1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
use std::cell::Cell;
use std::{fmt, mem};
use either::{Either, Left, Right};
use rustc_infer::infer::at::ToTrace;
use rustc_infer::traits::ObligationCause;
use rustc_trait_selection::traits::ObligationCtxt;
use tracing::{debug, info, info_span, instrument, trace};
use rustc_errors::DiagCtxtHandle;
use rustc_hir::{self as hir, def_id::DefId, definitions::DefPathData};
use rustc_index::IndexVec;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir;
use rustc_middle::mir::interpret::{
CtfeProvenance, ErrorHandled, InvalidMetaKind, ReportedErrorInfo,
};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::layout::{
self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOf, LayoutOfHelpers,
TyAndLayout,
};
use rustc_middle::ty::{self, GenericArgsRef, ParamEnv, Ty, TyCtxt, TypeFoldable, Variance};
use rustc_middle::{bug, span_bug};
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_session::Limit;
use rustc_span::Span;
use rustc_target::abi::{call::FnAbi, Align, HasDataLayout, Size, TargetDataLayout};
use super::{
err_inval, throw_inval, throw_ub, throw_ub_custom, throw_unsup, GlobalId, Immediate,
InterpErrorInfo, InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Memory, MemoryKind,
OpTy, Operand, Place, PlaceTy, Pointer, PointerArithmetic, Projectable, Provenance,
ReturnAction, Scalar,
};
use crate::errors;
use crate::util;
use crate::{fluent_generated as fluent, ReportErrorExt};
pub struct InterpCx<'tcx, M: Machine<'tcx>> {
/// Stores the `Machine` instance.
///
/// Note: the stack is provided by the machine.
pub machine: M,
/// The results of the type checker, from rustc.
/// The span in this is the "root" of the evaluation, i.e., the const
/// we are evaluating (if this is CTFE).
pub tcx: TyCtxtAt<'tcx>,
/// Bounds in scope for polymorphic evaluations.
pub(crate) param_env: ty::ParamEnv<'tcx>,
/// The virtual memory system.
pub memory: Memory<'tcx, M>,
/// The recursion limit (cached from `tcx.recursion_limit(())`)
pub recursion_limit: Limit,
}
// The Phantomdata exists to prevent this type from being `Send`. If it were sent across a thread
// boundary and dropped in the other thread, it would exit the span in the other thread.
struct SpanGuard(tracing::Span, std::marker::PhantomData<*const u8>);
impl SpanGuard {
/// By default a `SpanGuard` does nothing.
fn new() -> Self {
Self(tracing::Span::none(), std::marker::PhantomData)
}
/// If a span is entered, we exit the previous span (if any, normally none) and enter the
/// new span. This is mainly so we don't have to use `Option` for the `tracing_span` field of
/// `Frame` by creating a dummy span to being with and then entering it once the frame has
/// been pushed.
fn enter(&mut self, span: tracing::Span) {
// This executes the destructor on the previous instance of `SpanGuard`, ensuring that
// we never enter or exit more spans than vice versa. Unless you `mem::leak`, then we
// can't protect the tracing stack, but that'll just lead to weird logging, no actual
// problems.
*self = Self(span, std::marker::PhantomData);
self.0.with_subscriber(|(id, dispatch)| {
dispatch.enter(id);
});
}
}
impl Drop for SpanGuard {
fn drop(&mut self) {
self.0.with_subscriber(|(id, dispatch)| {
dispatch.exit(id);
});
}
}
/// A stack frame.
pub struct Frame<'tcx, Prov: Provenance = CtfeProvenance, Extra = ()> {
////////////////////////////////////////////////////////////////////////////////
// Function and callsite information
////////////////////////////////////////////////////////////////////////////////
/// The MIR for the function called on this frame.
pub body: &'tcx mir::Body<'tcx>,
/// The def_id and args of the current function.
pub instance: ty::Instance<'tcx>,
/// Extra data for the machine.
pub extra: Extra,
////////////////////////////////////////////////////////////////////////////////
// Return place and locals
////////////////////////////////////////////////////////////////////////////////
/// Work to perform when returning from this function.
pub return_to_block: StackPopCleanup,
/// The location where the result of the current stack frame should be written to,
/// and its layout in the caller.
pub return_place: MPlaceTy<'tcx, Prov>,
/// The list of locals for this stack frame, stored in order as
/// `[return_ptr, arguments..., variables..., temporaries...]`.
/// The locals are stored as `Option<Value>`s.
/// `None` represents a local that is currently dead, while a live local
/// can either directly contain `Scalar` or refer to some part of an `Allocation`.
///
/// Do *not* access this directly; always go through the machine hook!
pub locals: IndexVec<mir::Local, LocalState<'tcx, Prov>>,
/// The span of the `tracing` crate is stored here.
/// When the guard is dropped, the span is exited. This gives us
/// a full stack trace on all tracing statements.
tracing_span: SpanGuard,
////////////////////////////////////////////////////////////////////////////////
// Current position within the function
////////////////////////////////////////////////////////////////////////////////
/// If this is `Right`, we are not currently executing any particular statement in
/// this frame (can happen e.g. during frame initialization, and during unwinding on
/// frames without cleanup code).
///
/// Needs to be public because ConstProp does unspeakable things to it.
pub loc: Either<mir::Location, Span>,
}
/// What we store about a frame in an interpreter backtrace.
#[derive(Clone, Debug)]
pub struct FrameInfo<'tcx> {
pub instance: ty::Instance<'tcx>,
pub span: Span,
}
#[derive(Clone, Copy, Eq, PartialEq, Debug)] // Miri debug-prints these
pub enum StackPopCleanup {
/// Jump to the next block in the caller, or cause UB if None (that's a function
/// that may never return). Also store layout of return place so
/// we can validate it at that layout.
/// `ret` stores the block we jump to on a normal return, while `unwind`
/// stores the block used for cleanup during unwinding.
