1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::{self, Dominators};
use rustc_data_structures::graph::{self, DirectedGraph, StartNode};
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::mir::{self, BasicBlock, Terminator, TerminatorKind};
use std::cmp::Ordering;
use std::collections::VecDeque;
use std::ops::{Index, IndexMut};
/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s
/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s.
#[derive(Debug)]
pub(crate) struct CoverageGraph {
bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
pub(crate) successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
pub(crate) predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
dominators: Option<Dominators<BasicCoverageBlock>>,
}
impl CoverageGraph {
pub(crate) fn from_mir(mir_body: &mir::Body<'_>) -> Self {
let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body);
// Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock
// equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the
// each predecessor of a BCB leader_bb should be in a unique BCB. It is possible for a
// `SwitchInt` to have multiple targets to the same destination `BasicBlock`, so
// de-duplication is required. This is done without reordering the successors.
let successors = IndexVec::from_fn_n(
|bcb| {
let mut seen_bcbs = FxHashSet::default();
let terminator = mir_body[bcbs[bcb].last_bb()].terminator();
bcb_filtered_successors(terminator)
.into_iter()
.filter_map(|successor_bb| bb_to_bcb[successor_bb])
// Remove duplicate successor BCBs, keeping only the first.
.filter(|&successor_bcb| seen_bcbs.insert(successor_bcb))
.collect::<Vec<_>>()
},
bcbs.len(),
);
let mut predecessors = IndexVec::from_elem(Vec::new(), &bcbs);
for (bcb, bcb_successors) in successors.iter_enumerated() {
for &successor in bcb_successors {
predecessors[successor].push(bcb);
}
}
let mut this = Self { bcbs, bb_to_bcb, successors, predecessors, dominators: None };
this.dominators = Some(dominators::dominators(&this));
// The coverage graph's entry-point node (bcb0) always starts with bb0,
// which never has predecessors. Any other blocks merged into bcb0 can't
// have multiple (coverage-relevant) predecessors, so bcb0 always has
// zero in-edges.
assert!(this[START_BCB].leader_bb() == mir::START_BLOCK);
assert!(this.predecessors[START_BCB].is_empty());
this
}
fn compute_basic_coverage_blocks(
mir_body: &mir::Body<'_>,
) -> (
IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
) {
let num_basic_blocks = mir_body.basic_blocks.len();
let mut bcbs = IndexVec::<BasicCoverageBlock, _>::with_capacity(num_basic_blocks);
let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks);
let mut add_basic_coverage_block = |basic_blocks: &mut Vec<BasicBlock>| {
// Take the accumulated list of blocks, leaving the vector empty
// to be used by subsequent BCBs.
let basic_blocks = std::mem::take(basic_blocks);
let bcb = bcbs.next_index();
for &bb in basic_blocks.iter() {
bb_to_bcb[bb] = Some(bcb);
}
let bcb_data = BasicCoverageBlockData::from(basic_blocks);
debug!("adding bcb{}: {:?}", bcb.index(), bcb_data);
bcbs.push(bcb_data);
};
// Walk the MIR CFG using a Preorder traversal, which starts from `START_BLOCK` and follows
// each block terminator's `successors()`. Coverage spans must map to actual source code,
// so compiler generated blocks and paths can be ignored. To that end, the CFG traversal
// intentionally omits unwind paths.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
// `catch_unwind()` handlers.
// Accumulates a chain of blocks that will be combined into one BCB.
let mut basic_blocks = Vec::new();
let filtered_successors = |bb| bcb_filtered_successors(mir_body[bb].terminator());
for bb in short_circuit_preorder(mir_body, filtered_successors)
.filter(|&bb| mir_body[bb].terminator().kind != TerminatorKind::Unreachable)
{
// If the previous block can't be chained into `bb`, flush the accumulated
// blocks into a new BCB, then start building the next chain.
if let Some(&prev) = basic_blocks.last()
&& (!filtered_successors(prev).is_chainable() || {
// If `bb` has multiple predecessor blocks, or `prev` isn't
// one of its predecessors, we can't chain and must flush.
