1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
use crate::errors::DumpVTableEntries;
use crate::traits::{impossible_predicates, is_vtable_safe_method};
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_infer::traits::util::PredicateSet;
use rustc_infer::traits::ImplSource;
use rustc_middle::query::Providers;
use rustc_middle::traits::BuiltinImplSource;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::GenericArgs;
use rustc_middle::ty::{self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry};
use rustc_span::{sym, Span};
use smallvec::SmallVec;
use std::fmt::Debug;
use std::ops::ControlFlow;
#[derive(Clone, Debug)]
pub enum VtblSegment<'tcx> {
MetadataDSA,
TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
}
/// Prepare the segments for a vtable
pub fn prepare_vtable_segments<'tcx, T>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
) -> Option<T> {
prepare_vtable_segments_inner(tcx, trait_ref, segment_visitor).break_value()
}
/// Helper for [`prepare_vtable_segments`] that returns `ControlFlow`,
/// such that we can use `?` in the body.
fn prepare_vtable_segments_inner<'tcx, T>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
) -> ControlFlow<T> {
// The following constraints holds for the final arrangement.
// 1. The whole virtual table of the first direct super trait is included as the
// the prefix. If this trait doesn't have any super traits, then this step
// consists of the dsa metadata.
// 2. Then comes the proper pointer metadata(vptr) and all own methods for all
// other super traits except those already included as part of the first
// direct super trait virtual table.
// 3. finally, the own methods of this trait.
// This has the advantage that trait upcasting to the first direct super trait on each level
// is zero cost, and to another trait includes only replacing the pointer with one level indirection,
// while not using too much extra memory.
// For a single inheritance relationship like this,
// D --> C --> B --> A
// The resulting vtable will consists of these segments:
// DSA, A, B, C, D
// For a multiple inheritance relationship like this,
// D --> C --> A
// \-> B
// The resulting vtable will consists of these segments:
// DSA, A, B, B-vptr, C, D
// For a diamond inheritance relationship like this,
// D --> B --> A
// \-> C -/
// The resulting vtable will consists of these segments:
// DSA, A, B, C, C-vptr, D
// For a more complex inheritance relationship like this:
// O --> G --> C --> A
// \ \ \-> B
// | |-> F --> D
// | \-> E
// |-> N --> J --> H
// \ \-> I
// |-> M --> K
// \-> L
// The resulting vtable will consists of these segments:
// DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
// H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
// N, N-vptr, O
// emit dsa segment first.
segment_visitor(VtblSegment::MetadataDSA)?;
let mut emit_vptr_on_new_entry = false;
let mut visited = PredicateSet::new(tcx);
let predicate = trait_ref.to_predicate(tcx);
let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
smallvec![(trait_ref, emit_vptr_on_new_entry, maybe_iter(None))];
visited.insert(predicate);
// the main traversal loop:
// basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
// such that each node is emitted after all its descendants have been emitted.
// so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
// this is done on the fly.
// Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
// stops after it finds a node that has a next-sibling node.
// This next-sibling node will used as the starting point of next slice.
// Example:
// For a diamond inheritance relationship like this,
// D#1 --> B#0 --> A#0
// \-> C#1 -/
// Starting point 0 stack [D]
// Loop run #0: Stack after diving in is [D B A], A is "childless"
// after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
// Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
// Loop run #0: Stack after exiting out is [D C], C is the next starting point.
// Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
// Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
// Loop run #1: Stack after exiting out is []. Now the function exits.
'outer: loop {
// dive deeper into the stack, recording the path
'diving_in: loop {
let &(inner_most_trait_ref, _, _) = stack.last().unwrap();
let mut direct_super_traits_iter = tcx
.super_predicates_of(inner_most_trait_ref.def_id())
.predicates
.into_iter()
.filter_map(move |(pred, _)| {
pred.instantiate_supertrait(tcx, &inner_most_trait_ref).as_trait_clause()
});
// Find an unvisited supertrait
match direct_super_traits_iter
.find(|&super_trait| visited.insert(super_trait.to_predicate(tcx)))
{
// Push it to the stack for the next iteration of 'diving_in to pick up
Some(unvisited_super_trait) => {
// We're throwing away potential constness of super traits here.
