1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use rustc_data_structures::graph;
use rustc_index::IndexVec;
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::{RegionVid, VarianceDiagInfo};
use rustc_span::DUMMY_SP;

use crate::{
    constraints::OutlivesConstraintIndex,
    constraints::{OutlivesConstraint, OutlivesConstraintSet},
    type_check::Locations,
};

/// The construct graph organizes the constraints by their end-points.
/// It can be used to view a `R1: R2` constraint as either an edge `R1
/// -> R2` or `R2 -> R1` depending on the direction type `D`.
pub(crate) struct ConstraintGraph<D: ConstraintGraphDirection> {
    _direction: D,
    first_constraints: IndexVec<RegionVid, Option<OutlivesConstraintIndex>>,
    next_constraints: IndexVec<OutlivesConstraintIndex, Option<OutlivesConstraintIndex>>,
}

pub(crate) type NormalConstraintGraph = ConstraintGraph<Normal>;

pub(crate) type ReverseConstraintGraph = ConstraintGraph<Reverse>;

/// Marker trait that controls whether a `R1: R2` constraint
/// represents an edge `R1 -> R2` or `R2 -> R1`.
pub(crate) trait ConstraintGraphDirection: Copy + 'static {
    fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid;
    fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid;
    fn is_normal() -> bool;
}

/// In normal mode, a `R1: R2` constraint results in an edge `R1 ->
/// R2`. This is what we use when constructing the SCCs for
/// inference. This is because we compute the value of R1 by union'ing
/// all the things that it relies on.
#[derive(Copy, Clone, Debug)]
pub(crate) struct Normal;

impl ConstraintGraphDirection for Normal {
    fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid {
        c.sup
    }

    fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid {
        c.sub
    }

    fn is_normal() -> bool {
        true
    }
}

/// In reverse mode, a `R1: R2` constraint results in an edge `R2 ->
/// R1`. We use this for optimizing liveness computation, because then
/// we wish to iterate from a region (e.g., R2) to all the regions
/// that will outlive it (e.g., R1).
#[derive(Copy, Clone, Debug)]
pub(crate) struct Reverse;

impl ConstraintGraphDirection for Reverse {
    fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid {
        c.sub
    }

    fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid {
        c.sup
    }

    fn is_normal() -> bool {
        false
    }
}

impl<D: ConstraintGraphDirection> ConstraintGraph<D> {
    /// Creates a "dependency graph" where each region constraint `R1:
    /// R2` is treated as an edge `R1 -> R2`. We use this graph to
    /// construct SCCs for region inference but also for error
    /// reporting.
    pub(crate) fn new(
        direction: D,
        set: &OutlivesConstraintSet<'_>,
        num_region_vars: usize,
    ) -> Self {
        let mut first_constraints = IndexVec::from_elem_n(None, num_region_vars);
        let mut next_constraints = IndexVec::from_elem(None, &set.outlives);

        for (idx, constraint) in set.outlives.iter_enumerated().rev() {
            let head = &mut first_constraints[D::start_region(constraint)];
            let next = &mut next_constraints[idx];
            debug_assert!(next.is_none());
            *next = *head;
            *head = Some(idx);
        }

        Self { _direction: direction, first_constraints, next_constraints }
    }

    /// Given the constraint set from which this graph was built
    /// creates a region graph so that you can iterate over *regions*
    /// and not constraints.
    pub(crate) fn region_graph<'rg, 'tcx>(
        &'rg self,
        set: &'rg OutlivesConstraintSet<'tcx>,
        static_region: RegionVid,
    ) -> RegionGraph<'rg, 'tcx, D> {
        RegionGraph::new(set, self, static_region)
    }

