1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_hir::def::DefKind;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable, TypeVisitableExt, TypeVisitor};
use rustc_span::Span;
use crate::traits::ObligationCtxt;
/// Check if a given constant can be evaluated.
#[instrument(skip(infcx), level = "debug")]
pub fn is_const_evaluatable<'tcx>(
infcx: &InferCtxt<'tcx>,
unexpanded_ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> Result<(), NotConstEvaluatable> {
let tcx = infcx.tcx;
match tcx.expand_abstract_consts(unexpanded_ct).kind() {
ty::ConstKind::Unevaluated(_) | ty::ConstKind::Expr(_) => (),
ty::ConstKind::Param(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Value(_)
| ty::ConstKind::Error(_) => return Ok(()),
ty::ConstKind::Infer(_) => return Err(NotConstEvaluatable::MentionsInfer),
};
if tcx.features().generic_const_exprs {
let ct = tcx.expand_abstract_consts(unexpanded_ct);
let is_anon_ct = if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
tcx.def_kind(uv.def) == DefKind::AnonConst
} else {
false
};
if !is_anon_ct {
if satisfied_from_param_env(tcx, infcx, ct, param_env) {
return Ok(());
}
if ct.has_non_region_infer() {
return Err(NotConstEvaluatable::MentionsInfer);
} else if ct.has_non_region_param() {
return Err(NotConstEvaluatable::MentionsParam);
}
}
match unexpanded_ct.kind() {
ty::ConstKind::Expr(_) => {
// FIXME(generic_const_exprs): we have a fully concrete `ConstKind::Expr`, but
// haven't implemented evaluating `ConstKind::Expr` yet, so we are unable to tell
// if it is evaluatable or not. As this is unreachable for now, we can simple ICE
// here.
tcx.dcx().span_bug(span, "evaluating `ConstKind::Expr` is not currently supported");
}
ty::ConstKind::Unevaluated(uv) => {
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
Err(ErrorHandled::TooGeneric(_)) => {
Err(NotConstEvaluatable::Error(infcx.dcx().span_delayed_bug(
span,
"Missing value for constant, but no error reported?",
)))
}
Err(ErrorHandled::Reported(e, _)) => Err(NotConstEvaluatable::Error(e.into())),
Ok(_) => Ok(()),
}
}
_ => bug!("unexpected constkind in `is_const_evalautable: {unexpanded_ct:?}`"),
}
} else {
let uv = match unexpanded_ct.kind() {
ty::ConstKind::Unevaluated(uv) => uv,
ty::ConstKind::Expr(_) => {
bug!("`ConstKind::Expr` without `feature(generic_const_exprs)` enabled")
}
_ => bug!("unexpected constkind in `is_const_evalautable: {unexpanded_ct:?}`"),
};
// FIXME: We should only try to evaluate a given constant here if it is fully concrete
// as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
//
// We previously did not check this, so we only emit a future compat warning if
// const evaluation succeeds and the given constant is still polymorphic for now
// and hopefully soon change this to an error.
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
// If we're evaluating a generic foreign constant, under a nightly compiler while
// the current crate does not enable `feature(generic_const_exprs)`, abort
// compilation with a useful error.
Err(_)
if tcx.sess.is_nightly_build()
&& satisfied_from_param_env(
tcx,
infcx,
tcx.expand_abstract_consts(unexpanded_ct),
param_env,
) =>
{
tcx.dcx()
.struct_span_fatal(
// Slightly better span than just using `span` alone
if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def) } else { span },
"failed to evaluate generic const expression",
)
.with_note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
.with_span_suggestion_verbose(
rustc_span::DUMMY_SP,
"consider enabling this feature",
"#![feature(generic_const_exprs)]\n",
rustc_errors::Applicability::MaybeIncorrect,
)
.emit()
}
Err(ErrorHandled::TooGeneric(_)) => {
let err = if uv.has_non_region_infer() {
NotConstEvaluatable::MentionsInfer
} else if uv.has_non_region_param() {
NotConstEvaluatable::MentionsParam
} else {
let guar = infcx.dcx().span_delayed_bug(
span,
"Missing value for constant, but no error reported?",
);
NotConstEvaluatable::Error(guar)
};
Err(err)
}
Err(ErrorHandled::Reported(e, _)) => Err(NotConstEvaluatable::Error(e.into())),
Ok(_) => Ok(()),
}
}
}
#[instrument(skip(infcx, tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
infcx: &InferCtxt<'tcx>,
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
struct Visitor<'a, 'tcx> {
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
infcx: &'a InferCtxt<'tcx>,
single_match: Option<Result<ty::Const<'tcx>, ()>>,
}
impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for Visitor<'a, 'tcx> {
fn visit_const(&mut self, c: ty::Const<'tcx>) {
debug!("is_const_evaluatable: candidate={:?}", c);
if self.infcx.probe(|_| {
let ocx = ObligationCtxt::new(self.infcx);
ocx.eq(&ObligationCause::dummy(), self.param_env, c.ty(), self.ct.ty()).is_ok()
&& ocx.eq(&ObligationCause::dummy(), self.param_env, c, self.ct).is_ok()
&& ocx.select_all_or_error().is_empty()
}) {
self.single_match = match self.single_match {
None => Some(Ok(c)),
Some(Ok(o)) if o == c => Some(Ok(c)),
Some(_) => Some(Err(())),
};
}
if let ty::ConstKind::Expr(e) = c.kind() {
e.visit_with(self);
} else {
// FIXME(generic_const_exprs): This doesn't recurse into `<T as Trait<U>>::ASSOC`'s args.
// This is currently unobservable as `<T as Trait<{ U + 1 }>>::ASSOC` creates an anon const
// with its own `ConstEvaluatable` bound in the param env which we will visit separately.
//
// If we start allowing directly writing `ConstKind::Expr` without an intermediate anon const
// this will be incorrect. It might be worth investigating making `predicates_of` elaborate
// all of the `ConstEvaluatable` bounds rather than having a visitor here.
}
}
}
let mut single_match: Option<Result<ty::Const<'tcx>, ()>> = None;
for pred in param_env.caller_bounds() {
match pred.kind().skip_binder() {
ty::ClauseKind::ConstEvaluatable(ce) => {
let b_ct = tcx.expand_abstract_consts(ce);
let mut v = Visitor { ct, infcx, param_env, single_match };
let _ = b_ct.visit_with(&mut v);
single_match = v.single_match;
}
_ => {} // don't care
}
}
if let Some(Ok(c)) = single_match {
let ocx = ObligationCtxt::new(infcx);
assert!(ocx.eq(&ObligationCause::dummy(), param_env, c.ty(), ct.ty()).is_ok());
assert!(ocx.eq(&ObligationCause::dummy(), param_env, c, ct).is_ok());
assert!(ocx.select_all_or_error().is_empty());
return true;
}
debug!("is_const_evaluatable: no");
false
}