1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! Propagate `Qualif`s between locals and query the results.
//!
//! This contains the dataflow analysis used to track `Qualif`s on complex control-flow graphs.

use rustc_index::bit_set::BitSet;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{
    self, BasicBlock, CallReturnPlaces, Local, Location, Statement, StatementKind, TerminatorEdges,
};
use rustc_mir_dataflow::fmt::DebugWithContext;
use rustc_mir_dataflow::JoinSemiLattice;
use rustc_mir_dataflow::{Analysis, AnalysisDomain};

use std::fmt;
use std::marker::PhantomData;

use super::{qualifs, ConstCx, Qualif};

/// A `Visitor` that propagates qualifs between locals. This defines the transfer function of
/// `FlowSensitiveAnalysis`.
///
/// To account for indirect assignments, data flow conservatively assumes that local becomes
/// qualified immediately after it is borrowed or its address escapes. The borrow must allow for
/// mutation, which includes shared borrows of places with interior mutability. The type of
/// borrowed place must contain the qualif.
struct TransferFunction<'a, 'mir, 'tcx, Q> {
    ccx: &'a ConstCx<'mir, 'tcx>,
    state: &'a mut State,
    _qualif: PhantomData<Q>,
}

impl<'a, 'mir, 'tcx, Q> TransferFunction<'a, 'mir, 'tcx, Q>
where
    Q: Qualif,
{
    fn new(ccx: &'a ConstCx<'mir, 'tcx>, state: &'a mut State) -> Self {
        TransferFunction { ccx, state, _qualif: PhantomData }
    }

    fn initialize_state(&mut self) {
        self.state.qualif.clear();
        self.state.borrow.clear();

        for arg in self.ccx.body.args_iter() {
            let arg_ty = self.ccx.body.local_decls[arg].ty;
            if Q::in_any_value_of_ty(self.ccx, arg_ty) {
                self.state.qualif.insert(arg);
            }
        }
    }

    fn assign_qualif_direct(&mut self, place: &mir::Place<'tcx>, mut value: bool) {
        debug_assert!(!place.is_indirect());

        if !value {
            for (base, _elem) in place.iter_projections() {
                let base_ty = base.ty(self.ccx.body, self.ccx.tcx);
                if base_ty.ty.is_union() && Q::in_any_value_of_ty(self.ccx, base_ty.ty) {
                    value = true;
                    break;
                }
            }
        }

        match (value, place.as_ref()) {
            (true, mir::PlaceRef { local, .. }) => {
                self.state.qualif.insert(local);
            }

            // For now, we do not clear the qualif if a local is overwritten in full by
            // an unqualified rvalue (e.g. `y = 5`). This is to be consistent
            // with aggregates where we overwrite all fields with assignments, which would not
            // get this feature.
            (false, mir::PlaceRef { local: _, projection: &[] }) => {
                // self.state.qualif.remove(*local);
            }

            _ => {}
        }
    }

    fn apply_call_return_effect(
        &mut self,
        _block: BasicBlock,
        return_places: CallReturnPlaces<'_, 'tcx>,
    ) {
        return_places.for_each(|place| {
            // We cannot reason about another function's internals, so use conservative type-based
            // qualification for the result of a function call.
            let return_ty = place.ty(self.ccx.body, self.ccx.tcx).ty;
            let qualif = Q::in_any_value_of_ty(self.ccx, return_ty);

            if !place.is_indirect() {
                self.assign_qualif_direct(&place, qualif);
            }
        });
    }

    fn address_of_allows_mutation(&self) -> bool {
        // Exact set of permissions granted by AddressOf is undecided. Conservatively assume that
        // it might allow mutation until resolution of #56604.
        true
    }

    fn ref_allows_mutation(&self, kind: mir::BorrowKind, place: mir::Place<'tcx>) -> bool {
        match kind {
            mir::BorrowKind::Mut { .. } => true,
            mir::BorrowKind::Shared | mir::BorrowKind::Fake(_) => {
                self.shared_borrow_allows_mutation(place)
            }
        }
    }

