1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
use rustc_middle::infer::unify_key::{ConstVariableValue, ConstVidKey};
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::{self, ConstVid, FloatVid, IntVid, RegionVid, Ty, TyCtxt, TyVid};
use crate::infer::type_variable::TypeVariableOrigin;
use crate::infer::InferCtxt;
use crate::infer::{ConstVariableOrigin, RegionVariableOrigin, UnificationTable};
use rustc_data_structures::snapshot_vec as sv;
use rustc_data_structures::unify as ut;
use ut::UnifyKey;
use std::ops::Range;
fn vars_since_snapshot<'tcx, T>(
table: &UnificationTable<'_, 'tcx, T>,
snapshot_var_len: usize,
) -> Range<T>
where
T: UnifyKey,
super::UndoLog<'tcx>: From<sv::UndoLog<ut::Delegate<T>>>,
{
T::from_index(snapshot_var_len as u32)..T::from_index(table.len() as u32)
}
fn const_vars_since_snapshot<'tcx>(
table: &mut UnificationTable<'_, 'tcx, ConstVidKey<'tcx>>,
snapshot_var_len: usize,
) -> (Range<ConstVid>, Vec<ConstVariableOrigin>) {
let range = vars_since_snapshot(table, snapshot_var_len);
(
range.start.vid..range.end.vid,
(range.start.index()..range.end.index())
.map(|index| match table.probe_value(ConstVid::from_u32(index)) {
ConstVariableValue::Known { value: _ } => {
ConstVariableOrigin { param_def_id: None, span: rustc_span::DUMMY_SP }
}
ConstVariableValue::Unknown { origin, universe: _ } => origin,
})
.collect(),
)
}
struct VariableLengths {
type_var_len: usize,
const_var_len: usize,
int_var_len: usize,
float_var_len: usize,
region_constraints_len: usize,
}
impl<'tcx> InferCtxt<'tcx> {
fn variable_lengths(&self) -> VariableLengths {
let mut inner = self.inner.borrow_mut();
VariableLengths {
type_var_len: inner.type_variables().num_vars(),
const_var_len: inner.const_unification_table().len(),
int_var_len: inner.int_unification_table().len(),
float_var_len: inner.float_unification_table().len(),
region_constraints_len: inner.unwrap_region_constraints().num_region_vars(),
}
}
/// This rather funky routine is used while processing expected
/// types. What happens here is that we want to propagate a
/// coercion through the return type of a fn to its
/// argument. Consider the type of `Option::Some`, which is
/// basically `for<T> fn(T) -> Option<T>`. So if we have an
/// expression `Some(&[1, 2, 3])`, and that has the expected type
/// `Option<&[u32]>`, we would like to type check `&[1, 2, 3]`
/// with the expectation of `&[u32]`. This will cause us to coerce
/// from `&[u32; 3]` to `&[u32]` and make the users life more
/// pleasant.
///
/// The way we do this is using `fudge_inference_if_ok`. What the
/// routine actually does is to start a snapshot and execute the
/// closure `f`. In our example above, what this closure will do
/// is to unify the expectation (`Option<&[u32]>`) with the actual
/// return type (`Option<?T>`, where `?T` represents the variable
/// instantiated for `T`). This will cause `?T` to be unified
/// with `&?a [u32]`, where `?a` is a fresh lifetime variable. The
/// input type (`?T`) is then returned by `f()`.
///
/// At this point, `fudge_inference_if_ok` will normalize all type
/// variables, converting `?T` to `&?a [u32]` and end the
/// snapshot. The problem is that we can't just return this type
/// out, because it references the region variable `?a`, and that
/// region variable was popped when we popped the snapshot.
///
/// So what we do is to keep a list (`region_vars`, in the code below)
/// of region variables created during the snapshot (here, `?a`). We
/// fold the return value and replace any such regions with a *new*
/// region variable (e.g., `?b`) and return the result (`&?b [u32]`).
/// This can then be used as the expectation for the fn argument.
///
/// The important point here is that, for soundness purposes, the
/// regions in question are not particularly important. We will
/// use the expected types to guide coercions, but we will still
/// type-check the resulting types from those coercions against
/// the actual types (`?T`, `Option<?T>`) -- and remember that
/// after the snapshot is popped, the variable `?T` is no longer
/// unified.