Goto { ret: Option<mir::BasicBlock>, unwind: mir::UnwindAction },
/// The root frame of the stack: nowhere else to jump to.
/// `cleanup` says whether locals are deallocated. Static computation
/// wants them leaked to intern what they need (and just throw away
/// the entire `ecx` when it is done).
Root { cleanup: bool },
}
/// Return type of [`InterpCx::pop_stack_frame`].
pub struct StackPopInfo<'tcx, Prov: Provenance> {
/// Additional information about the action to be performed when returning from the popped
/// stack frame.
pub return_action: ReturnAction,
/// [`return_to_block`](Frame::return_to_block) of the popped stack frame.
pub return_to_block: StackPopCleanup,
/// [`return_place`](Frame::return_place) of the popped stack frame.
pub return_place: MPlaceTy<'tcx, Prov>,
}
/// State of a local variable including a memoized layout
#[derive(Clone)]
pub struct LocalState<'tcx, Prov: Provenance = CtfeProvenance> {
value: LocalValue<Prov>,
/// Don't modify if `Some`, this is only used to prevent computing the layout twice.
/// Avoids computing the layout of locals that are never actually initialized.
layout: Cell<Option<TyAndLayout<'tcx>>>,
}
impl<Prov: Provenance> std::fmt::Debug for LocalState<'_, Prov> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("LocalState")
.field("value", &self.value)
.field("ty", &self.layout.get().map(|l| l.ty))
.finish()
}
}
/// Current value of a local variable
///
/// This does not store the type of the local; the type is given by `body.local_decls` and can never
/// change, so by not storing here we avoid having to maintain that as an invariant.
#[derive(Copy, Clone, Debug)] // Miri debug-prints these
pub(super) enum LocalValue<Prov: Provenance = CtfeProvenance> {
/// This local is not currently alive, and cannot be used at all.
Dead,
/// A normal, live local.
/// Mostly for convenience, we re-use the `Operand` type here.
/// This is an optimization over just always having a pointer here;
/// we can thus avoid doing an allocation when the local just stores
/// immediate values *and* never has its address taken.
Live(Operand<Prov>),
}
impl<'tcx, Prov: Provenance> LocalState<'tcx, Prov> {
pub fn make_live_uninit(&mut self) {
self.value = LocalValue::Live(Operand::Immediate(Immediate::Uninit));
}
/// This is a hack because Miri needs a way to visit all the provenance in a `LocalState`
/// without having a layout or `TyCtxt` available, and we want to keep the `Operand` type
/// private.
pub fn as_mplace_or_imm(
&self,
) -> Option<Either<(Pointer<Option<Prov>>, MemPlaceMeta<Prov>), Immediate<Prov>>> {
match self.value {
LocalValue::Dead => None,
LocalValue::Live(Operand::Indirect(mplace)) => Some(Left((mplace.ptr, mplace.meta))),
LocalValue::Live(Operand::Immediate(imm)) => Some(Right(imm)),
}
}
/// Read the local's value or error if the local is not yet live or not live anymore.
#[inline(always)]
pub(super) fn access(&self) -> InterpResult<'tcx, &Operand<Prov>> {
match &self.value {
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
LocalValue::Live(val) => Ok(val),
}
}
/// Overwrite the local. If the local can be overwritten in place, return a reference
/// to do so; otherwise return the `MemPlace` to consult instead.
#[inline(always)]
pub(super) fn access_mut(&mut self) -> InterpResult<'tcx, &mut Operand<Prov>> {
match &mut self.value {
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
LocalValue::Live(val) => Ok(val),
}
}
}
impl<'tcx, Prov: Provenance> Frame<'tcx, Prov> {
pub fn with_extra<Extra>(self, extra: Extra) -> Frame<'tcx, Prov, Extra> {
Frame {
body: self.body,
instance: self.instance,
return_to_block: self.return_to_block,
return_place: self.return_place,
locals: self.locals,
loc: self.loc,
extra,
tracing_span: self.tracing_span,
}
}
}
impl<'tcx, Prov: Provenance, Extra> Frame<'tcx, Prov, Extra> {
/// Get the current location within the Frame.
///
/// If this is `Right`, we are not currently executing any particular statement in
/// this frame (can happen e.g. during frame initialization, and during unwinding on
/// frames without cleanup code).
///
/// Used by priroda.
pub fn current_loc(&self) -> Either<mir::Location, Span> {
self.loc
}
/// Return the `SourceInfo` of the current instruction.
pub fn current_source_info(&self) -> Option<&mir::SourceInfo> {
self.loc.left().map(|loc| self.body.source_info(loc))
}
pub fn current_span(&self) -> Span {
match self.loc {
Left(loc) => self.body.source_info(loc).span,
Right(span) => span,
}
}
pub fn lint_root(&self, tcx: TyCtxt<'tcx>) -> Option<hir::HirId> {
// We first try to get a HirId via the current source scope,
// and fall back to `body.source`.
self.current_source_info()
.and_then(|source_info| match &self.body.source_scopes[source_info.scope].local_data {
mir::ClearCrossCrate::Set(data) => Some(data.lint_root),
mir::ClearCrossCrate::Clear => None,
})
.or_else(|| {
let def_id = self.body.source.def_id().as_local();
def_id.map(|def_id| tcx.local_def_id_to_hir_id(def_id))
})
}
/// Returns the address of the buffer where the locals are stored. This is used by `Place` as a
/// sanity check to detect bugs where we mix up which stack frame a place refers to.