// FIXME: handle ~const super traits
let next_super_trait = unvisited_super_trait.map_bound(|t| t.trait_ref);
stack.push((
next_super_trait,
emit_vptr_on_new_entry,
maybe_iter(Some(direct_super_traits_iter)),
))
}
// There are no more unvisited direct super traits, dive-in finished
None => break 'diving_in,
}
}
// emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
while let Some((inner_most_trait_ref, emit_vptr, mut siblings)) = stack.pop() {
segment_visitor(VtblSegment::TraitOwnEntries {
trait_ref: inner_most_trait_ref,
emit_vptr: emit_vptr && !tcx.sess.opts.unstable_opts.no_trait_vptr,
})?;
// If we've emitted (fed to `segment_visitor`) a trait that has methods present in the vtable,
// we'll need to emit vptrs from now on.
if !emit_vptr_on_new_entry
&& has_own_existential_vtable_entries(tcx, inner_most_trait_ref.def_id())
{
emit_vptr_on_new_entry = true;
}
if let Some(next_inner_most_trait_ref) =
siblings.find(|&sibling| visited.insert(sibling.to_predicate(tcx)))
{
// We're throwing away potential constness of super traits here.
// FIXME: handle ~const super traits
let next_inner_most_trait_ref =
next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
stack.push((next_inner_most_trait_ref, emit_vptr_on_new_entry, siblings));
// just pushed a new trait onto the stack, so we need to go through its super traits
continue 'outer;
}
}
// the stack is empty, all done
return ControlFlow::Continue(());
}
}
/// Turns option of iterator into an iterator (this is just flatten)
fn maybe_iter<I: Iterator>(i: Option<I>) -> impl Iterator<Item = I::Item> {
// Flatten is bad perf-vise, we could probably implement a special case here that is better
i.into_iter().flatten()
}
fn dump_vtable_entries<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
trait_ref: ty::PolyTraitRef<'tcx>,
entries: &[VtblEntry<'tcx>],
) {
tcx.dcx().emit_err(DumpVTableEntries { span: sp, trait_ref, entries: format!("{entries:#?}") });
}
fn has_own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
own_existential_vtable_entries_iter(tcx, trait_def_id).next().is_some()
}
fn own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &[DefId] {
tcx.arena.alloc_from_iter(own_existential_vtable_entries_iter(tcx, trait_def_id))
}
fn own_existential_vtable_entries_iter(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
) -> impl Iterator<Item = DefId> + '_ {
let trait_methods = tcx
.associated_items(trait_def_id)
.in_definition_order()
.filter(|item| item.kind == ty::AssocKind::Fn);
// Now list each method's DefId (for within its trait).
let own_entries = trait_methods.filter_map(move |&trait_method| {
debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
let def_id = trait_method.def_id;
// Some methods cannot be called on an object; skip those.
if !is_vtable_safe_method(tcx, trait_def_id, trait_method) {
debug!("own_existential_vtable_entry: not vtable safe");
return None;
}
Some(def_id)
});
own_entries
}
/// Given a trait `trait_ref`, iterates the vtable entries
/// that come from `trait_ref`, including its supertraits.
fn vtable_entries<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> &'tcx [VtblEntry<'tcx>] {
debug!("vtable_entries({:?})", trait_ref);
let mut entries = vec![];
let vtable_segment_callback = |segment| -> ControlFlow<()> {
match segment {
VtblSegment::MetadataDSA => {
entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
}
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
let existential_trait_ref = trait_ref
.map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
// Lookup the shape of vtable for the trait.
let own_existential_entries =
tcx.own_existential_vtable_entries(existential_trait_ref.def_id());
let own_entries = own_existential_entries.iter().copied().map(|def_id| {
debug!("vtable_entries: trait_method={:?}", def_id);
// The method may have some early-bound lifetimes; add regions for those.
