1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
//! This pass enforces various "well-formedness constraints" on impls.
//! Logically, it is part of wfcheck -- but we do it early so that we
//! can stop compilation afterwards, since part of the trait matching
//! infrastructure gets very grumpy if these conditions don't hold. In
//! particular, if there are type parameters that are not part of the
//! impl, then coherence will report strange inference ambiguity
//! errors; if impls have duplicate items, we get misleading
//! specialization errors. These things can (and probably should) be
//! fixed, but for the moment it's easier to do these checks early.

use crate::{constrained_generic_params as cgp, errors::UnconstrainedGenericParameter};
use min_specialization::check_min_specialization;

use rustc_data_structures::fx::FxHashSet;
use rustc_errors::codes::*;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
use rustc_span::ErrorGuaranteed;

mod min_specialization;

/// Checks that all the type/lifetime parameters on an impl also
/// appear in the trait ref or self type (or are constrained by a
/// where-clause). These rules are needed to ensure that, given a
/// trait ref like `<T as Trait<U>>`, we can derive the values of all
/// parameters on the impl (which is needed to make specialization
/// possible).
///
/// However, in the case of lifetimes, we only enforce these rules if
/// the lifetime parameter is used in an associated type. This is a
/// concession to backwards compatibility; see comment at the end of
/// the fn for details.
///
/// Example:
///
/// ```rust,ignore (pseudo-Rust)
/// impl<T> Trait<Foo> for Bar { ... }
/// //   ^ T does not appear in `Foo` or `Bar`, error!
///
/// impl<T> Trait<Foo<T>> for Bar { ... }
/// //   ^ T appears in `Foo<T>`, ok.
///
/// impl<T> Trait<Foo> for Bar where Bar: Iterator<Item = T> { ... }
/// //   ^ T is bound to `<Bar as Iterator>::Item`, ok.
///
/// impl<'a> Trait<Foo> for Bar { }
/// //   ^ 'a is unused, but for back-compat we allow it
///
/// impl<'a> Trait<Foo> for Bar { type X = &'a i32; }
/// //   ^ 'a is unused and appears in assoc type, error
/// ```
pub fn check_impl_wf(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
    let min_specialization = tcx.features().min_specialization;
    let mut res = Ok(());
    debug_assert!(matches!(tcx.def_kind(impl_def_id), DefKind::Impl { .. }));
    res = res.and(enforce_impl_params_are_constrained(tcx, impl_def_id));
    if min_specialization {
        res = res.and(check_min_specialization(tcx, impl_def_id));
    }

    res
}

fn enforce_impl_params_are_constrained(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    // Every lifetime used in an associated type must be constrained.
    let impl_self_ty = tcx.type_of(impl_def_id).instantiate_identity();
    if impl_self_ty.references_error() {
        // Don't complain about unconstrained type params when self ty isn't known due to errors.
        // (#36836)
        tcx.dcx().span_delayed_bug(
            tcx.def_span(impl_def_id),
            format!(
                "potentially unconstrained type parameters weren't evaluated: {impl_self_ty:?}",
            ),
        );
        // This is super fishy, but our current `rustc_hir_analysis::check_crate` pipeline depends on
        // `type_of` having been called much earlier, and thus this value being read from cache.
        // Compilation must continue in order for other important diagnostics to keep showing up.
        return Ok(());
    }
    let impl_generics = tcx.generics_of(impl_def_id);
    let impl_predicates = tcx.predicates_of(impl_def_id);
    let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).map(ty::EarlyBinder::instantiate_identity);

    impl_trait_ref.error_reported()?;

    let mut input_parameters = cgp::parameters_for_impl(tcx, impl_self_ty, impl_trait_ref);
    cgp::identify_constrained_generic_params(
        tcx,
        impl_predicates,
        impl_trait_ref,
        &mut input_parameters,
    );

    // Disallow unconstrained lifetimes, but only if they appear in assoc types.
    let lifetimes_in_associated_types: FxHashSet<_> = tcx
        .associated_item_def_ids(impl_def_id)
        .iter()
        .flat_map(|def_id| {
            let item = tcx.associated_item(def_id);
            match item.kind {
                ty::AssocKind::Type => {
                    if item.defaultness(tcx).has_value() {
                        cgp::parameters_for(tcx, tcx.type_of(def_id).instantiate_identity(), true)
                    } else {
                        vec![]
                    }
                }
                ty::AssocKind::Fn | ty::AssocKind::Const => vec![],
            }
        })
        .collect();

    let mut res = Ok(());
    for param in &impl_generics.own_params {
        let err = match param.kind {
            // Disallow ANY unconstrained type parameters.
            ty::GenericParamDefKind::Type { .. } => {
                let param_ty = ty::ParamTy::for_def(param);
                !input_parameters.contains(&cgp::Parameter::from(param_ty))
            }
            ty::GenericParamDefKind::Lifetime => {
                let param_lt = cgp::Parameter::from(param.to_early_bound_region_data());
                lifetimes_in_associated_types.contains(&param_lt) && // (*)
                    !input_parameters.contains(&param_lt)
            }
            ty::GenericParamDefKind::Const { .. } => {
                let param_ct = ty::ParamConst::for_def(param);
                !input_parameters.contains(&cgp::Parameter::from(param_ct))
            }
        };
        if err {
            let const_param_note =
                matches!(param.kind, ty::GenericParamDefKind::Const { .. }).then_some(());
            let mut diag = tcx.dcx().create_err(UnconstrainedGenericParameter {
                span: tcx.def_span(param.def_id),
                param_name: param.name,
                param_def_kind: tcx.def_descr(param.def_id),
                const_param_note,
                const_param_note2: const_param_note,
            });
            diag.code(E0207);
            res = Err(diag.emit());
        }
    }
    res

    // (*) This is a horrible concession to reality. I think it'd be
    // better to just ban unconstrained lifetimes outright, but in
    // practice people do non-hygienic macros like:
    //
    // ```
    // macro_rules! __impl_slice_eq1 {
    //     ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
    //         impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
    //            ....
    //         }
    //     }
    // }
    // ```
    //
    // In a concession to backwards compatibility, we continue to
    // permit those, so long as the lifetimes aren't used in
    // associated types. I believe this is sound, because lifetimes
    // used elsewhere are not projected back out.
}