#[inline(always)]
pub(super) fn locals_addr(&self) -> usize {
self.locals.raw.as_ptr().addr()
}
#[must_use]
pub fn generate_stacktrace_from_stack(stack: &[Self]) -> Vec<FrameInfo<'tcx>> {
let mut frames = Vec::new();
// This deliberately does *not* honor `requires_caller_location` since it is used for much
// more than just panics.
for frame in stack.iter().rev() {
let span = match frame.loc {
Left(loc) => {
// If the stacktrace passes through MIR-inlined source scopes, add them.
let mir::SourceInfo { mut span, scope } = *frame.body.source_info(loc);
let mut scope_data = &frame.body.source_scopes[scope];
while let Some((instance, call_span)) = scope_data.inlined {
frames.push(FrameInfo { span, instance });
span = call_span;
scope_data = &frame.body.source_scopes[scope_data.parent_scope.unwrap()];
}
span
}
Right(span) => span,
};
frames.push(FrameInfo { span, instance: frame.instance });
}
trace!("generate stacktrace: {:#?}", frames);
frames
}
}
// FIXME: only used by miri, should be removed once translatable.
impl<'tcx> fmt::Display for FrameInfo<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ty::tls::with(|tcx| {
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
write!(f, "inside closure")
} else {
// Note: this triggers a `must_produce_diag` state, which means that if we ever
// get here we must emit a diagnostic. We should never display a `FrameInfo` unless
// we actually want to emit a warning or error to the user.
write!(f, "inside `{}`", self.instance)
}
})
}
}
impl<'tcx> FrameInfo<'tcx> {
pub fn as_note(&self, tcx: TyCtxt<'tcx>) -> errors::FrameNote {
let span = self.span;
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
errors::FrameNote { where_: "closure", span, instance: String::new(), times: 0 }
} else {
let instance = format!("{}", self.instance);
// Note: this triggers a `must_produce_diag` state, which means that if we ever get
// here we must emit a diagnostic. We should never display a `FrameInfo` unless we
// actually want to emit a warning or error to the user.
errors::FrameNote { where_: "instance", span, instance, times: 0 }
}
}
}
impl<'tcx, M: Machine<'tcx>> HasDataLayout for InterpCx<'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'tcx, M> layout::HasTyCtxt<'tcx> for InterpCx<'tcx, M>
where
M: Machine<'tcx>,
{
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
*self.tcx
}
}
impl<'tcx, M> layout::HasParamEnv<'tcx> for InterpCx<'tcx, M>
where
M: Machine<'tcx>,
{
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
}
impl<'tcx, M: Machine<'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'tcx, M> {
type LayoutOfResult = InterpResult<'tcx, TyAndLayout<'tcx>>;
#[inline]
fn layout_tcx_at_span(&self) -> Span {
// Using the cheap root span for performance.
self.tcx.span
}
#[inline]
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
_: Span,
_: Ty<'tcx>,
) -> InterpErrorInfo<'tcx> {
err_inval!(Layout(err)).into()
}
}
impl<'tcx, M: Machine<'tcx>> FnAbiOfHelpers<'tcx> for InterpCx<'tcx, M> {
type FnAbiOfResult = InterpResult<'tcx, &'tcx FnAbi<'tcx, Ty<'tcx>>>;
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
_span: Span,
_fn_abi_request: FnAbiRequest<'tcx>,
) -> InterpErrorInfo<'tcx> {
match err {
FnAbiError::Layout(err) => err_inval!(Layout(err)).into(),
FnAbiError::AdjustForForeignAbi(err) => {
err_inval!(FnAbiAdjustForForeignAbi(err)).into()
}
}
}
}
/// Test if it is valid for a MIR assignment to assign `src`-typed place to `dest`-typed value.
/// This test should be symmetric, as it is primarily about layout compatibility.
pub(super) fn mir_assign_valid_types<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: TyAndLayout<'tcx>,
dest: TyAndLayout<'tcx>,
) -> bool {
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences.
if util::relate_types(tcx, param_env, Variance::Covariant, src.ty, dest.ty) {
// Make sure the layout is equal, too -- just to be safe. Miri really
// needs layout equality. For performance reason we skip this check when
// the types are equal. Equal types *can* have different layouts when
// enum downcast is involved (as enum variants carry the type of the
// enum), but those should never occur in assignments.
if cfg!(debug_assertions) || src.ty != dest.ty {
assert_eq!(src.layout, dest.layout);
}
true
} else {
false
}
}
/// Use the already known layout if given (but sanity check in debug mode),
/// or compute the layout.
#[cfg_attr(not(debug_assertions), inline(always))]
pub(super) fn from_known_layout<'tcx>(
tcx: TyCtxtAt<'tcx>,
param_env: ParamEnv<'tcx>,
known_layout: Option<TyAndLayout<'tcx>>,
compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
match known_layout {
None => compute(),
Some(known_layout) => {
if cfg!(debug_assertions) {
let check_layout = compute()?;
if !mir_assign_valid_types(tcx.tcx, param_env, check_layout, known_layout) {
span_bug!(
tcx.span,
"expected type differs from actual type.\nexpected: {}\nactual: {}",
known_layout.ty,
check_layout.ty,
);
}
}
Ok(known_layout)
}
}
}
/// Turn the given error into a human-readable string. Expects the string to be printed, so if
/// `RUSTC_CTFE_BACKTRACE` is set this will show a backtrace of the rustc internals that
/// triggered the error.
///
/// This is NOT the preferred way to render an error; use `report` from `const_eval` instead.
/// However, this is useful when error messages appear in ICEs.
pub fn format_interp_error<'tcx>(dcx: DiagCtxtHandle<'_>, e: InterpErrorInfo<'tcx>) -> String {
let (e, backtrace) = e.into_parts();
backtrace.print_backtrace();
// FIXME(fee1-dead), HACK: we want to use the error as title therefore we can just extract the
// label and arguments from the InterpError.
#[allow(rustc::untranslatable_diagnostic)]
let mut diag = dcx.struct_allow("");
let msg = e.diagnostic_message();
e.add_args(&mut diag);
let s = dcx.eagerly_translate_to_string(msg, diag.args.iter());
diag.cancel();
s
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
pub fn new(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ty::ParamEnv<'tcx>,
machine: M,
) -> Self {
InterpCx {
machine,
tcx: tcx.at(root_span),
param_env,
memory: Memory::new(),
recursion_limit: tcx.recursion_limit(),
}
}
/// Returns the span of the currently executed statement/terminator.