    /// `&` only allow mutation if the borrowed place is `!Freeze`.
    ///
    /// This assumes that it is UB to take the address of a struct field whose type is
    /// `Freeze`, then use pointer arithmetic to derive a pointer to a *different* field of
    /// that same struct whose type is `!Freeze`. If we decide that this is not UB, we will
    /// have to check the type of the borrowed **local** instead of the borrowed **place**
    /// below. See [rust-lang/unsafe-code-guidelines#134].
    ///
    /// [rust-lang/unsafe-code-guidelines#134]: https://github.com/rust-lang/unsafe-code-guidelines/issues/134
    fn shared_borrow_allows_mutation(&self, place: mir::Place<'tcx>) -> bool {
        !place.ty(self.ccx.body, self.ccx.tcx).ty.is_freeze(self.ccx.tcx, self.ccx.param_env)
    }
}

impl<'tcx, Q> Visitor<'tcx> for TransferFunction<'_, '_, 'tcx, Q>
where
    Q: Qualif,
{
    fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
        self.super_operand(operand, location);

        if !Q::IS_CLEARED_ON_MOVE {
            return;
        }

        // If a local with no projections is moved from (e.g. `x` in `y = x`), record that
        // it no longer needs to be dropped.
        if let mir::Operand::Move(place) = operand {
            if let Some(local) = place.as_local() {
                // For backward compatibility with the MaybeMutBorrowedLocals used in an earlier
                // implementation we retain qualif if a local had been borrowed before. This might
                // not be strictly necessary since the local is no longer initialized.
                if !self.state.borrow.contains(local) {
                    self.state.qualif.remove(local);
                }
            }
        }
    }

    fn visit_assign(
        &mut self,
        place: &mir::Place<'tcx>,
        rvalue: &mir::Rvalue<'tcx>,
        location: Location,
    ) {
        let qualif =
            qualifs::in_rvalue::<Q, _>(self.ccx, &mut |l| self.state.qualif.contains(l), rvalue);
        if !place.is_indirect() {
            self.assign_qualif_direct(place, qualif);
        }

        // We need to assign qualifs to the left-hand side before visiting `rvalue` since
        // qualifs can be cleared on move.
        self.super_assign(place, rvalue, location);
    }

    fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
        self.super_rvalue(rvalue, location);

        match rvalue {
            mir::Rvalue::AddressOf(_mt, borrowed_place) => {
                if !borrowed_place.is_indirect() && self.address_of_allows_mutation() {
                    let place_ty = borrowed_place.ty(self.ccx.body, self.ccx.tcx).ty;
                    if Q::in_any_value_of_ty(self.ccx, place_ty) {
                        self.state.qualif.insert(borrowed_place.local);
                        self.state.borrow.insert(borrowed_place.local);
                    }
                }
            }

            mir::Rvalue::Ref(_, kind, borrowed_place) => {
                if !borrowed_place.is_indirect() && self.ref_allows_mutation(*kind, *borrowed_place)
                {
                    let place_ty = borrowed_place.ty(self.ccx.body, self.ccx.tcx).ty;
                    if Q::in_any_value_of_ty(self.ccx, place_ty) {
                        self.state.qualif.insert(borrowed_place.local);
                        self.state.borrow.insert(borrowed_place.local);
                    }
                }
            }

            mir::Rvalue::Cast(..)
            | mir::Rvalue::ShallowInitBox(..)
            | mir::Rvalue::Use(..)
            | mir::Rvalue::CopyForDeref(..)
            | mir::Rvalue::ThreadLocalRef(..)
            | mir::Rvalue::Repeat(..)
            | mir::Rvalue::Len(..)
            | mir::Rvalue::BinaryOp(..)
            | mir::Rvalue::NullaryOp(..)
            | mir::Rvalue::UnaryOp(..)
            | mir::Rvalue::Discriminant(..)
            | mir::Rvalue::Aggregate(..) => {}
        }
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match statement.kind {
            StatementKind::StorageDead(local) => {
                self.state.qualif.remove(local);
                self.state.borrow.remove(local);
            }
            _ => self.super_statement(statement, location),
        }
    }

    fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
        // The effect of assignment to the return place in `TerminatorKind::Call` is not applied
        // here; that occurs in `apply_call_return_effect`.

