1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
use super::place::{PlaceRef, PlaceValue};
use super::{FunctionCx, LocalRef};

use crate::size_of_val;
use crate::traits::*;
use crate::MemFlags;

use rustc_middle::bug;
use rustc_middle::mir::interpret::{alloc_range, Pointer, Scalar};
use rustc_middle::mir::{self, ConstValue};
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::Ty;
use rustc_target::abi::{self, Abi, Align, Size};

use std::fmt;

use arrayvec::ArrayVec;
use either::Either;
use tracing::debug;

/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone, Debug)]
pub enum OperandValue<V> {
    /// A reference to the actual operand. The data is guaranteed
    /// to be valid for the operand's lifetime.
    /// The second value, if any, is the extra data (vtable or length)
    /// which indicates that it refers to an unsized rvalue.
    ///
    /// An `OperandValue` *must* be this variant for any type for which
    /// [`LayoutTypeMethods::is_backend_ref`] returns `true`.
    /// (That basically amounts to "isn't one of the other variants".)
    ///
    /// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
    /// to the location holding the value. The type behind that pointer is the
    /// one returned by [`LayoutTypeMethods::backend_type`].
    Ref(PlaceValue<V>),
    /// A single LLVM immediate value.
    ///
    /// An `OperandValue` *must* be this variant for any type for which
    /// [`LayoutTypeMethods::is_backend_immediate`] returns `true`.
    /// The backend value in this variant must be the *immediate* backend type,
    /// as returned by [`LayoutTypeMethods::immediate_backend_type`].
    Immediate(V),
    /// A pair of immediate LLVM values. Used by fat pointers too.
    ///
    /// An `OperandValue` *must* be this variant for any type for which
    /// [`LayoutTypeMethods::is_backend_scalar_pair`] returns `true`.
    /// The backend values in this variant must be the *immediate* backend types,
    /// as returned by [`LayoutTypeMethods::scalar_pair_element_backend_type`]
    /// with `immediate: true`.
    Pair(V, V),
    /// A value taking no bytes, and which therefore needs no LLVM value at all.
    ///
    /// If you ever need a `V` to pass to something, get a fresh poison value
    /// from [`ConstMethods::const_poison`].
    ///
    /// An `OperandValue` *must* be this variant for any type for which
    /// `is_zst` on its `Layout` returns `true`. Note however that
    /// these values can still require alignment.
    ZeroSized,
}

impl<V: CodegenObject> OperandValue<V> {
    /// If this is ZeroSized/Immediate/Pair, return an array of the 0/1/2 values.
    /// If this is Ref, return the place.
    #[inline]
    pub fn immediates_or_place(self) -> Either<ArrayVec<V, 2>, PlaceValue<V>> {
        match self {
            OperandValue::ZeroSized => Either::Left(ArrayVec::new()),
            OperandValue::Immediate(a) => Either::Left(ArrayVec::from_iter([a])),
            OperandValue::Pair(a, b) => Either::Left([a, b].into()),
            OperandValue::Ref(p) => Either::Right(p),
        }
    }

    /// Given an array of 0/1/2 immediate values, return ZeroSized/Immediate/Pair.
    #[inline]
    pub fn from_immediates(immediates: ArrayVec<V, 2>) -> Self {
        let mut it = immediates.into_iter();
        let Some(a) = it.next() else {
            return OperandValue::ZeroSized;
        };
        let Some(b) = it.next() else {
            return OperandValue::Immediate(a);
        };
        OperandValue::Pair(a, b)
    }

    /// Treat this value as a pointer and return the data pointer and
    /// optional metadata as backend values.
    ///
    /// If you're making a place, use [`Self::deref`] instead.
    pub fn pointer_parts(self) -> (V, Option<V>) {
        match self {
            OperandValue::Immediate(llptr) => (llptr, None),
            OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
            _ => bug!("OperandValue cannot be a pointer: {self:?}"),
        }
    }