#[instrument(skip(self, f), level = "debug")]
pub fn fudge_inference_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
where
F: FnOnce() -> Result<T, E>,
T: TypeFoldable<TyCtxt<'tcx>>,
{
let variable_lengths = self.variable_lengths();
let (mut fudger, value) = self.probe(|_| {
match f() {
Ok(value) => {
let value = self.resolve_vars_if_possible(value);
// At this point, `value` could in principle refer
// to inference variables that have been created during
// the snapshot. Once we exit `probe()`, those are
// going to be popped, so we will have to
// eliminate any references to them.
let mut inner = self.inner.borrow_mut();
let type_vars =
inner.type_variables().vars_since_snapshot(variable_lengths.type_var_len);
let int_vars = vars_since_snapshot(
&inner.int_unification_table(),
variable_lengths.int_var_len,
);
let float_vars = vars_since_snapshot(
&inner.float_unification_table(),
variable_lengths.float_var_len,
);
let region_vars = inner
.unwrap_region_constraints()
.vars_since_snapshot(variable_lengths.region_constraints_len);
let const_vars = const_vars_since_snapshot(
&mut inner.const_unification_table(),
variable_lengths.const_var_len,
);
let fudger = InferenceFudger {
infcx: self,
type_vars,
int_vars,
float_vars,
region_vars,
const_vars,
};
Ok((fudger, value))
}
Err(e) => Err(e),
}
})?;
// At this point, we need to replace any of the now-popped
// type/region variables that appear in `value` with a fresh
// variable of the appropriate kind. We can't do this during
// the probe because they would just get popped then too. =)
// Micro-optimization: if no variables have been created, then
// `value` can't refer to any of them. =) So we can just return it.
if fudger.type_vars.0.is_empty()
&& fudger.int_vars.is_empty()
&& fudger.float_vars.is_empty()
&& fudger.region_vars.0.is_empty()
&& fudger.const_vars.0.is_empty()
{
Ok(value)
} else {
Ok(value.fold_with(&mut fudger))
}
}
}
pub struct InferenceFudger<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
type_vars: (Range<TyVid>, Vec<TypeVariableOrigin>),
int_vars: Range<IntVid>,
float_vars: Range<FloatVid>,
region_vars: (Range<RegionVid>, Vec<RegionVariableOrigin>),
const_vars: (Range<ConstVid>, Vec<ConstVariableOrigin>),
}
impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceFudger<'a, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Infer(ty::InferTy::TyVar(vid)) => {
if self.type_vars.0.contains(&vid) {
// This variable was created during the fudging.
// Recreate it with a fresh variable here.
let idx = vid.as_usize() - self.type_vars.0.start.as_usize();
let origin = self.type_vars.1[idx];
self.infcx.next_ty_var_with_origin(origin)
} else {
// This variable was created before the
// "fudging". Since we refresh all type
// variables to their binding anyhow, we know
// that it is unbound, so we can just return
// it.
debug_assert!(
self.infcx.inner.borrow_mut().type_variables().probe(vid).is_unknown()
);
ty
}
}
ty::Infer(ty::InferTy::IntVar(vid)) => {
if self.int_vars.contains(&vid) {
self.infcx.next_int_var()
} else {
ty
}
}
ty::Infer(ty::InferTy::FloatVar(vid)) => {
if self.float_vars.contains(&vid) {
self.infcx.next_float_var()
} else {
ty
}
}
_ => ty.super_fold_with(self),
}
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
if let ty::ReVar(vid) = *r
&& self.region_vars.0.contains(&vid)
{
let idx = vid.index() - self.region_vars.0.start.index();
let origin = self.region_vars.1[idx];
return self.infcx.next_region_var(origin);
}
r
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
if self.const_vars.0.contains(&vid) {
// This variable was created during the fudging.
// Recreate it with a fresh variable here.
let idx = vid.index() - self.const_vars.0.start.index();
let origin = self.const_vars.1[idx];
self.infcx.next_const_var_with_origin(origin)
} else {
ct
}
} else {
ct.super_fold_with(self)
}
}
}