1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use crate::interpret::{
    self, throw_machine_stop, HasStaticRootDefId, ImmTy, Immediate, InterpCx, PointerArithmetic,
};
use rustc_middle::mir::interpret::{AllocId, ConstAllocation, InterpResult};
use rustc_middle::mir::*;
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::DefId;

/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
pub macro throw_machine_stop_str($($tt:tt)*) {{
    // We make a new local type for it. The type itself does not carry any information,
    // but its vtable (for the `MachineStopType` trait) does.
    #[derive(Debug)]
    struct Zst;
    // Printing this type shows the desired string.
    impl std::fmt::Display for Zst {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, $($tt)*)
        }
    }

    impl rustc_middle::mir::interpret::MachineStopType for Zst {
        fn diagnostic_message(&self) -> rustc_errors::DiagMessage {
            self.to_string().into()
        }

        fn add_args(
            self: Box<Self>,
            _: &mut dyn FnMut(rustc_errors::DiagArgName, rustc_errors::DiagArgValue),
        ) {}
    }
    throw_machine_stop!(Zst)
}}

pub struct DummyMachine;

impl HasStaticRootDefId for DummyMachine {
    fn static_def_id(&self) -> Option<rustc_hir::def_id::LocalDefId> {
        None
    }
}

impl<'tcx> interpret::Machine<'tcx> for DummyMachine {
    interpret::compile_time_machine!(<'tcx>);
    type MemoryKind = !;
    const PANIC_ON_ALLOC_FAIL: bool = true;

    // We want to just eval random consts in the program, so `eval_mir_const` can fail.
    const ALL_CONSTS_ARE_PRECHECKED: bool = false;

    #[inline(always)]
    fn enforce_alignment(_ecx: &InterpCx<'tcx, Self>) -> bool {
        false // no reason to enforce alignment
    }

    fn enforce_validity(_ecx: &InterpCx<'tcx, Self>, _layout: TyAndLayout<'tcx>) -> bool {
        false
    }

    fn before_access_global(
        _tcx: TyCtxtAt<'tcx>,
        _machine: &Self,
        _alloc_id: AllocId,
        alloc: ConstAllocation<'tcx>,
        _static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        if is_write {
            throw_machine_stop_str!("can't write to global");
        }

        // If the static allocation is mutable, then we can't const prop it as its content
        // might be different at runtime.
        if alloc.inner().mutability.is_mut() {
            throw_machine_stop_str!("can't access mutable globals in ConstProp");
        }

        Ok(())
    }

    fn find_mir_or_eval_fn(
        _ecx: &mut InterpCx<'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _abi: rustc_target::spec::abi::Abi,
        _args: &[interpret::FnArg<'tcx, Self::Provenance>],
        _destination: &interpret::MPlaceTy<'tcx, Self::Provenance>,
        _target: Option<BasicBlock>,
        _unwind: UnwindAction,
    ) -> interpret::InterpResult<'tcx, Option<(&'tcx Body<'tcx>, ty::Instance<'tcx>)>> {
        unimplemented!()
    }

    fn panic_nounwind(
        _ecx: &mut InterpCx<'tcx, Self>,
        _msg: &str,
    ) -> interpret::InterpResult<'tcx> {
        unimplemented!()
    }

    fn call_intrinsic(
        _ecx: &mut InterpCx<'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _args: &[interpret::OpTy<'tcx, Self::Provenance>],
        _destination: &interpret::MPlaceTy<'tcx, Self::Provenance>,
        _target: Option<BasicBlock>,
        _unwind: UnwindAction,
    ) -> interpret::InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
        unimplemented!()
    }

    fn assert_panic(
        _ecx: &mut InterpCx<'tcx, Self>,
        _msg: &rustc_middle::mir::AssertMessage<'tcx>,
        _unwind: UnwindAction,
    ) -> interpret::InterpResult<'tcx> {
        unimplemented!()
    }

    fn binary_ptr_op(
        ecx: &InterpCx<'tcx, Self>,
        bin_op: BinOp,
        left: &interpret::ImmTy<'tcx, Self::Provenance>,
        right: &interpret::ImmTy<'tcx, Self::Provenance>,
    ) -> interpret::InterpResult<'tcx, ImmTy<'tcx, Self::Provenance>> {
        use rustc_middle::mir::BinOp::*;
        Ok(match bin_op {
            Eq | Ne | Lt | Le | Gt | Ge => {
                // Types can differ, e.g. fn ptrs with different `for`.
                assert_eq!(left.layout.abi, right.layout.abi);
                let size = ecx.pointer_size();
                // Just compare the bits. ScalarPairs are compared lexicographically.
                // We thus always compare pairs and simply fill scalars up with 0.
                // If the pointer has provenance, `to_bits` will return `Err` and we bail out.
                let left = match **left {
                    Immediate::Scalar(l) => (l.to_bits(size)?, 0),
                    Immediate::ScalarPair(l1, l2) => (l1.to_bits(size)?, l2.to_bits(size)?),
                    Immediate::Uninit => panic!("we should never see uninit data here"),
                };
                let right = match **right {
                    Immediate::Scalar(r) => (r.to_bits(size)?, 0),
                    Immediate::ScalarPair(r1, r2) => (r1.to_bits(size)?, r2.to_bits(size)?),
                    Immediate::Uninit => panic!("we should never see uninit data here"),
                };
                let res = match bin_op {
                    Eq => left == right,
                    Ne => left != right,
                    Lt => left < right,
                    Le => left <= right,
                    Gt => left > right,
                    Ge => left >= right,
                    _ => bug!(),
                };
                ImmTy::from_bool(res, *ecx.tcx)
            }

            // Some more operations are possible with atomics.
            // The return value always has the provenance of the *left* operand.
            Add | Sub | BitOr | BitAnd | BitXor => {
                throw_machine_stop_str!("pointer arithmetic is not handled")
            }

            _ => span_bug!(ecx.cur_span(), "Invalid operator on pointers: {:?}", bin_op),
        })
    }

    fn expose_ptr(
        _ecx: &mut InterpCx<'tcx, Self>,
        _ptr: interpret::Pointer<Self::Provenance>,
    ) -> interpret::InterpResult<'tcx> {
        unimplemented!()
    }

    fn init_frame(
        _ecx: &mut InterpCx<'tcx, Self>,
        _frame: interpret::Frame<'tcx, Self::Provenance>,
    ) -> interpret::InterpResult<'tcx, interpret::Frame<'tcx, Self::Provenance, Self::FrameExtra>>
    {
        unimplemented!()
    }

    fn stack<'a>(
        _ecx: &'a InterpCx<'tcx, Self>,
    ) -> &'a [interpret::Frame<'tcx, Self::Provenance, Self::FrameExtra>] {
        // Return an empty stack instead of panicking, as `cur_span` uses it to evaluate constants.
        &[]
    }

    fn stack_mut<'a>(
        _ecx: &'a mut InterpCx<'tcx, Self>,
    ) -> &'a mut Vec<interpret::Frame<'tcx, Self::Provenance, Self::FrameExtra>> {
        unimplemented!()
    }
}