let predecessors = &mir_body.basic_blocks.predecessors()[bb];
predecessors.len() > 1 || !predecessors.contains(&prev)
})
{
debug!(
terminator_kind = ?mir_body[prev].terminator().kind,
predecessors = ?&mir_body.basic_blocks.predecessors()[bb],
"can't chain from {prev:?} to {bb:?}"
);
add_basic_coverage_block(&mut basic_blocks);
}
basic_blocks.push(bb);
}
if !basic_blocks.is_empty() {
debug!("flushing accumulated blocks into one last BCB");
add_basic_coverage_block(&mut basic_blocks);
}
(bcbs, bb_to_bcb)
}
#[inline(always)]
pub(crate) fn iter_enumerated(
&self,
) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> {
self.bcbs.iter_enumerated()
}
#[inline(always)]
pub(crate) fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> {
if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None }
}
#[inline(always)]
pub(crate) fn dominates(&self, dom: BasicCoverageBlock, node: BasicCoverageBlock) -> bool {
self.dominators.as_ref().unwrap().dominates(dom, node)
}
#[inline(always)]
pub(crate) fn cmp_in_dominator_order(
&self,
a: BasicCoverageBlock,
b: BasicCoverageBlock,
) -> Ordering {
self.dominators.as_ref().unwrap().cmp_in_dominator_order(a, b)
}
/// Returns true if the given node has 2 or more in-edges, i.e. 2 or more
/// predecessors.
///
/// This property is interesting to code that assigns counters to nodes and
/// edges, because if a node _doesn't_ have multiple in-edges, then there's
/// no benefit in having a separate counter for its in-edge, because it
/// would have the same value as the node's own counter.
///
/// FIXME: That assumption might not be true for [`TerminatorKind::Yield`]?
#[inline(always)]
pub(crate) fn bcb_has_multiple_in_edges(&self, bcb: BasicCoverageBlock) -> bool {
// Even though bcb0 conceptually has an extra virtual in-edge due to
// being the entry point, we've already asserted that it has no _other_
// in-edges, so there's no possibility of it having _multiple_ in-edges.
// (And since its virtual in-edge doesn't exist in the graph, that edge
// can't have a separate counter anyway.)
self.predecessors[bcb].len() > 1
}
}
impl Index<BasicCoverageBlock> for CoverageGraph {
type Output = BasicCoverageBlockData;
#[inline]
fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData {
&self.bcbs[index]
}
}
impl IndexMut<BasicCoverageBlock> for CoverageGraph {
#[inline]
fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
&mut self.bcbs[index]
}
}
impl graph::DirectedGraph for CoverageGraph {
type Node = BasicCoverageBlock;
#[inline]
fn num_nodes(&self) -> usize {
self.bcbs.len()
}
}
impl graph::StartNode for CoverageGraph {
#[inline]
fn start_node(&self) -> Self::Node {
self.bcb_from_bb(mir::START_BLOCK)
.expect("mir::START_BLOCK should be in a BasicCoverageBlock")
}
}
impl graph::Successors for CoverageGraph {
#[inline]
fn successors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
self.successors[node].iter().copied()
}
}
impl graph::Predecessors for CoverageGraph {
#[inline]
fn predecessors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
self.predecessors[node].iter().copied()
}
}
rustc_index::newtype_index! {
/// A node in the control-flow graph of CoverageGraph.
#[orderable]
#[debug_format = "bcb{}"]
pub(crate) struct BasicCoverageBlock {
const START_BCB = 0;
}
}
/// `BasicCoverageBlockData` holds the data indexed by a `BasicCoverageBlock`.
///
/// A `BasicCoverageBlock` (BCB) represents the maximal-length sequence of MIR `BasicBlock`s without
/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without
/// altering the original MIR CFG.
///
/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not
/// necessary). The BCB-based CFG is a more aggressive simplification. For example:
///
/// * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code,
/// that is injected by the Rust compiler but has no physical source code to count. This also
/// means a BasicBlock with a `Call` terminator can be merged into its primary successor target
/// block, in the same BCB. (But, note: Issue #78544: "MIR InstrumentCoverage: Improve coverage
/// of `#[should_panic]` tests and `catch_unwind()` handlers")
/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
/// a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed coverage span will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `Expression`. Additional
/// disjoint coverage spans in a BCB can also be counted by `Expression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based
/// queries (`dominates()`, `predecessors`, `successors`, etc.) have branch (control flow)
/// significance.
#[derive(Debug, Clone)]
pub(crate) struct BasicCoverageBlockData {
pub(crate) basic_blocks: Vec<BasicBlock>,
}
impl BasicCoverageBlockData {
fn from(basic_blocks: Vec<BasicBlock>) -> Self {
assert!(basic_blocks.len() > 0);
Self { basic_blocks }
}
#[inline(always)]
pub(crate) fn leader_bb(&self) -> BasicBlock {
self.basic_blocks[0]
}
#[inline(always)]
pub(crate) fn last_bb(&self) -> BasicBlock {
*self.basic_blocks.last().unwrap()
}
}
/// Holds the coverage-relevant successors of a basic block's terminator, and
/// indicates whether that block can potentially be combined into the same BCB
/// as its sole successor.
#[derive(Clone, Copy, Debug)]
enum CoverageSuccessors<'a> {
/// The terminator has exactly one straight-line successor, so its block can
/// potentially be combined into the same BCB as that successor.
