1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use crate::infer::outlives::env::RegionBoundPairs;
use crate::infer::region_constraints::VerifyIfEq;
use crate::infer::{GenericKind, VerifyBound};
use rustc_middle::ty::{self, OutlivesPredicate, Ty, TyCtxt};
use rustc_type_ir::outlives::{compute_alias_components_recursive, Component};

use smallvec::smallvec;

/// The `TypeOutlives` struct has the job of "lowering" a `T: 'a`
/// obligation into a series of `'a: 'b` constraints and "verifys", as
/// described on the module comment. The final constraints are emitted
/// via a "delegate" of type `D` -- this is usually the `infcx`, which
/// accrues them into the `region_obligations` code, but for NLL we
/// use something else.
pub struct VerifyBoundCx<'cx, 'tcx> {
    tcx: TyCtxt<'tcx>,
    region_bound_pairs: &'cx RegionBoundPairs<'tcx>,
    /// During borrowck, if there are no outlives bounds on a generic
    /// parameter `T`, we assume that `T: 'in_fn_body` holds.
    ///
    /// Outside of borrowck the only way to prove `T: '?0` is by
    /// setting  `'?0` to `'empty`.
    implicit_region_bound: Option<ty::Region<'tcx>>,
    caller_bounds: &'cx [ty::PolyTypeOutlivesPredicate<'tcx>],
}

impl<'cx, 'tcx> VerifyBoundCx<'cx, 'tcx> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        region_bound_pairs: &'cx RegionBoundPairs<'tcx>,
        implicit_region_bound: Option<ty::Region<'tcx>>,
        caller_bounds: &'cx [ty::PolyTypeOutlivesPredicate<'tcx>],
    ) -> Self {
        Self { tcx, region_bound_pairs, implicit_region_bound, caller_bounds }
    }

    #[instrument(level = "debug", skip(self))]
    pub fn param_or_placeholder_bound(&self, ty: Ty<'tcx>) -> VerifyBound<'tcx> {
        // Start with anything like `T: 'a` we can scrape from the
        // environment. If the environment contains something like
        // `for<'a> T: 'a`, then we know that `T` outlives everything.
        let declared_bounds_from_env = self.declared_generic_bounds_from_env(ty);
        debug!(?declared_bounds_from_env);
        let mut param_bounds = vec![];
        for declared_bound in declared_bounds_from_env {
            let bound_region = declared_bound.map_bound(|outlives| outlives.1);
            if let Some(region) = bound_region.no_bound_vars() {
                // This is `T: 'a` for some free region `'a`.
                param_bounds.push(VerifyBound::OutlivedBy(region));
            } else {
                // This is `for<'a> T: 'a`. This means that `T` outlives everything! All done here.
                debug!("found that {ty:?} outlives any lifetime, returning empty vector");
                return VerifyBound::AllBounds(vec![]);
            }
        }

        // Add in the default bound of fn body that applies to all in
        // scope type parameters:
        if let Some(r) = self.implicit_region_bound {
            debug!("adding implicit region bound of {r:?}");
            param_bounds.push(VerifyBound::OutlivedBy(r));
        }

        if param_bounds.is_empty() {
            // We know that all types `T` outlive `'empty`, so if we
            // can find no other bound, then check that the region
            // being tested is `'empty`.
            VerifyBound::IsEmpty
        } else if param_bounds.len() == 1 {
            // Micro-opt: no need to store the vector if it's just len 1
            param_bounds.pop().unwrap()
        } else {
            // If we can find any other bound `R` such that `T: R`, then
            // we don't need to check for `'empty`, because `R: 'empty`.
            VerifyBound::AnyBound(param_bounds)
        }
    }

    /// Given a projection like `T::Item`, searches the environment
    /// for where-clauses like `T::Item: 'a`. Returns the set of
    /// regions `'a` that it finds.
    ///
    /// This is an "approximate" check -- it may not find all
    /// applicable bounds, and not all the bounds it returns can be
    /// relied upon. In particular, this check ignores region
    /// identity. So, for example, if we have `<T as
    /// Trait<'0>>::Item` where `'0` is a region variable, and the
    /// user has `<T as Trait<'a>>::Item: 'b` in the environment, then
    /// the clause from the environment only applies if `'0 = 'a`,
    /// which we don't know yet. But we would still include `'b` in
    /// this list.
    pub fn approx_declared_bounds_from_env(
        &self,
        alias_ty: ty::AliasTy<'tcx>,
    ) -> Vec<ty::PolyTypeOutlivesPredicate<'tcx>> {
        let erased_alias_ty = self.tcx.erase_regions(alias_ty.to_ty(self.tcx));
        self.declared_generic_bounds_from_env_for_erased_ty(erased_alias_ty)
    }

