1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
//! how this works.
//!
//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
use crate::infer::outlives::env::OutlivesEnvironment;
use crate::infer::InferOk;
use crate::regions::InferCtxtRegionExt;
use crate::solve::inspect::{InspectGoal, ProofTreeInferCtxtExt, ProofTreeVisitor};
use crate::solve::{deeply_normalize_for_diagnostics, inspect, FulfillmentCtxt};
use crate::traits::engine::TraitEngineExt as _;
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::structural_normalize::StructurallyNormalizeExt;
use crate::traits::NormalizeExt;
use crate::traits::SkipLeakCheck;
use crate::traits::{
Obligation, ObligationCause, PredicateObligation, PredicateObligations, SelectionContext,
};
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::{Diag, EmissionGuarantee};
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::{util, FulfillmentErrorCode, TraitEngine, TraitEngineExt};
use rustc_middle::traits::query::NoSolution;
use rustc_middle::traits::solve::{CandidateSource, Certainty, Goal};
use rustc_middle::traits::specialization_graph::OverlapMode;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor};
use rustc_span::symbol::sym;
use rustc_span::DUMMY_SP;
use std::fmt::Debug;
use std::ops::ControlFlow;
use super::error_reporting::suggest_new_overflow_limit;
/// Whether we do the orphan check relative to this crate or
/// to some remote crate.
#[derive(Copy, Clone, Debug)]
enum InCrate {
Local,
Remote,
}
#[derive(Debug, Copy, Clone)]
pub enum Conflict {
Upstream,
Downstream,
}
pub struct OverlapResult<'tcx> {
pub impl_header: ty::ImplHeader<'tcx>,
pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause<'tcx>>,
/// `true` if the overlap might've been permitted before the shift
/// to universes.
pub involves_placeholder: bool,
/// Used in the new solver to suggest increasing the recursion limit.
pub overflowing_predicates: Vec<ty::Predicate<'tcx>>,
}
pub fn add_placeholder_note<G: EmissionGuarantee>(err: &mut Diag<'_, G>) {
err.note(
"this behavior recently changed as a result of a bug fix; \
see rust-lang/rust#56105 for details",
);
}
pub fn suggest_increasing_recursion_limit<'tcx, G: EmissionGuarantee>(
tcx: TyCtxt<'tcx>,
err: &mut Diag<'_, G>,
overflowing_predicates: &[ty::Predicate<'tcx>],
) {
for pred in overflowing_predicates {
err.note(format!("overflow evaluating the requirement `{}`", pred));
}
suggest_new_overflow_limit(tcx, err);
}
#[derive(Debug, Clone, Copy)]
enum TrackAmbiguityCauses {
Yes,
No,
}
impl TrackAmbiguityCauses {
fn is_yes(self) -> bool {
match self {
TrackAmbiguityCauses::Yes => true,
TrackAmbiguityCauses::No => false,
}
}
}
/// If there are types that satisfy both impls, returns `Some`
/// with a suitably-freshened `ImplHeader` with those types
/// instantiated. Otherwise, returns `None`.
#[instrument(skip(tcx, skip_leak_check), level = "debug")]
pub fn overlapping_impls(
tcx: TyCtxt<'_>,
impl1_def_id: DefId,
impl2_def_id: DefId,
skip_leak_check: SkipLeakCheck,
overlap_mode: OverlapMode,
) -> Option<OverlapResult<'_>> {
// Before doing expensive operations like entering an inference context, do
// a quick check via fast_reject to tell if the impl headers could possibly
// unify.
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsCandidateKey };
let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
let may_overlap = match (impl1_ref, impl2_ref) {
(Some(a), Some(b)) => drcx.args_may_unify(a.skip_binder().args, b.skip_binder().args),
(None, None) => {
let self_ty1 = tcx.type_of(impl1_def_id).skip_binder();
let self_ty2 = tcx.type_of(impl2_def_id).skip_binder();
drcx.types_may_unify(self_ty1, self_ty2)
}
_ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
};
if !may_overlap {
// Some types involved are definitely different, so the impls couldn't possibly overlap.
debug!("overlapping_impls: fast_reject early-exit");
return None;
}
let _overlap_with_bad_diagnostics = overlap(
tcx,
TrackAmbiguityCauses::No,
skip_leak_check,
impl1_def_id,
impl2_def_id,
overlap_mode,
)?;
// In the case where we detect an error, run the check again, but
// this time tracking intercrate ambiguity causes for better
// diagnostics. (These take time and can lead to false errors.)