Chainable(BasicBlock),
/// The block cannot be combined into the same BCB as its successor(s).
NotChainable(&'a [BasicBlock]),
}
impl CoverageSuccessors<'_> {
fn is_chainable(&self) -> bool {
match self {
Self::Chainable(_) => true,
Self::NotChainable(_) => false,
}
}
}
impl IntoIterator for CoverageSuccessors<'_> {
type Item = BasicBlock;
type IntoIter = impl DoubleEndedIterator<Item = Self::Item>;
fn into_iter(self) -> Self::IntoIter {
match self {
Self::Chainable(bb) => Some(bb).into_iter().chain((&[]).iter().copied()),
Self::NotChainable(bbs) => None.into_iter().chain(bbs.iter().copied()),
}
}
}
// Returns the subset of a block's successors that are relevant to the coverage
// graph, i.e. those that do not represent unwinds or false edges.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
// `catch_unwind()` handlers.
fn bcb_filtered_successors<'a, 'tcx>(terminator: &'a Terminator<'tcx>) -> CoverageSuccessors<'a> {
use TerminatorKind::*;
match terminator.kind {
// A switch terminator can have many coverage-relevant successors.
// (If there is exactly one successor, we still treat it as not chainable.)
SwitchInt { ref targets, .. } => CoverageSuccessors::NotChainable(targets.all_targets()),
// A yield terminator has exactly 1 successor, but should not be chained,
// because its resume edge has a different execution count.
Yield { ref resume, .. } => CoverageSuccessors::NotChainable(std::slice::from_ref(resume)),
// These terminators have exactly one coverage-relevant successor,
// and can be chained into it.
Assert { target, .. }
| Drop { target, .. }
| FalseEdge { real_target: target, .. }
| FalseUnwind { real_target: target, .. }
| Goto { target } => CoverageSuccessors::Chainable(target),
// A call terminator can normally be chained, except when they have no
// successor because they are known to diverge.
Call { target: maybe_target, .. } => match maybe_target {
Some(target) => CoverageSuccessors::Chainable(target),
None => CoverageSuccessors::NotChainable(&[]),
},
// An inline asm terminator can normally be chained, except when it diverges or uses asm
// goto.
InlineAsm { ref targets, .. } => {
if targets.len() == 1 {
CoverageSuccessors::Chainable(targets[0])
} else {
CoverageSuccessors::NotChainable(targets)
}
}
// These terminators have no coverage-relevant successors.
CoroutineDrop
| Return
| TailCall { .. }
| Unreachable
| UnwindResume
| UnwindTerminate(_) => CoverageSuccessors::NotChainable(&[]),
}
}
/// Maintains separate worklists for each loop in the BasicCoverageBlock CFG, plus one for the
/// CoverageGraph outside all loops. This supports traversing the BCB CFG in a way that
/// ensures a loop is completely traversed before processing Blocks after the end of the loop.
#[derive(Debug)]
struct TraversalContext {
/// BCB with one or more incoming loop backedges, indicating which loop
/// this context is for.
///
/// If `None`, this is the non-loop context for the function as a whole.
loop_header: Option<BasicCoverageBlock>,
/// Worklist of BCBs to be processed in this context.
worklist: VecDeque<BasicCoverageBlock>,
}
pub(crate) struct TraverseCoverageGraphWithLoops<'a> {
basic_coverage_blocks: &'a CoverageGraph,
backedges: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
context_stack: Vec<TraversalContext>,
visited: BitSet<BasicCoverageBlock>,
}
impl<'a> TraverseCoverageGraphWithLoops<'a> {
pub(crate) fn new(basic_coverage_blocks: &'a CoverageGraph) -> Self {
let backedges = find_loop_backedges(basic_coverage_blocks);
let worklist = VecDeque::from([basic_coverage_blocks.start_node()]);
let context_stack = vec![TraversalContext { loop_header: None, worklist }];
// `context_stack` starts with a `TraversalContext` for the main function context (beginning
// with the `start` BasicCoverageBlock of the function). New worklists are pushed to the top
// of the stack as loops are entered, and popped off of the stack when a loop's worklist is
// exhausted.
let visited = BitSet::new_empty(basic_coverage_blocks.num_nodes());
Self { basic_coverage_blocks, backedges, context_stack, visited }
}
/// For each loop on the loop context stack (top-down), yields a list of BCBs
/// within that loop that have an outgoing edge back to the loop header.