    #[instrument(level = "debug", skip(self))]
    pub fn alias_bound(&self, alias_ty: ty::AliasTy<'tcx>) -> VerifyBound<'tcx> {
        let alias_ty_as_ty = alias_ty.to_ty(self.tcx);

        // Search the env for where clauses like `P: 'a`.
        let env_bounds = self.approx_declared_bounds_from_env(alias_ty).into_iter().map(|binder| {
            if let Some(ty::OutlivesPredicate(ty, r)) = binder.no_bound_vars()
                && ty == alias_ty_as_ty
            {
                // Micro-optimize if this is an exact match (this
                // occurs often when there are no region variables
                // involved).
                VerifyBound::OutlivedBy(r)
            } else {
                let verify_if_eq_b =
                    binder.map_bound(|ty::OutlivesPredicate(ty, bound)| VerifyIfEq { ty, bound });
                VerifyBound::IfEq(verify_if_eq_b)
            }
        });

        // Extend with bounds that we can find from the definition.
        let definition_bounds =
            self.declared_bounds_from_definition(alias_ty).map(|r| VerifyBound::OutlivedBy(r));

        // see the extensive comment in projection_must_outlive
        let recursive_bound = {
            let mut components = smallvec![];
            compute_alias_components_recursive(self.tcx, alias_ty_as_ty, &mut components);
            self.bound_from_components(&components)
        };

        VerifyBound::AnyBound(env_bounds.chain(definition_bounds).collect()).or(recursive_bound)
    }

    fn bound_from_components(&self, components: &[Component<TyCtxt<'tcx>>]) -> VerifyBound<'tcx> {
        let mut bounds = components
            .iter()
            .map(|component| self.bound_from_single_component(component))
            // Remove bounds that must hold, since they are not interesting.
            .filter(|bound| !bound.must_hold());

        match (bounds.next(), bounds.next()) {
            (Some(first), None) => first,
            (first, second) => {
                VerifyBound::AllBounds(first.into_iter().chain(second).chain(bounds).collect())
            }
        }
    }

    fn bound_from_single_component(
        &self,
        component: &Component<TyCtxt<'tcx>>,
    ) -> VerifyBound<'tcx> {
        match *component {
            Component::Region(lt) => VerifyBound::OutlivedBy(lt),
            Component::Param(param_ty) => self.param_or_placeholder_bound(param_ty.to_ty(self.tcx)),
            Component::Placeholder(placeholder_ty) => {
                self.param_or_placeholder_bound(Ty::new_placeholder(self.tcx, placeholder_ty))
            }
            Component::Alias(alias_ty) => self.alias_bound(alias_ty),
            Component::EscapingAlias(ref components) => self.bound_from_components(components),
            Component::UnresolvedInferenceVariable(v) => {
                // Ignore this, we presume it will yield an error later, since
                // if a type variable is not resolved by this point it never
                // will be.
                self.tcx
                    .dcx()
                    .delayed_bug(format!("unresolved inference variable in outlives: {v:?}"));
                // Add a bound that never holds.
                VerifyBound::AnyBound(vec![])
            }
        }
    }

    /// Searches the environment for where-clauses like `G: 'a` where
    /// `G` is either some type parameter `T` or a projection like
    /// `T::Item`. Returns a vector of the `'a` bounds it can find.
    ///
    /// This is a conservative check -- it may not find all applicable
    /// bounds, but all the bounds it returns can be relied upon.
    fn declared_generic_bounds_from_env(
        &self,
        generic_ty: Ty<'tcx>,
    ) -> Vec<ty::PolyTypeOutlivesPredicate<'tcx>> {
        assert!(matches!(generic_ty.kind(), ty::Param(_) | ty::Placeholder(_)));
        self.declared_generic_bounds_from_env_for_erased_ty(generic_ty)
    }