let overlap = overlap(
tcx,
TrackAmbiguityCauses::Yes,
skip_leak_check,
impl1_def_id,
impl2_def_id,
overlap_mode,
)
.unwrap();
Some(overlap)
}
fn fresh_impl_header<'tcx>(infcx: &InferCtxt<'tcx>, impl_def_id: DefId) -> ty::ImplHeader<'tcx> {
let tcx = infcx.tcx;
let impl_args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id);
ty::ImplHeader {
impl_def_id,
impl_args,
self_ty: tcx.type_of(impl_def_id).instantiate(tcx, impl_args),
trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.instantiate(tcx, impl_args)),
predicates: tcx
.predicates_of(impl_def_id)
.instantiate(tcx, impl_args)
.iter()
.map(|(c, _)| c.as_predicate())
.collect(),
}
}
fn fresh_impl_header_normalized<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
) -> ty::ImplHeader<'tcx> {
let header = fresh_impl_header(infcx, impl_def_id);
let InferOk { value: mut header, obligations } =
infcx.at(&ObligationCause::dummy(), param_env).normalize(header);
header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
header
}
/// Can both impl `a` and impl `b` be satisfied by a common type (including
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
#[instrument(level = "debug", skip(tcx))]
fn overlap<'tcx>(
tcx: TyCtxt<'tcx>,
track_ambiguity_causes: TrackAmbiguityCauses,
skip_leak_check: SkipLeakCheck,
impl1_def_id: DefId,
impl2_def_id: DefId,
overlap_mode: OverlapMode,
) -> Option<OverlapResult<'tcx>> {
if overlap_mode.use_negative_impl() {
if impl_intersection_has_negative_obligation(tcx, impl1_def_id, impl2_def_id)
|| impl_intersection_has_negative_obligation(tcx, impl2_def_id, impl1_def_id)
{
return None;
}
}
let infcx = tcx
.infer_ctxt()
.skip_leak_check(skip_leak_check.is_yes())
.intercrate(true)
.with_next_trait_solver(tcx.next_trait_solver_in_coherence())
.build();
let selcx = &mut SelectionContext::with_treat_inductive_cycle_as_ambig(&infcx);
if track_ambiguity_causes.is_yes() {
selcx.enable_tracking_intercrate_ambiguity_causes();
}
// For the purposes of this check, we don't bring any placeholder
// types into scope; instead, we replace the generic types with
// fresh type variables, and hence we do our evaluations in an
// empty environment.
let param_env = ty::ParamEnv::empty();
let impl1_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl1_def_id);
let impl2_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl2_def_id);
// Equate the headers to find their intersection (the general type, with infer vars,
// that may apply both impls).
let mut obligations =
equate_impl_headers(selcx.infcx, param_env, &impl1_header, &impl2_header)?;
debug!("overlap: unification check succeeded");
obligations.extend(
[&impl1_header.predicates, &impl2_header.predicates].into_iter().flatten().map(
|&predicate| Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, predicate),
),
);
let mut overflowing_predicates = Vec::new();
if overlap_mode.use_implicit_negative() {
match impl_intersection_has_impossible_obligation(selcx, &obligations) {
IntersectionHasImpossibleObligations::Yes => return None,
IntersectionHasImpossibleObligations::No { overflowing_predicates: p } => {
overflowing_predicates = p
}
}
}
// We toggle the `leak_check` by using `skip_leak_check` when constructing the
// inference context, so this may be a noop.
if infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() {
debug!("overlap: leak check failed");
return None;
}
let intercrate_ambiguity_causes = if !overlap_mode.use_implicit_negative() {
Default::default()
} else if infcx.next_trait_solver() {
compute_intercrate_ambiguity_causes(&infcx, &obligations)
} else {
selcx.take_intercrate_ambiguity_causes()
};
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
let involves_placeholder = infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.data()
.constraints
.iter()
.any(|c| c.0.involves_placeholders());
let mut impl_header = infcx.resolve_vars_if_possible(impl1_header);
// Deeply normalize the impl header for diagnostics, ignoring any errors if this fails.