    /// Treat this value as a pointer and return the place to which it points.
    ///
    /// The pointer immediate doesn't inherently know its alignment,
    /// so you need to pass it in. If you want to get it from a type's ABI
    /// alignment, then maybe you want [`OperandRef::deref`] instead.
    ///
    /// This is the inverse of [`PlaceValue::address`].
    pub fn deref(self, align: Align) -> PlaceValue<V> {
        let (llval, llextra) = self.pointer_parts();
        PlaceValue { llval, llextra, align }
    }

    pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeMethods<'tcx>>(
        &self,
        cx: &Cx,
        ty: TyAndLayout<'tcx>,
    ) -> bool {
        match self {
            OperandValue::ZeroSized => ty.is_zst(),
            OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
            OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
            OperandValue::Ref(_) => cx.is_backend_ref(ty),
        }
    }
}

/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder::store`
/// directly is sure to cause problems -- use `OperandRef::store`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx, V> {
    /// The value.
    pub val: OperandValue<V>,

    /// The layout of value, based on its Rust type.
    pub layout: TyAndLayout<'tcx>,
}

impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
    }
}

impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
    pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
        assert!(layout.is_zst());
        OperandRef { val: OperandValue::ZeroSized, layout }
    }

    pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        bx: &mut Bx,
        val: mir::ConstValue<'tcx>,
        ty: Ty<'tcx>,
    ) -> Self {
        let layout = bx.layout_of(ty);

        let val = match val {
            ConstValue::Scalar(x) => {
                let Abi::Scalar(scalar) = layout.abi else {
                    bug!("from_const: invalid ByVal layout: {:#?}", layout);
                };
                let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
                OperandValue::Immediate(llval)
            }
            ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
            ConstValue::Slice { data, meta } => {
                let Abi::ScalarPair(a_scalar, _) = layout.abi else {
                    bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
                };
                let a = Scalar::from_pointer(
                    Pointer::new(bx.tcx().reserve_and_set_memory_alloc(data).into(), Size::ZERO),
                    &bx.tcx(),
                );
                let a_llval = bx.scalar_to_backend(
                    a,
                    a_scalar,
                    bx.scalar_pair_element_backend_type(layout, 0, true),
                );
                let b_llval = bx.const_usize(meta);
                OperandValue::Pair(a_llval, b_llval)
            }
            ConstValue::Indirect { alloc_id, offset } => {
                let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
                return Self::from_const_alloc(bx, layout, alloc, offset);
            }
        };

        OperandRef { val, layout }
    }

    fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        bx: &mut Bx,
        layout: TyAndLayout<'tcx>,
        alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
        offset: Size,
    ) -> Self {
        let alloc_align = alloc.inner().align;
        assert!(alloc_align >= layout.align.abi);

        let read_scalar = |start, size, s: abi::Scalar, ty| {
            match alloc.0.read_scalar(
                bx,
                alloc_range(start, size),
                /*read_provenance*/ matches!(s.primitive(), abi::Pointer(_)),
            ) {
                Ok(val) => bx.scalar_to_backend(val, s, ty),
                Err(_) => bx.const_poison(ty),
            }
        };

        // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
        // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
        // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
        // case where some of the bytes are initialized and others are not. So, we need an extra
        // check that walks over the type of `mplace` to make sure it is truly correct to treat this
        // like a `Scalar` (or `ScalarPair`).
        match layout.abi {
            Abi::Scalar(s @ abi::Scalar::Initialized { .. }) => {
                let size = s.size(bx);
                assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
                let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
                OperandRef { val: OperandValue::Immediate(val), layout }
            }
            Abi::ScalarPair(
                a @ abi::Scalar::Initialized { .. },
                b @ abi::Scalar::Initialized { .. },
            ) => {
                let (a_size, b_size) = (a.size(bx), b.size(bx));
                let b_offset = (offset + a_size).align_to(b.align(bx).abi);
                assert!(b_offset.bytes() > 0);
                let a_val = read_scalar(
                    offset,
                    a_size,
                    a,
                    bx.scalar_pair_element_backend_type(layout, 0, true),
                );
                let b_val = read_scalar(
                    b_offset,
                    b_size,
                    b,
                    bx.scalar_pair_element_backend_type(layout, 1, true),
                );
                OperandRef { val: OperandValue::Pair(a_val, b_val), layout }
            }
            _ if layout.is_zst() => OperandRef::zero_sized(layout),
            _ => {
                // Neither a scalar nor scalar pair. Load from a place
                // FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
                // same `ConstAllocation`?
                let init = bx.const_data_from_alloc(alloc);
                let base_addr = bx.static_addr_of(init, alloc_align, None);