/// This is the span typically used for error reporting.
#[inline(always)]
pub fn cur_span(&self) -> Span {
// This deliberately does *not* honor `requires_caller_location` since it is used for much
// more than just panics.
self.stack().last().map_or(self.tcx.span, |f| f.current_span())
}
pub(crate) fn stack(&self) -> &[Frame<'tcx, M::Provenance, M::FrameExtra>] {
M::stack(self)
}
#[inline(always)]
pub(crate) fn stack_mut(&mut self) -> &mut Vec<Frame<'tcx, M::Provenance, M::FrameExtra>> {
M::stack_mut(self)
}
#[inline(always)]
pub fn frame_idx(&self) -> usize {
let stack = self.stack();
assert!(!stack.is_empty());
stack.len() - 1
}
#[inline(always)]
pub fn frame(&self) -> &Frame<'tcx, M::Provenance, M::FrameExtra> {
self.stack().last().expect("no call frames exist")
}
#[inline(always)]
pub fn frame_mut(&mut self) -> &mut Frame<'tcx, M::Provenance, M::FrameExtra> {
self.stack_mut().last_mut().expect("no call frames exist")
}
#[inline(always)]
pub fn body(&self) -> &'tcx mir::Body<'tcx> {
self.frame().body
}
#[inline(always)]
pub fn sign_extend(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
assert!(ty.abi.is_signed());
ty.size.sign_extend(value)
}
#[inline(always)]
pub fn truncate(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
ty.size.truncate(value)
}
#[inline]
pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
ty.is_freeze(*self.tcx, self.param_env)
}
pub fn load_mir(
&self,
instance: ty::InstanceKind<'tcx>,
promoted: Option<mir::Promoted>,
) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
trace!("load mir(instance={:?}, promoted={:?})", instance, promoted);
let body = if let Some(promoted) = promoted {
let def = instance.def_id();
&self.tcx.promoted_mir(def)[promoted]
} else {
M::load_mir(self, instance)?
};
// do not continue if typeck errors occurred (can only occur in local crate)
if let Some(err) = body.tainted_by_errors {
throw_inval!(AlreadyReported(ReportedErrorInfo::tainted_by_errors(err)));
}
Ok(body)
}
/// Call this on things you got out of the MIR (so it is as generic as the current
/// stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn instantiate_from_current_frame_and_normalize_erasing_regions<
T: TypeFoldable<TyCtxt<'tcx>>,
>(
&self,
value: T,
) -> Result<T, ErrorHandled> {
self.instantiate_from_frame_and_normalize_erasing_regions(self.frame(), value)
}
/// Call this on things you got out of the MIR (so it is as generic as the provided
/// stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn instantiate_from_frame_and_normalize_erasing_regions<
T: TypeFoldable<TyCtxt<'tcx>>,
>(
&self,
frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
value: T,
) -> Result<T, ErrorHandled> {
frame
.instance
.try_instantiate_mir_and_normalize_erasing_regions(
*self.tcx,
self.param_env,
ty::EarlyBinder::bind(value),
)
.map_err(|_| ErrorHandled::TooGeneric(self.cur_span()))
}
/// The `args` are assumed to already be in our interpreter "universe" (param_env).
pub(super) fn resolve(
&self,
def: DefId,
args: GenericArgsRef<'tcx>,
) -> InterpResult<'tcx, ty::Instance<'tcx>> {
trace!("resolve: {:?}, {:#?}", def, args);
trace!("param_env: {:#?}", self.param_env);
trace!("args: {:#?}", args);
match ty::Instance::try_resolve(*self.tcx, self.param_env, def, args) {
Ok(Some(instance)) => Ok(instance),
Ok(None) => throw_inval!(TooGeneric),
// FIXME(eddyb) this could be a bit more specific than `AlreadyReported`.
Err(error_reported) => throw_inval!(AlreadyReported(error_reported.into())),
}
}
/// Check if the two things are equal in the current param_env, using an infctx to get proper
/// equality checks.
pub(super) fn eq_in_param_env<T>(&self, a: T, b: T) -> bool
where
T: PartialEq + TypeFoldable<TyCtxt<'tcx>> + ToTrace<'tcx>,
{
// Fast path: compare directly.
if a == b {
return true;
}
// Slow path: spin up an inference context to check if these traits are sufficiently equal.
let infcx = self.tcx.infer_ctxt().build();
let ocx = ObligationCtxt::new(&infcx);
let cause = ObligationCause::dummy_with_span(self.cur_span());
// equate the two trait refs after normalization
let a = ocx.normalize(&cause, self.param_env, a);
let b = ocx.normalize(&cause, self.param_env, b);
if ocx.eq(&cause, self.param_env, a, b).is_ok() {
if ocx.select_all_or_error().is_empty() {
// All good.
return true;
}
}
return false;
}
/// Walks up the callstack from the intrinsic's callsite, searching for the first callsite in a
/// frame which is not `#[track_caller]`. This matches the `caller_location` intrinsic,
/// and is primarily intended for the panic machinery.
pub(crate) fn find_closest_untracked_caller_location(&self) -> Span {
for frame in self.stack().iter().rev() {
debug!("find_closest_untracked_caller_location: checking frame {:?}", frame.instance);
// Assert that the frame we look at is actually executing code currently
// (`loc` is `Right` when we are unwinding and the frame does not require cleanup).
let loc = frame.loc.left().unwrap();
// This could be a non-`Call` terminator (such as `Drop`), or not a terminator at all
// (such as `box`). Use the normal span by default.
let mut source_info = *frame.body.source_info(loc);
// If this is a `Call` terminator, use the `fn_span` instead.
let block = &frame.body.basic_blocks[loc.block];
if loc.statement_index == block.statements.len() {
debug!(
"find_closest_untracked_caller_location: got terminator {:?} ({:?})",
block.terminator(),
block.terminator().kind,
);
if let mir::TerminatorKind::Call { fn_span, .. } = block.terminator().kind {
source_info.span = fn_span;
}
}
let caller_location = if frame.instance.def.requires_caller_location(*self.tcx) {
// We use `Err(())` as indication that we should continue up the call stack since
// this is a `#[track_caller]` function.