if infcx.next_trait_solver() {
impl_header = deeply_normalize_for_diagnostics(&infcx, param_env, impl_header);
}
Some(OverlapResult {
impl_header,
intercrate_ambiguity_causes,
involves_placeholder,
overflowing_predicates,
})
}
#[instrument(level = "debug", skip(infcx), ret)]
fn equate_impl_headers<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl1: &ty::ImplHeader<'tcx>,
impl2: &ty::ImplHeader<'tcx>,
) -> Option<PredicateObligations<'tcx>> {
let result =
match (impl1.trait_ref, impl2.trait_ref) {
(Some(impl1_ref), Some(impl2_ref)) => infcx
.at(&ObligationCause::dummy(), param_env)
.eq(DefineOpaqueTypes::Yes, impl1_ref, impl2_ref),
(None, None) => infcx.at(&ObligationCause::dummy(), param_env).eq(
DefineOpaqueTypes::Yes,
impl1.self_ty,
impl2.self_ty,
),
_ => bug!("equate_impl_headers given mismatched impl kinds"),
};
result.map(|infer_ok| infer_ok.obligations).ok()
}
/// The result of [fn impl_intersection_has_impossible_obligation].
enum IntersectionHasImpossibleObligations<'tcx> {
Yes,
No {
/// With `-Znext-solver=coherence`, some obligations may
/// fail if only the user increased the recursion limit.
///
/// We return those obligations here and mention them in the
/// error message.
overflowing_predicates: Vec<ty::Predicate<'tcx>>,
},
}
/// Check if both impls can be satisfied by a common type by considering whether
/// any of either impl's obligations is not known to hold.
///
/// For example, given these two impls:
/// `impl From<MyLocalType> for Box<dyn Error>` (in my crate)
/// `impl<E> From<E> for Box<dyn Error> where E: Error` (in libstd)
///
/// After replacing both impl headers with inference vars (which happens before
/// this function is called), we get:
/// `Box<dyn Error>: From<MyLocalType>`
/// `Box<dyn Error>: From<?E>`
///
/// This gives us `?E = MyLocalType`. We then certainly know that `MyLocalType: Error`
/// never holds in intercrate mode since a local impl does not exist, and a
/// downstream impl cannot be added -- therefore can consider the intersection
/// of the two impls above to be empty.
///
/// Importantly, this works even if there isn't a `impl !Error for MyLocalType`.
fn impl_intersection_has_impossible_obligation<'a, 'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligations: &'a [PredicateObligation<'tcx>],
) -> IntersectionHasImpossibleObligations<'tcx> {
let infcx = selcx.infcx;
if infcx.next_trait_solver() {
let mut fulfill_cx = FulfillmentCtxt::new(infcx);
fulfill_cx.register_predicate_obligations(infcx, obligations.iter().cloned());
// We only care about the obligations that are *definitely* true errors.
// Ambiguities do not prove the disjointness of two impls.
let errors = fulfill_cx.select_where_possible(infcx);
if errors.is_empty() {
let overflow_errors = fulfill_cx.collect_remaining_errors(infcx);
let overflowing_predicates = overflow_errors
.into_iter()
.filter(|e| match e.code {
FulfillmentErrorCode::Ambiguity { overflow: Some(true) } => true,
_ => false,
})
.map(|e| infcx.resolve_vars_if_possible(e.obligation.predicate))
.collect();
IntersectionHasImpossibleObligations::No { overflowing_predicates }
} else {
IntersectionHasImpossibleObligations::Yes
}
} else {
for obligation in obligations {
// We use `evaluate_root_obligation` to correctly track intercrate
// ambiguity clauses.
let evaluation_result = selcx.evaluate_root_obligation(obligation);
match evaluation_result {
Ok(result) => {
if !result.may_apply() {
return IntersectionHasImpossibleObligations::Yes;
}
}
// If overflow occurs, we need to conservatively treat the goal as possibly holding,
// since there can be instantiations of this goal that don't overflow and result in
// success. While this isn't much of a problem in the old solver, since we treat overflow
// fatally, this still can be encountered: <https://github.com/rust-lang/rust/issues/105231>.
Err(_overflow) => {}
}
}
IntersectionHasImpossibleObligations::No { overflowing_predicates: Vec::new() }
}
}
/// Check if both impls can be satisfied by a common type by considering whether
/// any of first impl's obligations is known not to hold *via a negative predicate*.