                let llval = bx.const_ptr_byte_offset(base_addr, offset);
                bx.load_operand(PlaceRef::new_sized(llval, layout))
            }
        }
    }

    /// Asserts that this operand refers to a scalar and returns
    /// a reference to its value.
    pub fn immediate(self) -> V {
        match self.val {
            OperandValue::Immediate(s) => s,
            _ => bug!("not immediate: {:?}", self),
        }
    }

    /// Asserts that this operand is a pointer (or reference) and returns
    /// the place to which it points.  (This requires no code to be emitted
    /// as we represent places using the pointer to the place.)
    ///
    /// This uses [`Ty::builtin_deref`] to include the type of the place and
    /// assumes the place is aligned to the pointee's usual ABI alignment.
    ///
    /// If you don't need the type, see [`OperandValue::pointer_parts`]
    /// or [`OperandValue::deref`].
    pub fn deref<Cx: LayoutTypeMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
        if self.layout.ty.is_box() {
            // Derefer should have removed all Box derefs
            bug!("dereferencing {:?} in codegen", self.layout.ty);
        }

        let projected_ty = self
            .layout
            .ty
            .builtin_deref(true)
            .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));

        let layout = cx.layout_of(projected_ty);
        self.val.deref(layout.align.abi).with_type(layout)
    }

    /// If this operand is a `Pair`, we return an aggregate with the two values.
    /// For other cases, see `immediate`.
    pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
    ) -> V {
        if let OperandValue::Pair(a, b) = self.val {
            let llty = bx.cx().immediate_backend_type(self.layout);
            debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
            // Reconstruct the immediate aggregate.
            let mut llpair = bx.cx().const_poison(llty);
            llpair = bx.insert_value(llpair, a, 0);
            llpair = bx.insert_value(llpair, b, 1);
            llpair
        } else {
            self.immediate()
        }
    }

    /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
    pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        bx: &mut Bx,
        llval: V,
        layout: TyAndLayout<'tcx>,
    ) -> Self {
        let val = if let Abi::ScalarPair(..) = layout.abi {
            debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);

            // Deconstruct the immediate aggregate.
            let a_llval = bx.extract_value(llval, 0);
            let b_llval = bx.extract_value(llval, 1);
            OperandValue::Pair(a_llval, b_llval)
        } else {
            OperandValue::Immediate(llval)
        };
        OperandRef { val, layout }
    }

    pub fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        &self,
        bx: &mut Bx,
        i: usize,
    ) -> Self {
        let field = self.layout.field(bx.cx(), i);
        let offset = self.layout.fields.offset(i);

        let mut val = match (self.val, self.layout.abi) {
            // If the field is ZST, it has no data.
            _ if field.is_zst() => OperandValue::ZeroSized,

            // Newtype of a scalar, scalar pair or vector.
            (OperandValue::Immediate(_) | OperandValue::Pair(..), _)
                if field.size == self.layout.size =>
            {
                assert_eq!(offset.bytes(), 0);
                self.val
            }

            // Extract a scalar component from a pair.
            (OperandValue::Pair(a_llval, b_llval), Abi::ScalarPair(a, b)) => {
                if offset.bytes() == 0 {
                    assert_eq!(field.size, a.size(bx.cx()));
                    OperandValue::Immediate(a_llval)
                } else {
                    assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
                    assert_eq!(field.size, b.size(bx.cx()));
                    OperandValue::Immediate(b_llval)
                }
            }