pub(crate) fn reloop_bcbs_per_loop(&self) -> impl Iterator<Item = &[BasicCoverageBlock]> {
self.context_stack
.iter()
.rev()
.filter_map(|context| context.loop_header)
.map(|header_bcb| self.backedges[header_bcb].as_slice())
}
pub(crate) fn next(&mut self) -> Option<BasicCoverageBlock> {
debug!(
"TraverseCoverageGraphWithLoops::next - context_stack: {:?}",
self.context_stack.iter().rev().collect::<Vec<_>>()
);
while let Some(context) = self.context_stack.last_mut() {
let Some(bcb) = context.worklist.pop_front() else {
// This stack level is exhausted; pop it and try the next one.
self.context_stack.pop();
continue;
};
if !self.visited.insert(bcb) {
debug!("Already visited: {bcb:?}");
continue;
}
debug!("Visiting {bcb:?}");
if self.backedges[bcb].len() > 0 {
debug!("{bcb:?} is a loop header! Start a new TraversalContext...");
self.context_stack
.push(TraversalContext { loop_header: Some(bcb), worklist: VecDeque::new() });
}
self.add_successors_to_worklists(bcb);
return Some(bcb);
}
None
}
fn add_successors_to_worklists(&mut self, bcb: BasicCoverageBlock) {
let successors = &self.basic_coverage_blocks.successors[bcb];
debug!("{:?} has {} successors:", bcb, successors.len());
for &successor in successors {
if successor == bcb {
debug!(
"{:?} has itself as its own successor. (Note, the compiled code will \
generate an infinite loop.)",
bcb
);
// Don't re-add this successor to the worklist. We are already processing it.
// FIXME: This claims to skip just the self-successor, but it actually skips
// all other successors as well. Does that matter?
break;
}
// Add successors of the current BCB to the appropriate context. Successors that
// stay within a loop are added to the BCBs context worklist. Successors that
// exit the loop (they are not dominated by the loop header) must be reachable
// from other BCBs outside the loop, and they will be added to a different
// worklist.
//
// Branching blocks (with more than one successor) must be processed before
// blocks with only one successor, to prevent unnecessarily complicating
// `Expression`s by creating a Counter in a `BasicCoverageBlock` that the
// branching block would have given an `Expression` (or vice versa).
let context = self
.context_stack
.iter_mut()
.rev()
.find(|context| match context.loop_header {
Some(loop_header) => {
self.basic_coverage_blocks.dominates(loop_header, successor)
}
None => true,
})
.unwrap_or_else(|| bug!("should always fall back to the root non-loop context"));
debug!("adding to worklist for {:?}", context.loop_header);
// FIXME: The code below had debug messages claiming to add items to a
// particular end of the worklist, but was confused about which end was
// which. The existing behaviour has been preserved for now, but it's
// unclear what the intended behaviour was.
if self.basic_coverage_blocks.successors[successor].len() > 1 {
context.worklist.push_back(successor);
} else {
context.worklist.push_front(successor);
}
}
}
pub(crate) fn is_complete(&self) -> bool {
self.visited.count() == self.visited.domain_size()
}
pub(crate) fn unvisited(&self) -> Vec<BasicCoverageBlock> {
let mut unvisited_set: BitSet<BasicCoverageBlock> =
BitSet::new_filled(self.visited.domain_size());
unvisited_set.subtract(&self.visited);
unvisited_set.iter().collect::<Vec<_>>()
}
}
fn find_loop_backedges(
basic_coverage_blocks: &CoverageGraph,
) -> IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>> {
let num_bcbs = basic_coverage_blocks.num_nodes();
let mut backedges = IndexVec::from_elem_n(Vec::<BasicCoverageBlock>::new(), num_bcbs);
// Identify loops by their backedges.
for (bcb, _) in basic_coverage_blocks.iter_enumerated() {
for &successor in &basic_coverage_blocks.successors[bcb] {
if basic_coverage_blocks.dominates(successor, bcb) {
let loop_header = successor;
let backedge_from_bcb = bcb;
debug!(
"Found BCB backedge: {:?} -> loop_header: {:?}",
backedge_from_bcb, loop_header
);
backedges[loop_header].push(backedge_from_bcb);
}
}
}
backedges
}
fn short_circuit_preorder<'a, 'tcx, F, Iter>(
body: &'a mir::Body<'tcx>,
filtered_successors: F,
) -> impl Iterator<Item = BasicBlock> + Captures<'a> + Captures<'tcx>
where
F: Fn(BasicBlock) -> Iter,
Iter: IntoIterator<Item = BasicBlock>,
{
let mut visited = BitSet::new_empty(body.basic_blocks.len());
let mut worklist = vec![mir::START_BLOCK];
std::iter::from_fn(move || {
while let Some(bb) = worklist.pop() {
if !visited.insert(bb) {
continue;
}
worklist.extend(filtered_successors(bb));
return Some(bb);
}
None
})
}