///
/// For example, given these two impls:
/// `struct MyCustomBox<T: ?Sized>(Box<T>);`
/// `impl From<&str> for MyCustomBox<dyn Error>` (in my crate)
/// `impl<E> From<E> for MyCustomBox<dyn Error> where E: Error` (in my crate)
///
/// After replacing the second impl's header with inference vars, we get:
/// `MyCustomBox<dyn Error>: From<&str>`
/// `MyCustomBox<dyn Error>: From<?E>`
///
/// This gives us `?E = &str`. We then try to prove the first impl's predicates
/// after negating, giving us `&str: !Error`. This is a negative impl provided by
/// libstd, and therefore we can guarantee for certain that libstd will never add
/// a positive impl for `&str: Error` (without it being a breaking change).
fn impl_intersection_has_negative_obligation(
tcx: TyCtxt<'_>,
impl1_def_id: DefId,
impl2_def_id: DefId,
) -> bool {
debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
// N.B. We need to unify impl headers *with* intercrate mode, even if proving negative predicates
// do not need intercrate mode enabled.
let ref infcx = tcx.infer_ctxt().intercrate(true).with_next_trait_solver(true).build();
let root_universe = infcx.universe();
assert_eq!(root_universe, ty::UniverseIndex::ROOT);
let impl1_header = fresh_impl_header(infcx, impl1_def_id);
let param_env =
ty::EarlyBinder::bind(tcx.param_env(impl1_def_id)).instantiate(tcx, impl1_header.impl_args);
let impl2_header = fresh_impl_header(infcx, impl2_def_id);
// Equate the headers to find their intersection (the general type, with infer vars,
// that may apply both impls).
let Some(equate_obligations) =
equate_impl_headers(infcx, param_env, &impl1_header, &impl2_header)
else {
return false;
};
// FIXME(with_negative_coherence): the infcx has constraints from equating
// the impl headers. We should use these constraints as assumptions, not as
// requirements, when proving the negated where clauses below.
drop(equate_obligations);
drop(infcx.take_registered_region_obligations());
drop(infcx.take_and_reset_region_constraints());
plug_infer_with_placeholders(
infcx,
root_universe,
(impl1_header.impl_args, impl2_header.impl_args),
);
let param_env = infcx.resolve_vars_if_possible(param_env);
util::elaborate(tcx, tcx.predicates_of(impl2_def_id).instantiate(tcx, impl2_header.impl_args))
.any(|(clause, _)| try_prove_negated_where_clause(infcx, clause, param_env))
}
fn plug_infer_with_placeholders<'tcx>(
infcx: &InferCtxt<'tcx>,
universe: ty::UniverseIndex,
value: impl TypeVisitable<TyCtxt<'tcx>>,
) {
struct PlugInferWithPlaceholder<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
universe: ty::UniverseIndex,
var: ty::BoundVar,
}
impl<'tcx> PlugInferWithPlaceholder<'_, 'tcx> {
fn next_var(&mut self) -> ty::BoundVar {
let var = self.var;
self.var = self.var + 1;
var
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for PlugInferWithPlaceholder<'_, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) {
let ty = self.infcx.shallow_resolve(ty);
if ty.is_ty_var() {
let Ok(InferOk { value: (), obligations }) =
self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq(
DefineOpaqueTypes::No,
ty,
Ty::new_placeholder(
self.infcx.tcx,
ty::Placeholder {
universe: self.universe,
bound: ty::BoundTy {
var: self.next_var(),
kind: ty::BoundTyKind::Anon,
},
},
),
)
else {
bug!("we always expect to be able to plug an infer var with placeholder")
};
assert_eq!(obligations, &[]);
} else {
ty.super_visit_with(self);
}
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) {
let ct = self.infcx.shallow_resolve(ct);
if ct.is_ct_infer() {
let Ok(InferOk { value: (), obligations }) =
self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq(
DefineOpaqueTypes::No,
ct,
ty::Const::new_placeholder(
self.infcx.tcx,
ty::Placeholder { universe: self.universe, bound: self.next_var() },
ct.ty(),
),
)
else {
bug!("we always expect to be able to plug an infer var with placeholder")
};
assert_eq!(obligations, &[]);
} else {
ct.super_visit_with(self);
}
}
fn visit_region(&mut self, r: ty::Region<'tcx>) {
if let ty::ReVar(vid) = *r {
let r = self
.infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.infcx.tcx, vid);
if r.is_var() {
let Ok(InferOk { value: (), obligations }) =
self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq(
DefineOpaqueTypes::No,
r,
ty::Region::new_placeholder(
self.infcx.tcx,
ty::Placeholder {
universe: self.universe,
bound: ty::BoundRegion {
var: self.next_var(),
kind: ty::BoundRegionKind::BrAnon,
},
},
),
)
else {
bug!("we always expect to be able to plug an infer var with placeholder")
};
assert_eq!(obligations, &[]);
}
}
}
}
value.visit_with(&mut PlugInferWithPlaceholder {
infcx,
universe,
var: ty::BoundVar::from_u32(0),
});
}
fn try_prove_negated_where_clause<'tcx>(
root_infcx: &InferCtxt<'tcx>,
clause: ty::Clause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
let Some(negative_predicate) = clause.as_predicate().flip_polarity(root_infcx.tcx) else {
return false;
};
// N.B. We don't need to use intercrate mode here because we're trying to prove
// the *existence* of a negative goal, not the non-existence of a positive goal.