    /// Given a region `R`, iterate over all constraints `R: R1`.
    pub(crate) fn outgoing_edges<'a, 'tcx>(
        &'a self,
        region_sup: RegionVid,
        constraints: &'a OutlivesConstraintSet<'tcx>,
        static_region: RegionVid,
    ) -> Edges<'a, 'tcx, D> {
        //if this is the `'static` region and the graph's direction is normal,
        //then setup the Edges iterator to return all regions #53178
        if region_sup == static_region && D::is_normal() {
            Edges {
                graph: self,
                constraints,
                pointer: None,
                next_static_idx: Some(0),
                static_region,
            }
        } else {
            //otherwise, just setup the iterator as normal
            let first = self.first_constraints[region_sup];
            Edges { graph: self, constraints, pointer: first, next_static_idx: None, static_region }
        }
    }
}

pub(crate) struct Edges<'s, 'tcx, D: ConstraintGraphDirection> {
    graph: &'s ConstraintGraph<D>,
    constraints: &'s OutlivesConstraintSet<'tcx>,
    pointer: Option<OutlivesConstraintIndex>,
    next_static_idx: Option<usize>,
    static_region: RegionVid,
}

impl<'s, 'tcx, D: ConstraintGraphDirection> Iterator for Edges<'s, 'tcx, D> {
    type Item = OutlivesConstraint<'tcx>;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(p) = self.pointer {
            self.pointer = self.graph.next_constraints[p];

            Some(self.constraints[p])
        } else if let Some(next_static_idx) = self.next_static_idx {
            self.next_static_idx = if next_static_idx == (self.graph.first_constraints.len() - 1) {
                None
            } else {
                Some(next_static_idx + 1)
            };

            Some(OutlivesConstraint {
                sup: self.static_region,
                sub: next_static_idx.into(),
                locations: Locations::All(DUMMY_SP),
                span: DUMMY_SP,
                category: ConstraintCategory::Internal,
                variance_info: VarianceDiagInfo::default(),
                from_closure: false,
            })
        } else {
            None
        }
    }
}

/// This struct brings together a constraint set and a (normal, not
/// reverse) constraint graph. It implements the graph traits and is
/// usd for doing the SCC computation.
pub(crate) struct RegionGraph<'s, 'tcx, D: ConstraintGraphDirection> {
    set: &'s OutlivesConstraintSet<'tcx>,
    constraint_graph: &'s ConstraintGraph<D>,
    static_region: RegionVid,
}

impl<'s, 'tcx, D: ConstraintGraphDirection> RegionGraph<'s, 'tcx, D> {
    /// Creates a "dependency graph" where each region constraint `R1:
    /// R2` is treated as an edge `R1 -> R2`. We use this graph to
    /// construct SCCs for region inference but also for error
    /// reporting.
    pub(crate) fn new(
        set: &'s OutlivesConstraintSet<'tcx>,
        constraint_graph: &'s ConstraintGraph<D>,
        static_region: RegionVid,
    ) -> Self {
        Self { set, constraint_graph, static_region }
    }

    /// Given a region `R`, iterate over all regions `R1` such that
    /// there exists a constraint `R: R1`.
    pub(crate) fn outgoing_regions(&self, region_sup: RegionVid) -> Successors<'s, 'tcx, D> {
        Successors {
            edges: self.constraint_graph.outgoing_edges(region_sup, self.set, self.static_region),
        }
    }
}

pub(crate) struct Successors<'s, 'tcx, D: ConstraintGraphDirection> {
    edges: Edges<'s, 'tcx, D>,
}

impl<'s, 'tcx, D: ConstraintGraphDirection> Iterator for Successors<'s, 'tcx, D> {
    type Item = RegionVid;

    fn next(&mut self) -> Option<Self::Item> {
        self.edges.next().map(|c| D::end_region(&c))
    }
}

impl<'s, 'tcx, D: ConstraintGraphDirection> graph::DirectedGraph for RegionGraph<'s, 'tcx, D> {
    type Node = RegionVid;

    fn num_nodes(&self) -> usize {
        self.constraint_graph.first_constraints.len()
    }
}

impl<'s, 'tcx, D: ConstraintGraphDirection> graph::Successors for RegionGraph<'s, 'tcx, D> {
    fn successors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
        self.outgoing_regions(node)
    }
}