        // We ignore borrow on drop because custom drop impls are not allowed in consts.
        // FIXME: Reconsider if accounting for borrows in drops is necessary for const drop.
        self.super_terminator(terminator, location);
    }
}

/// The dataflow analysis used to propagate qualifs on arbitrary CFGs.
pub(super) struct FlowSensitiveAnalysis<'a, 'mir, 'tcx, Q> {
    ccx: &'a ConstCx<'mir, 'tcx>,
    _qualif: PhantomData<Q>,
}

impl<'a, 'mir, 'tcx, Q> FlowSensitiveAnalysis<'a, 'mir, 'tcx, Q>
where
    Q: Qualif,
{
    pub(super) fn new(_: Q, ccx: &'a ConstCx<'mir, 'tcx>) -> Self {
        FlowSensitiveAnalysis { ccx, _qualif: PhantomData }
    }

    fn transfer_function(&self, state: &'a mut State) -> TransferFunction<'a, 'mir, 'tcx, Q> {
        TransferFunction::<Q>::new(self.ccx, state)
    }
}

#[derive(Debug, PartialEq, Eq)]
pub(super) struct State {
    /// Describes whether a local contains qualif.
    pub qualif: BitSet<Local>,
    /// Describes whether a local's address escaped and it might become qualified as a result an
    /// indirect mutation.
    pub borrow: BitSet<Local>,
}

impl Clone for State {
    fn clone(&self) -> Self {
        State { qualif: self.qualif.clone(), borrow: self.borrow.clone() }
    }

    // Data flow engine when possible uses `clone_from` for domain values.
    // Providing an implementation will avoid some intermediate memory allocations.
    fn clone_from(&mut self, other: &Self) {
        self.qualif.clone_from(&other.qualif);
        self.borrow.clone_from(&other.borrow);
    }
}

impl State {
    #[inline]
    pub(super) fn contains(&self, local: Local) -> bool {
        self.qualif.contains(local)
    }
}

impl<C> DebugWithContext<C> for State {
    fn fmt_with(&self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("qualif: ")?;
        self.qualif.fmt_with(ctxt, f)?;
        f.write_str(" borrow: ")?;
        self.borrow.fmt_with(ctxt, f)?;
        Ok(())
    }

    fn fmt_diff_with(&self, old: &Self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self == old {
            return Ok(());
        }

        if self.qualif != old.qualif {
            f.write_str("qualif: ")?;
            self.qualif.fmt_diff_with(&old.qualif, ctxt, f)?;
            f.write_str("\n")?;
        }

        if self.borrow != old.borrow {
            f.write_str("borrow: ")?;
            self.qualif.fmt_diff_with(&old.borrow, ctxt, f)?;
            f.write_str("\n")?;
        }

        Ok(())
    }
}

impl JoinSemiLattice for State {
    fn join(&mut self, other: &Self) -> bool {
        self.qualif.join(&other.qualif) || self.borrow.join(&other.borrow)
    }
}

impl<'tcx, Q> AnalysisDomain<'tcx> for FlowSensitiveAnalysis<'_, '_, 'tcx, Q>
where
    Q: Qualif,
{
    type Domain = State;

    const NAME: &'static str = Q::ANALYSIS_NAME;

    fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
        State {
            qualif: BitSet::new_empty(body.local_decls.len()),
            borrow: BitSet::new_empty(body.local_decls.len()),
        }
    }

    fn initialize_start_block(&self, _body: &mir::Body<'tcx>, state: &mut Self::Domain) {
        self.transfer_function(state).initialize_state();
    }
}

impl<'tcx, Q> Analysis<'tcx> for FlowSensitiveAnalysis<'_, '_, 'tcx, Q>
where
    Q: Qualif,
{
    fn apply_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        statement: &mir::Statement<'tcx>,
        location: Location,
    ) {
        self.transfer_function(state).visit_statement(statement, location);
    }

    fn apply_terminator_effect<'mir>(
        &mut self,
        state: &mut Self::Domain,
        terminator: &'mir mir::Terminator<'tcx>,
        location: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        self.transfer_function(state).visit_terminator(terminator, location);
        terminator.edges()
    }

    fn apply_call_return_effect(
        &mut self,
        state: &mut Self::Domain,
        block: BasicBlock,
        return_places: CallReturnPlaces<'_, 'tcx>,
    ) {
        self.transfer_function(state).apply_call_return_effect(block, return_places)
    }
}