// Without this, we over-eagerly register coherence ambiguity candidates when
// impl candidates do exist.
let ref infcx = root_infcx.fork_with_intercrate(false);
let mut fulfill_cx = FulfillmentCtxt::new(infcx);
fulfill_cx.register_predicate_obligation(
infcx,
Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, negative_predicate),
);
if !fulfill_cx.select_all_or_error(infcx).is_empty() {
return false;
}
// FIXME: We could use the assumed_wf_types from both impls, I think,
// if that wasn't implemented just for LocalDefId, and we'd need to do
// the normalization ourselves since this is totally fallible...
let outlives_env = OutlivesEnvironment::new(param_env);
let errors = infcx.resolve_regions(&outlives_env);
if !errors.is_empty() {
return false;
}
true
}
/// Returns whether all impls which would apply to the `trait_ref`
/// e.g. `Ty: Trait<Arg>` are already known in the local crate.
///
/// This both checks whether any downstream or sibling crates could
/// implement it and whether an upstream crate can add this impl
/// without breaking backwards compatibility.
#[instrument(level = "debug", skip(tcx, lazily_normalize_ty), ret)]
pub fn trait_ref_is_knowable<'tcx, E: Debug>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
mut lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
) -> Result<Result<(), Conflict>, E> {
if orphan_check_trait_ref(trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok() {
// A downstream or cousin crate is allowed to implement some
// generic parameters of this trait-ref.
return Ok(Err(Conflict::Downstream));
}
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
// This is a local or fundamental trait, so future-compatibility
// is no concern. We know that downstream/cousin crates are not
// allowed to implement a generic parameter of this trait ref,
// which means impls could only come from dependencies of this
// crate, which we already know about.
return Ok(Ok(()));
}
// This is a remote non-fundamental trait, so if another crate
// can be the "final owner" of the generic parameters of this trait-ref,
// they are allowed to implement it future-compatibly.
//
// However, if we are a final owner, then nobody else can be,
// and if we are an intermediate owner, then we don't care
// about future-compatibility, which means that we're OK if
// we are an owner.
if orphan_check_trait_ref(trait_ref, InCrate::Local, &mut lazily_normalize_ty)?.is_ok() {
Ok(Ok(()))
} else {
Ok(Err(Conflict::Upstream))
}
}
pub fn trait_ref_is_local_or_fundamental<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> bool {
trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
}
#[derive(Debug, Copy, Clone)]
pub enum IsFirstInputType {
No,
Yes,
}
impl From<bool> for IsFirstInputType {
fn from(b: bool) -> IsFirstInputType {
match b {
false => IsFirstInputType::No,
true => IsFirstInputType::Yes,
}
}
}
#[derive(Debug)]
pub enum OrphanCheckErr<'tcx> {
NonLocalInputType(Vec<(Ty<'tcx>, IsFirstInputType)>),
UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
}
/// Checks the coherence orphan rules. `impl_def_id` should be the
/// `DefId` of a trait impl. To pass, either the trait must be local, or else
/// two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
#[instrument(level = "debug", skip(tcx), ret)]
pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
// We only except this routine to be invoked on implementations
// of a trait, not inherent implementations.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
debug!(?trait_ref);
// If the *trait* is local to the crate, ok.
if trait_ref.def_id.is_local() {
debug!("trait {:?} is local to current crate", trait_ref.def_id);
return Ok(());
}
orphan_check_trait_ref::<!>(trait_ref, InCrate::Local, |ty| Ok(ty)).unwrap()
}
/// Checks whether a trait-ref is potentially implementable by a crate.
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in generic parameters order
/// - Self first, others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
/// first such parameter the "local key parameter".
/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
/// going through `Box`, which is fundamental.
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
/// the same reason.
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
/// the local type and the type parameter.
/// 3. Before this local type, no generic type parameter of the impl must
/// be reachable through fundamental types.