Some(Err(()))
} else {
None
};
if let Ok(span) =
frame.body.caller_location_span(source_info, caller_location, *self.tcx, Ok)
{
return span;
}
}
span_bug!(self.cur_span(), "no non-`#[track_caller]` frame found")
}
#[inline(always)]
pub(super) fn layout_of_local(
&self,
frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
local: mir::Local,
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
let state = &frame.locals[local];
if let Some(layout) = state.layout.get() {
return Ok(layout);
}
let layout = from_known_layout(self.tcx, self.param_env, layout, || {
let local_ty = frame.body.local_decls[local].ty;
let local_ty =
self.instantiate_from_frame_and_normalize_erasing_regions(frame, local_ty)?;
self.layout_of(local_ty)
})?;
// Layouts of locals are requested a lot, so we cache them.
state.layout.set(Some(layout));
Ok(layout)
}
/// Returns the actual dynamic size and alignment of the place at the given type.
/// Only the "meta" (metadata) part of the place matters.
/// This can fail to provide an answer for extern types.
pub(super) fn size_and_align_of(
&self,
metadata: &MemPlaceMeta<M::Provenance>,
layout: &TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Option<(Size, Align)>> {
if layout.is_sized() {
return Ok(Some((layout.size, layout.align.abi)));
}
match layout.ty.kind() {
ty::Adt(..) | ty::Tuple(..) => {
// First get the size of all statically known fields.
// Don't use type_of::sizing_type_of because that expects t to be sized,
// and it also rounds up to alignment, which we want to avoid,
// as the unsized field's alignment could be smaller.
assert!(!layout.ty.is_simd());
assert!(layout.fields.count() > 0);
trace!("DST layout: {:?}", layout);
let unsized_offset_unadjusted = layout.fields.offset(layout.fields.count() - 1);
let sized_align = layout.align.abi;
// Recurse to get the size of the dynamically sized field (must be
// the last field). Can't have foreign types here, how would we
// adjust alignment and size for them?
let field = layout.field(self, layout.fields.count() - 1);
let Some((unsized_size, mut unsized_align)) =
self.size_and_align_of(metadata, &field)?
else {
// A field with an extern type. We don't know the actual dynamic size
// or the alignment.
return Ok(None);
};
// # First compute the dynamic alignment
// Packed type alignment needs to be capped.
if let ty::Adt(def, _) = layout.ty.kind() {
if let Some(packed) = def.repr().pack {
unsized_align = unsized_align.min(packed);
}
}
// Choose max of two known alignments (combined value must
// be aligned according to more restrictive of the two).
let full_align = sized_align.max(unsized_align);
// # Then compute the dynamic size
let unsized_offset_adjusted = unsized_offset_unadjusted.align_to(unsized_align);
let full_size = (unsized_offset_adjusted + unsized_size).align_to(full_align);
// Just for our sanitiy's sake, assert that this is equal to what codegen would compute.
assert_eq!(
full_size,
(unsized_offset_unadjusted + unsized_size).align_to(full_align)
);
// Check if this brought us over the size limit.
if full_size > self.max_size_of_val() {
throw_ub!(InvalidMeta(InvalidMetaKind::TooBig));
}
Ok(Some((full_size, full_align)))
}
ty::Dynamic(expected_trait, _, ty::Dyn) => {
let vtable = metadata.unwrap_meta().to_pointer(self)?;
// Read size and align from vtable (already checks size).
Ok(Some(self.get_vtable_size_and_align(vtable, Some(expected_trait))?))
}
ty::Slice(_) | ty::Str => {
let len = metadata.unwrap_meta().to_target_usize(self)?;
let elem = layout.field(self, 0);
// Make sure the slice is not too big.
let size = elem.size.bytes().saturating_mul(len); // we rely on `max_size_of_val` being smaller than `u64::MAX`.
let size = Size::from_bytes(size);
if size > self.max_size_of_val() {
throw_ub!(InvalidMeta(InvalidMetaKind::SliceTooBig));
}
Ok(Some((size, elem.align.abi)))
}
ty::Foreign(_) => Ok(None),
_ => span_bug!(self.cur_span(), "size_and_align_of::<{}> not supported", layout.ty),
}
}
#[inline]
pub fn size_and_align_of_mplace(
&self,
mplace: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, Option<(Size, Align)>> {
self.size_and_align_of(&mplace.meta(), &mplace.layout)
}
#[instrument(skip(self, body, return_place, return_to_block), level = "debug")]
pub fn push_stack_frame(
&mut self,
instance: ty::Instance<'tcx>,
body: &'tcx mir::Body<'tcx>,
return_place: &MPlaceTy<'tcx, M::Provenance>,
return_to_block: StackPopCleanup,
) -> InterpResult<'tcx> {
trace!("body: {:#?}", body);
// First push a stack frame so we have access to the local args
self.push_new_stack_frame(instance, body, return_to_block, return_place.clone())?;
self.after_stack_frame_push(instance, body)?;
Ok(())
}
/// Creates a new stack frame, initializes it and pushes it onto the stack.