            // `#[repr(simd)]` types are also immediate.
            (OperandValue::Immediate(llval), Abi::Vector { .. }) => {
                OperandValue::Immediate(bx.extract_element(llval, bx.cx().const_usize(i as u64)))
            }

            _ => bug!("OperandRef::extract_field({:?}): not applicable", self),
        };

        match (&mut val, field.abi) {
            (OperandValue::ZeroSized, _) => {}
            (
                OperandValue::Immediate(llval),
                Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. },
            ) => {
                // Bools in union fields needs to be truncated.
                *llval = bx.to_immediate(*llval, field);
            }
            (OperandValue::Pair(a, b), Abi::ScalarPair(a_abi, b_abi)) => {
                // Bools in union fields needs to be truncated.
                *a = bx.to_immediate_scalar(*a, a_abi);
                *b = bx.to_immediate_scalar(*b, b_abi);
            }
            // Newtype vector of array, e.g. #[repr(simd)] struct S([i32; 4]);
            (OperandValue::Immediate(llval), Abi::Aggregate { sized: true }) => {
                assert!(matches!(self.layout.abi, Abi::Vector { .. }));

                let llfield_ty = bx.cx().backend_type(field);

                // Can't bitcast an aggregate, so round trip through memory.
                let llptr = bx.alloca(field.size, field.align.abi);
                bx.store(*llval, llptr, field.align.abi);
                *llval = bx.load(llfield_ty, llptr, field.align.abi);
            }
            (OperandValue::Immediate(_), Abi::Uninhabited | Abi::Aggregate { sized: false }) => {
                bug!()
            }
            (OperandValue::Pair(..), _) => bug!(),
            (OperandValue::Ref(..), _) => bug!(),
        }

        OperandRef { val, layout: field }
    }
}

impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
    /// Returns an `OperandValue` that's generally UB to use in any way.
    ///
    /// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
    /// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
    ///
    /// Supports sized types only.
    pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        bx: &mut Bx,
        layout: TyAndLayout<'tcx>,
    ) -> OperandValue<V> {
        assert!(layout.is_sized());
        if layout.is_zst() {
            OperandValue::ZeroSized
        } else if bx.cx().is_backend_immediate(layout) {
            let ibty = bx.cx().immediate_backend_type(layout);
            OperandValue::Immediate(bx.const_poison(ibty))
        } else if bx.cx().is_backend_scalar_pair(layout) {
            let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
            let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
            OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
        } else {
            let ptr = bx.cx().type_ptr();
            OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
        }
    }

    pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, V>,
    ) {
        self.store_with_flags(bx, dest, MemFlags::empty());
    }

    pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, V>,
    ) {
        self.store_with_flags(bx, dest, MemFlags::VOLATILE);
    }

    pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, V>,
    ) {
        self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
    }

    pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, V>,
    ) {
        self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
    }

    pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, V>,
        flags: MemFlags,
    ) {
        debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
        match self {
            OperandValue::ZeroSized => {
                // Avoid generating stores of zero-sized values, because the only way to have a zero-sized
                // value is through `undef`/`poison`, and the store itself is useless.
            }
            OperandValue::Ref(val) => {
                assert!(dest.layout.is_sized(), "cannot directly store unsized values");
                if val.llextra.is_some() {
                    bug!("cannot directly store unsized values");
                }
                bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
            }
            OperandValue::Immediate(s) => {
                let val = bx.from_immediate(s);
                bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
            }
            OperandValue::Pair(a, b) => {
                let Abi::ScalarPair(a_scalar, b_scalar) = dest.layout.abi else {
                    bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
                };
                let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);

                let val = bx.from_immediate(a);
                let align = dest.val.align;
                bx.store_with_flags(val, dest.val.llval, align, flags);

                let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
                let val = bx.from_immediate(b);
                let align = dest.val.align.restrict_for_offset(b_offset);
                bx.store_with_flags(val, llptr, align, flags);
            }
        }
    }

    pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
        self,
        bx: &mut Bx,
        indirect_dest: PlaceRef<'tcx, V>,
    ) {
        debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
        // `indirect_dest` must have `*mut T` type. We extract `T` out of it.
        let unsized_ty = indirect_dest
            .layout
            .ty
            .builtin_deref(true)
            .unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest));

        let OperandValue::Ref(PlaceValue { llval: llptr, llextra: Some(llextra), .. }) = self
        else {
            bug!("store_unsized called with a sized value (or with an extern type)")
        };