/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
/// reachable through the fundamental type `Box`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
/// a type local to C, with only fundamental types between the type
/// local to C and the local key parameter.
/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
/// is bad, because the only local type with `T` as a subtree is
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
/// the second occurrence of `T` is not a subtree of *any* local type.
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
/// `LocalType<Vec<T>>`, which is local and has no types between it and
/// the type parameter.
///
/// The orphan rules actually serve several different purposes:
///
/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
/// every type local to one crate is unknown in the other) can't implement
/// the same trait-ref. This follows because it can be seen that no such
/// type can orphan-check in 2 such crates.
///
/// To check that a local impl follows the orphan rules, we check it in
/// InCrate::Local mode, using type parameters for the "generic" types.
///
/// 2. They ground negative reasoning for coherence. If a user wants to
/// write both a conditional blanket impl and a specific impl, we need to
/// make sure they do not overlap. For example, if we write
/// ```ignore (illustrative)
/// impl<T> IntoIterator for Vec<T>
/// impl<T: Iterator> IntoIterator for T
/// ```
/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
/// We can observe that this holds in the current crate, but we need to make
/// sure this will also hold in all unknown crates (both "independent" crates,
/// which we need for link-safety, and also child crates, because we don't want
/// child crates to get error for impl conflicts in a *dependency*).
///
/// For that, we only allow negative reasoning if, for every assignment to the
/// inference variables, every unknown crate would get an orphan error if they
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
/// mode. That is sound because we already know all the impls from known crates.
///
/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
/// add "non-blanket" impls without breaking negative reasoning in dependent
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
///
/// For that, we only a allow crate to perform negative reasoning on
/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), instantiating non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they
/// can't apply to types with a key parameter in a child crate - applying
/// the rules, this basically means that every type parameter in the impl
/// must appear behind a non-fundamental type (because this is not a
/// type-system requirement, crate owners might also go for "semantic
/// future-compatibility" involving things such as sealed traits, but
/// the above requirement is sufficient, and is necessary in "open world"
/// cases).
///
/// Note that this function is never called for types that have both type
/// parameters and inference variables.
#[instrument(level = "trace", skip(lazily_normalize_ty), ret)]
fn orphan_check_trait_ref<'tcx, E: Debug>(
trait_ref: ty::TraitRef<'tcx>,
in_crate: InCrate,
lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
) -> Result<Result<(), OrphanCheckErr<'tcx>>, E> {
if trait_ref.has_infer() && trait_ref.has_param() {
bug!(
"can't orphan check a trait ref with both params and inference variables {:?}",
trait_ref
);
}
let mut checker = OrphanChecker::new(in_crate, lazily_normalize_ty);
Ok(match trait_ref.visit_with(&mut checker) {
ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)) => return Err(err),
ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
// Does there exist some local type after the `ParamTy`.
checker.search_first_local_ty = true;
if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
trait_ref.visit_with(&mut checker).break_value()
{
Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
} else {
Err(OrphanCheckErr::UncoveredTy(ty, None))
}
}
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
})
}
struct OrphanChecker<'tcx, F> {
in_crate: InCrate,
in_self_ty: bool,
lazily_normalize_ty: F,
/// Ignore orphan check failures and exclusively search for the first
/// local type.
search_first_local_ty: bool,
non_local_tys: Vec<(Ty<'tcx>, IsFirstInputType)>,
}
impl<'tcx, F, E> OrphanChecker<'tcx, F>
where
F: FnOnce(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
{
fn new(in_crate: InCrate, lazily_normalize_ty: F) -> Self {
OrphanChecker {
in_crate,
in_self_ty: true,
lazily_normalize_ty,
search_first_local_ty: false,
non_local_tys: Vec::new(),
}
}
fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx, E>> {
self.non_local_tys.push((t, self.in_self_ty.into()));
ControlFlow::Continue(())
}
fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx, E>> {
if self.search_first_local_ty {
ControlFlow::Continue(())
} else {
ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
}
}
fn def_id_is_local(&mut self, def_id: DefId) -> bool {
match self.in_crate {
InCrate::Local => def_id.is_local(),
InCrate::Remote => false,
}
}
}
enum OrphanCheckEarlyExit<'tcx, E> {
NormalizationFailure(E),
ParamTy(Ty<'tcx>),
LocalTy(Ty<'tcx>),
}
impl<'tcx, F, E> TypeVisitor<TyCtxt<'tcx>> for OrphanChecker<'tcx, F>
where
F: FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
{
type Result = ControlFlow<OrphanCheckEarlyExit<'tcx, E>>;
fn visit_region(&mut self, _r: ty::Region<'tcx>) -> Self::Result {
ControlFlow::Continue(())
}
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
// Need to lazily normalize here in with `-Znext-solver=coherence`.
