Rvalue::Discriminant(child_place)) = &**boxed else {
        return None;
    };
    let destination = child_targets.otherwise();

    // Verify that the optimization is legal for each branch
    for (value, child) in targets.iter() {
        if !verify_candidate_branch(&bbs[child], value, *child_place, destination) {
            return None;
        }
    }
    Some(OptimizationData {
        destination,
        child_place: *child_place,
        child_ty,
        child_source: child_terminator.source_info,
    })
}

fn verify_candidate_branch<'tcx>(
    branch: &BasicBlockData<'tcx>,
    value: u128,
    place: Place<'tcx>,
    destination: BasicBlock,
) -> bool {
    // In order for the optimization to be correct, the branch must...
    // ...have exactly one statement
    if branch.statements.len() != 1 {
        return false;
    }
    // ...assign the discriminant of `place` in that statement
    let StatementKind::Assign(boxed) = &branch.statements[0].kind else { return false };
    let (discr_place, Rvalue::Discriminant(from_place)) = &**boxed else { return false };
    if *from_place != place {
        return false;
    }
    // ...make that assignment to a local
    if discr_place.projection.len() != 0 {
        return false;
    }
    // ...terminate on a `SwitchInt` that invalidates that local
    let TerminatorKind::SwitchInt { discr: switch_op, targets, .. } = &branch.terminator().kind
    else {
        return false;
    };
    if *switch_op != Operand::Move(*discr_place) {
        return false;
    }
    // ...fall through to `destination` if the switch misses
    if destination != targets.otherwise() {
        return false;
    }
    // ...have a branch for value `value`
    let mut iter = targets.iter();
    let Some((target_value, _)) = iter.next() else {
        return false;
    };
    if target_value != value {
        return false;
    }
    // ...and have no more branches
    if let Some(_) = iter.next() {
        return false;
    }
    true
}