let args = trait_ref.map_bound(|trait_ref| {
GenericArgs::for_item(tcx, def_id, |param, _| match param.kind {
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. }
| GenericParamDefKind::Const { .. } => {
trait_ref.args[param.index as usize]
}
})
});
// The trait type may have higher-ranked lifetimes in it;
// erase them if they appear, so that we get the type
// at some particular call site.
let args =
tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), args);
// It's possible that the method relies on where-clauses that
// do not hold for this particular set of type parameters.
// Note that this method could then never be called, so we
// do not want to try and codegen it, in that case (see #23435).
let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, args);
if impossible_predicates(
tcx,
predicates.map(|(predicate, _)| predicate).collect(),
) {
debug!("vtable_entries: predicates do not hold");
return VtblEntry::Vacant;
}
let instance = ty::Instance::resolve_for_vtable(
tcx,
ty::ParamEnv::reveal_all(),
def_id,
args,
)
.expect("resolution failed during building vtable representation");
VtblEntry::Method(instance)
});
entries.extend(own_entries);
if emit_vptr {
entries.push(VtblEntry::TraitVPtr(trait_ref));
}
}
}
ControlFlow::Continue(())
};
let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
let sp = tcx.def_span(trait_ref.def_id());
dump_vtable_entries(tcx, sp, trait_ref, &entries);
}
tcx.arena.alloc_from_iter(entries)
}
/// Find slot base for trait methods within vtable entries of another trait
// FIXME(@lcnr): This isn't a query, so why does it take a tuple as its argument.
pub(super) fn vtable_trait_first_method_offset<'tcx>(
tcx: TyCtxt<'tcx>,
key: (
ty::PolyTraitRef<'tcx>, // trait_to_be_found
ty::PolyTraitRef<'tcx>, // trait_owning_vtable
),
) -> usize {
let (trait_to_be_found, trait_owning_vtable) = key;
// #90177
let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
let vtable_segment_callback = {
let mut vtable_base = 0;
move |segment| {
match segment {
VtblSegment::MetadataDSA => {
vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len();
}
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
return ControlFlow::Break(vtable_base);
}
vtable_base += count_own_vtable_entries(tcx, trait_ref);
if emit_vptr {
vtable_base += 1;
}
}
}
ControlFlow::Continue(())
}
};
if let Some(vtable_base) =
prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
{
vtable_base
} else {
bug!("Failed to find info for expected trait in vtable");
}
}
/// Find slot offset for trait vptr within vtable entries of another trait
pub(crate) fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
tcx: TyCtxt<'tcx>,
key: (
Ty<'tcx>, // trait object type whose trait owning vtable
Ty<'tcx>, // trait object for supertrait
),
) -> Option<usize> {
let (source, target) = key;
assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.has_infer());
assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.has_infer());
// this has been typecked-before, so diagnostics is not really needed.
let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
let trait_ref = ty::TraitRef::new(tcx, unsize_trait_did, [source, target]);
match tcx.codegen_select_candidate((ty::ParamEnv::reveal_all(), trait_ref)) {
Ok(ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { vtable_vptr_slot }, _)) => {
*vtable_vptr_slot
}
otherwise => bug!("expected TraitUpcasting candidate, got {otherwise:?}"),
}
}
/// Given a trait `trait_ref`, returns the number of vtable entries
/// that come from `trait_ref`, excluding its supertraits. Used in
/// computing the vtable base for an upcast trait of a trait object.
pub(crate) fn count_own_vtable_entries<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> usize {
tcx.own_existential_vtable_entries(trait_ref.def_id()).len()
}
pub(super) fn provide(providers: &mut Providers) {
*providers = Providers {
own_existential_vtable_entries,
vtable_entries,
vtable_trait_upcasting_coercion_new_vptr_slot,
..*providers
};
}