let ty = match (self.lazily_normalize_ty)(ty) {
Ok(ty) => ty,
Err(err) => return ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)),
};
let result = match *ty.kind() {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Never
| ty::Tuple(..)
| ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..) => {
self.found_non_local_ty(ty)
}
ty::Param(..) => self.found_param_ty(ty),
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
InCrate::Local => self.found_non_local_ty(ty),
// The inference variable might be unified with a local
// type in that remote crate.
InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
},
// For fundamental types, we just look inside of them.
ty::Ref(_, ty, _) => ty.visit_with(self),
ty::Adt(def, args) => {
if self.def_id_is_local(def.did()) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else if def.is_fundamental() {
args.visit_with(self)
} else {
self.found_non_local_ty(ty)
}
}
ty::Foreign(def_id) => {
if self.def_id_is_local(def_id) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else {
self.found_non_local_ty(ty)
}
}
ty::Dynamic(tt, ..) => {
let principal = tt.principal().map(|p| p.def_id());
if principal.is_some_and(|p| self.def_id_is_local(p)) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else {
self.found_non_local_ty(ty)
}
}
ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
ty::Closure(did, ..) | ty::CoroutineClosure(did, ..) | ty::Coroutine(did, ..) => {
if self.def_id_is_local(did) {
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
} else {
self.found_non_local_ty(ty)
}
}
// This should only be created when checking whether we have to check whether some
// auto trait impl applies. There will never be multiple impls, so we can just
// act as if it were a local type here.
ty::CoroutineWitness(..) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
ty::Alias(ty::Opaque, ..) => {
// This merits some explanation.
// Normally, opaque types are not involved when performing
// coherence checking, since it is illegal to directly
// implement a trait on an opaque type. However, we might
// end up looking at an opaque type during coherence checking
// if an opaque type gets used within another type (e.g. as
// the type of a field) when checking for auto trait or `Sized`
// impls. This requires us to decide whether or not an opaque
// type should be considered 'local' or not.
//
// We choose to treat all opaque types as non-local, even
// those that appear within the same crate. This seems
// somewhat surprising at first, but makes sense when
// you consider that opaque types are supposed to hide
// the underlying type *within the same crate*. When an
// opaque type is used from outside the module
// where it is declared, it should be impossible to observe
// anything about it other than the traits that it implements.
//
// The alternative would be to look at the underlying type
// to determine whether or not the opaque type itself should
// be considered local. However, this could make it a breaking change
// to switch the underlying ('defining') type from a local type
// to a remote type. This would violate the rule that opaque
// types should be completely opaque apart from the traits
// that they implement, so we don't use this behavior.
self.found_non_local_ty(ty)
}
};
// A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
// the first type we visit is always the self type.
self.in_self_ty = false;
result
}
/// All possible values for a constant parameter already exist
/// in the crate defining the trait, so they are always non-local[^1].
///
/// Because there's no way to have an impl where the first local
/// generic argument is a constant, we also don't have to fail
/// the orphan check when encountering a parameter or a generic constant.
///
/// This means that we can completely ignore constants during the orphan check.
///
/// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
///
/// [^1]: This might not hold for function pointers or trait objects in the future.
/// As these should be quite rare as const arguments and especially rare as impl
/// parameters, allowing uncovered const parameters in impls seems more useful
/// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
fn visit_const(&mut self, _c: ty::Const<'tcx>) -> Self::Result {
ControlFlow::Continue(())
}
}
/// Compute the `intercrate_ambiguity_causes` for the new solver using
/// "proof trees".
///
/// This is a bit scuffed but seems to be good enough, at least
/// when looking at UI tests. Given that it is only used to improve
/// diagnostics this is good enough. We can always improve it once there
/// are test cases where it is currently not enough.