/// A private helper for [`push_stack_frame`](InterpCx::push_stack_frame).
fn push_new_stack_frame(
&mut self,
instance: ty::Instance<'tcx>,
body: &'tcx mir::Body<'tcx>,
return_to_block: StackPopCleanup,
return_place: MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let dead_local = LocalState { value: LocalValue::Dead, layout: Cell::new(None) };
let locals = IndexVec::from_elem(dead_local, &body.local_decls);
let pre_frame = Frame {
body,
loc: Right(body.span), // Span used for errors caused during preamble.
return_to_block,
return_place,
locals,
instance,
tracing_span: SpanGuard::new(),
extra: (),
};
let frame = M::init_frame(self, pre_frame)?;
self.stack_mut().push(frame);
Ok(())
}
/// A private helper for [`push_stack_frame`](InterpCx::push_stack_frame).
fn after_stack_frame_push(
&mut self,
instance: ty::Instance<'tcx>,
body: &'tcx mir::Body<'tcx>,
) -> InterpResult<'tcx> {
// Make sure all the constants required by this frame evaluate successfully (post-monomorphization check).
for &const_ in &body.required_consts {
let c =
self.instantiate_from_current_frame_and_normalize_erasing_regions(const_.const_)?;
c.eval(*self.tcx, self.param_env, const_.span).map_err(|err| {
err.emit_note(*self.tcx);
err
})?;
}
// done
M::after_stack_push(self)?;
self.frame_mut().loc = Left(mir::Location::START);
let span = info_span!("frame", "{}", instance);
self.frame_mut().tracing_span.enter(span);
Ok(())
}
/// Pops a stack frame from the stack and returns some information about it.
///
/// This also deallocates locals, if necessary.
///
/// [`M::before_stack_pop`] should be called before calling this function.
/// [`M::after_stack_pop`] is called by this function automatically.
///
/// [`M::before_stack_pop`]: Machine::before_stack_pop
/// [`M::after_stack_pop`]: Machine::after_stack_pop
pub fn pop_stack_frame(
&mut self,
unwinding: bool,
) -> InterpResult<'tcx, StackPopInfo<'tcx, M::Provenance>> {
let cleanup = self.cleanup_current_frame_locals()?;
let frame =
self.stack_mut().pop().expect("tried to pop a stack frame, but there were none");
let return_to_block = frame.return_to_block;
let return_place = frame.return_place.clone();
let return_action;
if cleanup {
return_action = M::after_stack_pop(self, frame, unwinding)?;
assert_ne!(return_action, ReturnAction::NoCleanup);
} else {
return_action = ReturnAction::NoCleanup;
};
Ok(StackPopInfo { return_action, return_to_block, return_place })
}
/// A private helper for [`pop_stack_frame`](InterpCx::pop_stack_frame).
/// Returns `true` if cleanup has been done, `false` otherwise.
fn cleanup_current_frame_locals(&mut self) -> InterpResult<'tcx, bool> {
// Cleanup: deallocate locals.
// Usually we want to clean up (deallocate locals), but in a few rare cases we don't.
// We do this while the frame is still on the stack, so errors point to the callee.
let return_to_block = self.frame().return_to_block;
let cleanup = match return_to_block {
StackPopCleanup::Goto { .. } => true,
StackPopCleanup::Root { cleanup, .. } => cleanup,
};
if cleanup {
// We need to take the locals out, since we need to mutate while iterating.
let locals = mem::take(&mut self.frame_mut().locals);
for local in &locals {
self.deallocate_local(local.value)?;
}
}
Ok(cleanup)
}
/// Jump to the given block.
#[inline]
pub fn go_to_block(&mut self, target: mir::BasicBlock) {
self.frame_mut().loc = Left(mir::Location { block: target, statement_index: 0 });
}
/// *Return* to the given `target` basic block.
/// Do *not* use for unwinding! Use `unwind_to_block` instead.
///
/// If `target` is `None`, that indicates the function cannot return, so we raise UB.
pub fn return_to_block(&mut self, target: Option<mir::BasicBlock>) -> InterpResult<'tcx> {
if let Some(target) = target {
self.go_to_block(target);
Ok(())
} else {
throw_ub!(Unreachable)
}
}
/// *Unwind* to the given `target` basic block.
/// Do *not* use for returning! Use `return_to_block` instead.
///
/// If `target` is `UnwindAction::Continue`, that indicates the function does not need cleanup
/// during unwinding, and we will just keep propagating that upwards.
///
/// If `target` is `UnwindAction::Unreachable`, that indicates the function does not allow
/// unwinding, and doing so is UB.
#[cold] // usually we have normal returns, not unwinding
pub fn unwind_to_block(&mut self, target: mir::UnwindAction) -> InterpResult<'tcx> {
self.frame_mut().loc = match target {
mir::UnwindAction::Cleanup(block) => Left(mir::Location { block, statement_index: 0 }),
mir::UnwindAction::Continue => Right(self.frame_mut().body.span),
mir::UnwindAction::Unreachable => {
throw_ub_custom!(fluent::const_eval_unreachable_unwind);
}
mir::UnwindAction::Terminate(reason) => {
self.frame_mut().loc = Right(self.frame_mut().body.span);
M::unwind_terminate(self, reason)?;
// This might have pushed a new stack frame, or it terminated execution.
// Either way, `loc` will not be updated.
return Ok(());
}
};
Ok(())
}
/// Pops the current frame from the stack, deallocating the
/// memory for allocated locals, and jumps to an appropriate place.
///
/// If `unwinding` is `false`, then we are performing a normal return
/// from a function. In this case, we jump back into the frame of the caller,
/// and continue execution as normal.
///
/// If `unwinding` is `true`, then we are in the middle of a panic,
/// and need to unwind this frame. In this case, we jump to the
/// `cleanup` block for the function, which is responsible for running
/// `Drop` impls for any locals that have been initialized at this point.
/// The cleanup block ends with a special `Resume` terminator, which will
/// cause us to continue unwinding.