        // Allocate an appropriate region on the stack, and copy the value into it. Since alloca
        // doesn't support dynamic alignment, we allocate an extra align - 1 bytes, and align the
        // pointer manually.
        let (size, align) = size_of_val::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
        let one = bx.const_usize(1);
        let align_minus_1 = bx.sub(align, one);
        let size_extra = bx.add(size, align_minus_1);
        let min_align = Align::ONE;
        let alloca = bx.dynamic_alloca(size_extra, min_align);
        let address = bx.ptrtoint(alloca, bx.type_isize());
        let neg_address = bx.neg(address);
        let offset = bx.and(neg_address, align_minus_1);
        let dst = bx.inbounds_ptradd(alloca, offset);
        bx.memcpy(dst, min_align, llptr, min_align, size, MemFlags::empty());

        // Store the allocated region and the extra to the indirect place.
        let indirect_operand = OperandValue::Pair(dst, llextra);
        indirect_operand.store(bx, indirect_dest);
    }
}

impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
    fn maybe_codegen_consume_direct(
        &mut self,
        bx: &mut Bx,
        place_ref: mir::PlaceRef<'tcx>,
    ) -> Option<OperandRef<'tcx, Bx::Value>> {
        debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);

        match self.locals[place_ref.local] {
            LocalRef::Operand(mut o) => {
                // Moves out of scalar and scalar pair fields are trivial.
                for elem in place_ref.projection.iter() {
                    match elem {
                        mir::ProjectionElem::Field(ref f, _) => {
                            debug_assert!(
                                !o.layout.ty.is_any_ptr(),
                                "Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
                                 but tried to access field {f:?} of pointer {o:?}",
                            );
                            o = o.extract_field(bx, f.index());
                        }
                        mir::ProjectionElem::Index(_)
                        | mir::ProjectionElem::ConstantIndex { .. } => {
                            // ZSTs don't require any actual memory access.
                            // FIXME(eddyb) deduplicate this with the identical
                            // checks in `codegen_consume` and `extract_field`.
                            let elem = o.layout.field(bx.cx(), 0);
                            if elem.is_zst() {
                                o = OperandRef::zero_sized(elem);
                            } else {
                                return None;
                            }
                        }
                        _ => return None,
                    }
                }

                Some(o)
            }
            LocalRef::PendingOperand => {
                bug!("use of {:?} before def", place_ref);
            }
            LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
                // watch out for locals that do not have an
                // alloca; they are handled somewhat differently
                None
            }
        }
    }

    pub fn codegen_consume(
        &mut self,
        bx: &mut Bx,
        place_ref: mir::PlaceRef<'tcx>,
    ) -> OperandRef<'tcx, Bx::Value> {
        debug!("codegen_consume(place_ref={:?})", place_ref);

        let ty = self.monomorphized_place_ty(place_ref);
        let layout = bx.cx().layout_of(ty);

        // ZSTs don't require any actual memory access.
        if layout.is_zst() {
            return OperandRef::zero_sized(layout);
        }

        if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
            return o;
        }

        // for most places, to consume them we just load them
        // out from their home
        let place = self.codegen_place(bx, place_ref);
        bx.load_operand(place)
    }

    pub fn codegen_operand(
        &mut self,
        bx: &mut Bx,
        operand: &mir::Operand<'tcx>,
    ) -> OperandRef<'tcx, Bx::Value> {
        debug!("codegen_operand(operand={:?})", operand);

        match *operand {
            mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
                self.codegen_consume(bx, place.as_ref())
            }

            mir::Operand::Constant(ref constant) => self.eval_mir_constant_to_operand(bx, constant),
        }
    }
}