fn compute_intercrate_ambiguity_causes<'tcx>(
infcx: &InferCtxt<'tcx>,
obligations: &[PredicateObligation<'tcx>],
) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
let mut causes: FxIndexSet<IntercrateAmbiguityCause<'tcx>> = Default::default();
for obligation in obligations {
search_ambiguity_causes(infcx, obligation.clone().into(), &mut causes);
}
causes
}
struct AmbiguityCausesVisitor<'a, 'tcx> {
causes: &'a mut FxIndexSet<IntercrateAmbiguityCause<'tcx>>,
}
impl<'a, 'tcx> ProofTreeVisitor<'tcx> for AmbiguityCausesVisitor<'a, 'tcx> {
fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) {
let infcx = goal.infcx();
for cand in goal.candidates() {
cand.visit_nested(self);
}
// When searching for intercrate ambiguity causes, we only need to look
// at ambiguous goals, as for others the coherence unknowable candidate
// was irrelevant.
match goal.result() {
Ok(Certainty::Maybe(_)) => {}
Ok(Certainty::Yes) | Err(NoSolution) => return,
}
let Goal { param_env, predicate } = goal.goal();
// For bound predicates we simply call `infcx.enter_forall`
// and then prove the resulting predicate as a nested goal.
let trait_ref = match predicate.kind().no_bound_vars() {
Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(tr))) => tr.trait_ref,
Some(ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)))
if matches!(
infcx.tcx.def_kind(proj.projection_ty.def_id),
DefKind::AssocTy | DefKind::AssocConst
) =>
{
proj.projection_ty.trait_ref(infcx.tcx)
}
_ => return,
};
// Add ambiguity causes for reservation impls.
for cand in goal.candidates() {
if let inspect::ProbeKind::TraitCandidate {
source: CandidateSource::Impl(def_id),
result: Ok(_),
} = cand.kind()
{
if let ty::ImplPolarity::Reservation = infcx.tcx.impl_polarity(def_id) {
let message = infcx
.tcx
.get_attr(def_id, sym::rustc_reservation_impl)
.and_then(|a| a.value_str());
if let Some(message) = message {
self.causes.insert(IntercrateAmbiguityCause::ReservationImpl { message });
}
}
}
}
// Add ambiguity causes for unknowable goals.
let mut ambiguity_cause = None;
for cand in goal.candidates() {
// FIXME: boiiii, using string comparisions here sure is scuffed.
if let inspect::ProbeKind::MiscCandidate {
name: "coherence unknowable",
result: Ok(_),
} = cand.kind()
{
let lazily_normalize_ty = |ty: Ty<'tcx>| {
let mut fulfill_cx = <dyn TraitEngine<'tcx>>::new(infcx);
if matches!(ty.kind(), ty::Alias(..)) {
// FIXME(-Znext-solver=coherence): we currently don't
// normalize opaque types here, resulting in diverging behavior
// for TAITs.
match infcx
.at(&ObligationCause::dummy(), param_env)
.structurally_normalize(ty, &mut *fulfill_cx)
{
Ok(ty) => Ok(ty),
Err(_errs) => Err(()),
}
} else {
Ok(ty)
}
};
infcx.probe(|_| {
match trait_ref_is_knowable(infcx.tcx, trait_ref, lazily_normalize_ty) {
Err(()) => {}
Ok(Ok(())) => warn!("expected an unknowable trait ref: {trait_ref:?}"),
Ok(Err(conflict)) => {
if !trait_ref.references_error() {
// Normalize the trait ref for diagnostics, ignoring any errors if this fails.
let trait_ref =
deeply_normalize_for_diagnostics(infcx, param_env, trait_ref);
let self_ty = trait_ref.self_ty();
let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
ambiguity_cause = Some(match conflict {
Conflict::Upstream => {
IntercrateAmbiguityCause::UpstreamCrateUpdate {
trait_ref,
self_ty,
}
}
Conflict::Downstream => {
IntercrateAmbiguityCause::DownstreamCrate {
trait_ref,
self_ty,
}
}
});
}
}
}
})
} else {
match cand.result() {
// We only add an ambiguity cause if the goal would otherwise
// result in an error.
//
// FIXME: While this matches the behavior of the
// old solver, it is not the only way in which the unknowable
// candidates *weaken* coherence, they can also force otherwise
// sucessful normalization to be ambiguous.
Ok(Certainty::Maybe(_) | Certainty::Yes) => {
ambiguity_cause = None;
break;
}
Err(NoSolution) => continue,
}
}
}
if let Some(ambiguity_cause) = ambiguity_cause {
self.causes.insert(ambiguity_cause);
}
}
}
fn search_ambiguity_causes<'tcx>(
infcx: &InferCtxt<'tcx>,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
causes: &mut FxIndexSet<IntercrateAmbiguityCause<'tcx>>,
) {
infcx.visit_proof_tree(goal, &mut AmbiguityCausesVisitor { causes });
}