#[instrument(skip(self), level = "debug")]
pub(super) fn return_from_current_stack_frame(
&mut self,
unwinding: bool,
) -> InterpResult<'tcx> {
info!(
"popping stack frame ({})",
if unwinding { "during unwinding" } else { "returning from function" }
);
// Check `unwinding`.
assert_eq!(
unwinding,
match self.frame().loc {
Left(loc) => self.body().basic_blocks[loc.block].is_cleanup,
Right(_) => true,
}
);
if unwinding && self.frame_idx() == 0 {
throw_ub_custom!(fluent::const_eval_unwind_past_top);
}
M::before_stack_pop(self, self.frame())?;
// Copy return value. Must of course happen *before* we deallocate the locals.
let copy_ret_result = if !unwinding {
let op = self
.local_to_op(mir::RETURN_PLACE, None)
.expect("return place should always be live");
let dest = self.frame().return_place.clone();
let err = if self.stack().len() == 1 {
// The initializer of constants and statics will get validated separately
// after the constant has been fully evaluated. While we could fall back to the default
// code path, that will cause -Zenforce-validity to cycle on static initializers.
// Reading from a static's memory is not allowed during its evaluation, and will always
// trigger a cycle error. Validation must read from the memory of the current item.
// For Miri this means we do not validate the root frame return value,
// but Miri anyway calls `read_target_isize` on that so separate validation
// is not needed.
self.copy_op_no_dest_validation(&op, &dest)
} else {
self.copy_op_allow_transmute(&op, &dest)
};
trace!("return value: {:?}", self.dump_place(&dest.into()));
// We delay actually short-circuiting on this error until *after* the stack frame is
// popped, since we want this error to be attributed to the caller, whose type defines
// this transmute.
err
} else {
Ok(())
};
// All right, now it is time to actually pop the frame.
let stack_pop_info = self.pop_stack_frame(unwinding)?;
// Report error from return value copy, if any.
copy_ret_result?;
match stack_pop_info.return_action {
ReturnAction::Normal => {}
ReturnAction::NoJump => {
// The hook already did everything.
return Ok(());
}
ReturnAction::NoCleanup => {
// If we are not doing cleanup, also skip everything else.
assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
assert!(!unwinding, "tried to skip cleanup during unwinding");
// Skip machine hook.
return Ok(());
}
}
// Normal return, figure out where to jump.
if unwinding {
// Follow the unwind edge.
let unwind = match stack_pop_info.return_to_block {
StackPopCleanup::Goto { unwind, .. } => unwind,
StackPopCleanup::Root { .. } => {
panic!("encountered StackPopCleanup::Root when unwinding!")
}
};
// This must be the very last thing that happens, since it can in fact push a new stack frame.
self.unwind_to_block(unwind)
} else {
// Follow the normal return edge.
match stack_pop_info.return_to_block {
StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
StackPopCleanup::Root { .. } => {
assert!(
self.stack().is_empty(),
"only the topmost frame can have StackPopCleanup::Root"
);
Ok(())
}
}
}
}
/// In the current stack frame, mark all locals as live that are not arguments and don't have
/// `Storage*` annotations (this includes the return place).
pub fn storage_live_for_always_live_locals(&mut self) -> InterpResult<'tcx> {
self.storage_live(mir::RETURN_PLACE)?;
let body = self.body();
let always_live = always_storage_live_locals(body);
for local in body.vars_and_temps_iter() {
if always_live.contains(local) {
self.storage_live(local)?;
}
}
Ok(())
}
pub fn storage_live_dyn(
&mut self,
local: mir::Local,
meta: MemPlaceMeta<M::Provenance>,
) -> InterpResult<'tcx> {
trace!("{:?} is now live", local);
// We avoid `ty.is_trivially_sized` since that does something expensive for ADTs.
fn is_very_trivially_sized(ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_)
| ty::Dynamic(_, _, ty::DynStar) => true,
ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => false,
ty::Tuple(tys) => tys.last().is_none_or(|ty| is_very_trivially_sized(*ty)),
ty::Pat(ty, ..) => is_very_trivially_sized(*ty),
// We don't want to do any queries, so there is not much we can do with ADTs.
ty::Adt(..) => false,
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => false,
ty::Infer(ty::TyVar(_)) => false,
ty::Bound(..)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`is_very_trivially_sized` applied to unexpected type: {}", ty)
}
}
}
// This is a hot function, we avoid computing the layout when possible.
// `unsized_` will be `None` for sized types and `Some(layout)` for unsized types.
let unsized_ = if is_very_trivially_sized(self.body().local_decls[local].ty) {
None
} else {
// We need the layout.
let layout = self.layout_of_local(self.frame(), local, None)?;
if layout.is_sized() { None } else { Some(layout) }
};
let local_val = LocalValue::Live(if let Some(layout) = unsized_ {
if !meta.has_meta() {
throw_unsup!(UnsizedLocal);
}
// Need to allocate some memory, since `Immediate::Uninit` cannot be unsized.
let dest_place = self.allocate_dyn(layout, MemoryKind::Stack, meta)?;
Operand::Indirect(*dest_place.mplace())
} else {
assert!(!meta.has_meta()); // we're dropping the metadata
// Just make this an efficient immediate.
// Note that not calling `layout_of` here does have one real consequence:
// if the type is too big, we'll only notice this when the local is actually initialized,
// which is a bit too late -- we should ideally notice this already here, when the memory
// is conceptually allocated. But given how rare that error is and that this is a hot function,
// we accept this downside for now.
Operand::Immediate(Immediate::Uninit)
});
// If the local is already live, deallocate its old memory.
let old = mem::replace(&mut self.frame_mut().locals[local].value, local_val);
self.deallocate_local(old)?;
Ok(())
}
/// Mark a storage as live, killing the previous content.