    /// Searches the environment to find all bounds that apply to `erased_ty`.
    /// Obviously these must be approximate -- they are in fact both *over* and
    /// and *under* approximated:
    ///
    /// * Over-approximated because we erase regions, so
    /// * Under-approximated because we look for syntactic equality and so for complex types
    ///   like `<T as Foo<fn(&u32, &u32)>>::Item` or whatever we may fail to figure out
    ///   all the subtleties.
    ///
    /// In some cases, such as when `erased_ty` represents a `ty::Param`, however,
    /// the result is precise.
    #[instrument(level = "debug", skip(self))]
    fn declared_generic_bounds_from_env_for_erased_ty(
        &self,
        erased_ty: Ty<'tcx>,
    ) -> Vec<ty::PolyTypeOutlivesPredicate<'tcx>> {
        let tcx = self.tcx;

        // To start, collect bounds from user environment. Note that
        // parameter environments are already elaborated, so we don't
        // have to worry about that.
        let param_bounds = self.caller_bounds.iter().copied().filter(move |outlives_predicate| {
            super::test_type_match::can_match_erased_ty(tcx, *outlives_predicate, erased_ty)
        });

        // Next, collect regions we scraped from the well-formedness
        // constraints in the fn signature. To do that, we walk the list
        // of known relations from the fn ctxt.
        //
        // This is crucial because otherwise code like this fails:
        //
        //     fn foo<'a, A>(x: &'a A) { x.bar() }
        //
        // The problem is that the type of `x` is `&'a A`. To be
        // well-formed, then, A must outlive `'a`, but we don't know that
        // this holds from first principles.
        let from_region_bound_pairs =
            self.region_bound_pairs.iter().filter_map(|&OutlivesPredicate(p, r)| {
                debug!(
                    "declared_generic_bounds_from_env_for_erased_ty: region_bound_pair = {:?}",
                    (r, p)
                );
                // Fast path for the common case.
                match (&p, erased_ty.kind()) {
                    // In outlive routines, all types are expected to be fully normalized.
                    // And therefore we can safely use structural equality for alias types.
                    (GenericKind::Param(p1), ty::Param(p2)) if p1 == p2 => {}
                    (GenericKind::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => {}
                    (GenericKind::Alias(a1), ty::Alias(_, a2)) if a1.def_id == a2.def_id => {}
                    _ => return None,
                }

                let p_ty = p.to_ty(tcx);
                let erased_p_ty = self.tcx.erase_regions(p_ty);
                (erased_p_ty == erased_ty)
                    .then_some(ty::Binder::dummy(ty::OutlivesPredicate(p_ty, r)))
            });

        param_bounds
            .chain(from_region_bound_pairs)
            .inspect(|bound| {
                debug!(
                    "declared_generic_bounds_from_env_for_erased_ty: result predicate = {:?}",
                    bound
                )
            })
            .collect()
    }

    /// Given a projection like `<T as Foo<'x>>::Bar`, returns any bounds
    /// declared in the trait definition. For example, if the trait were
    ///
    /// ```rust
    /// trait Foo<'a> {
    ///     type Bar: 'a;
    /// }
    /// ```
    ///
    /// If we were given the `DefId` of `Foo::Bar`, we would return
    /// `'a`. You could then apply the instantiations from the
    /// projection to convert this into your namespace. This also
    /// works if the user writes `where <Self as Foo<'a>>::Bar: 'a` on
    /// the trait. In fact, it works by searching for just such a
    /// where-clause.
    ///
    /// It will not, however, work for higher-ranked bounds like:
    ///
    /// ```ignore(this does compile today, previously was marked as `compile_fail,E0311`)
    /// trait Foo<'a, 'b>
    /// where for<'x> <Self as Foo<'x, 'b>>::Bar: 'x
    /// {
    ///     type Bar;
    /// }
    /// ```
    ///
    /// This is for simplicity, and because we are not really smart
    /// enough to cope with such bounds anywhere.
    pub fn declared_bounds_from_definition(
        &self,
        alias_ty: ty::AliasTy<'tcx>,
    ) -> impl Iterator<Item = ty::Region<'tcx>> {
        let tcx = self.tcx;
        let bounds = tcx.item_super_predicates(alias_ty.def_id);
        trace!("{:#?}", bounds.skip_binder());
        bounds
            .iter_instantiated(tcx, alias_ty.args)
            .filter_map(|p| p.as_type_outlives_clause())
            .filter_map(|p| p.no_bound_vars())
            .map(|OutlivesPredicate(_, r)| r)
    }
}