#[inline(always)]
pub fn storage_live(&mut self, local: mir::Local) -> InterpResult<'tcx> {
self.storage_live_dyn(local, MemPlaceMeta::None)
}
pub fn storage_dead(&mut self, local: mir::Local) -> InterpResult<'tcx> {
assert!(local != mir::RETURN_PLACE, "Cannot make return place dead");
trace!("{:?} is now dead", local);
// If the local is already dead, this is a NOP.
let old = mem::replace(&mut self.frame_mut().locals[local].value, LocalValue::Dead);
self.deallocate_local(old)?;
Ok(())
}
#[instrument(skip(self), level = "debug")]
fn deallocate_local(&mut self, local: LocalValue<M::Provenance>) -> InterpResult<'tcx> {
if let LocalValue::Live(Operand::Indirect(MemPlace { ptr, .. })) = local {
// All locals have a backing allocation, even if the allocation is empty
// due to the local having ZST type. Hence we can `unwrap`.
trace!(
"deallocating local {:?}: {:?}",
local,
// Locals always have a `alloc_id` (they are never the result of a int2ptr).
self.dump_alloc(ptr.provenance.unwrap().get_alloc_id().unwrap())
);
self.deallocate_ptr(ptr, None, MemoryKind::Stack)?;
};
Ok(())
}
/// Call a query that can return `ErrorHandled`. Should be used for statics and other globals.
/// (`mir::Const`/`ty::Const` have `eval` methods that can be used directly instead.)
pub fn ctfe_query<T>(
&self,
query: impl FnOnce(TyCtxtAt<'tcx>) -> Result<T, ErrorHandled>,
) -> Result<T, ErrorHandled> {
// Use a precise span for better cycle errors.
query(self.tcx.at(self.cur_span())).map_err(|err| {
err.emit_note(*self.tcx);
err
})
}
pub fn eval_global(
&self,
instance: ty::Instance<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
let gid = GlobalId { instance, promoted: None };
let val = if self.tcx.is_static(gid.instance.def_id()) {
let alloc_id = self.tcx.reserve_and_set_static_alloc(gid.instance.def_id());
let ty = instance.ty(self.tcx.tcx, self.param_env);
mir::ConstAlloc { alloc_id, ty }
} else {
self.ctfe_query(|tcx| tcx.eval_to_allocation_raw(self.param_env.and(gid)))?
};
self.raw_const_to_mplace(val)
}
pub fn eval_mir_constant(
&self,
val: &mir::Const<'tcx>,
span: Span,
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
M::eval_mir_constant(self, *val, span, layout, |ecx, val, span, layout| {
let const_val = val.eval(*ecx.tcx, ecx.param_env, span).map_err(|err| {
if M::ALL_CONSTS_ARE_PRECHECKED {
match err {
ErrorHandled::TooGeneric(..) => {},
ErrorHandled::Reported(reported, span) => {
if reported.is_tainted_by_errors() {
// const-eval will return "tainted" errors if e.g. the layout cannot
// be computed as the type references non-existing names.
// See <https://github.com/rust-lang/rust/issues/124348>.
} else {
// Looks like the const is not captued by `required_consts`, that's bad.
span_bug!(span, "interpret const eval failure of {val:?} which is not in required_consts");
}
}
}
}
err.emit_note(*ecx.tcx);
err
})?;
ecx.const_val_to_op(const_val, val.ty(), layout)
})
}
#[must_use]
pub fn dump_place(&self, place: &PlaceTy<'tcx, M::Provenance>) -> PlacePrinter<'_, 'tcx, M> {
PlacePrinter { ecx: self, place: *place.place() }
}
#[must_use]
pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>> {
Frame::generate_stacktrace_from_stack(self.stack())
}
}
#[doc(hidden)]
/// Helper struct for the `dump_place` function.
pub struct PlacePrinter<'a, 'tcx, M: Machine<'tcx>> {
ecx: &'a InterpCx<'tcx, M>,
place: Place<M::Provenance>,
}
impl<'a, 'tcx, M: Machine<'tcx>> std::fmt::Debug for PlacePrinter<'a, 'tcx, M> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self.place {
Place::Local { local, offset, locals_addr } => {
debug_assert_eq!(locals_addr, self.ecx.frame().locals_addr());
let mut allocs = Vec::new();
write!(fmt, "{local:?}")?;
if let Some(offset) = offset {
write!(fmt, "+{:#x}", offset.bytes())?;
}
write!(fmt, ":")?;
match self.ecx.frame().locals[local].value {
LocalValue::Dead => write!(fmt, " is dead")?,
LocalValue::Live(Operand::Immediate(Immediate::Uninit)) => {
write!(fmt, " is uninitialized")?
}
LocalValue::Live(Operand::Indirect(mplace)) => {
write!(
fmt,
" by {} ref {:?}:",
match mplace.meta {
MemPlaceMeta::Meta(meta) => format!(" meta({meta:?})"),
MemPlaceMeta::None => String::new(),
},
mplace.ptr,
)?;
allocs.extend(mplace.ptr.provenance.map(Provenance::get_alloc_id));
}
LocalValue::Live(Operand::Immediate(Immediate::Scalar(val))) => {
write!(fmt, " {val:?}")?;
if let Scalar::Ptr(ptr, _size) = val {
allocs.push(ptr.provenance.get_alloc_id());
}
}
LocalValue::Live(Operand::Immediate(Immediate::ScalarPair(val1, val2))) => {
write!(fmt, " ({val1:?}, {val2:?})")?;
if let Scalar::Ptr(ptr, _size) = val1 {
allocs.push(ptr.provenance.get_alloc_id());
}
if let Scalar::Ptr(ptr, _size) = val2 {
allocs.push(ptr.provenance.get_alloc_id());
}
}
}
write!(fmt, ": {:?}", self.ecx.dump_allocs(allocs.into_iter().flatten().collect()))
}
Place::Ptr(mplace) => match mplace.ptr.provenance.and_then(Provenance::get_alloc_id) {
Some(alloc_id) => {
write!(fmt, "by ref {:?}: {:?}", mplace.ptr, self.ecx.dump_alloc(alloc_id))
}
ptr => write!(fmt, " integral by ref: {ptr:?}"),
},
}
}
}