1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
use crate::def_id::{DefIndex, LocalDefId};
use crate::hygiene::SyntaxContext;
use crate::SPAN_TRACK;
use crate::{BytePos, SpanData};

use rustc_data_structures::fx::FxIndexSet;

/// A compressed span.
///
/// [`SpanData`] is 16 bytes, which is too big to stick everywhere. `Span` only
/// takes up 8 bytes, with less space for the length, parent and context. The
/// vast majority (99.9%+) of `SpanData` instances can be made to fit within
/// those 8 bytes. Any `SpanData` whose fields don't fit into a `Span` are
/// stored in a separate interner table, and the `Span` will index into that
/// table. Interning is rare enough that the cost is low, but common enough
/// that the code is exercised regularly.
///
/// An earlier version of this code used only 4 bytes for `Span`, but that was
/// slower because only 80--90% of spans could be stored inline (even less in
/// very large crates) and so the interner was used a lot more. That version of
/// the code also predated the storage of parents.
///
/// There are four different span forms.
///
/// Inline-context format (requires non-huge length, non-huge context, and no parent):
/// - `span.lo_or_index == span_data.lo`
/// - `span.len_with_tag_or_marker == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`)
/// - `span.ctxt_or_parent_or_marker == span_data.ctxt` (must be `<= MAX_CTXT`)
///
/// Inline-parent format (requires non-huge length, root context, and non-huge parent):
/// - `span.lo_or_index == span_data.lo`
/// - `span.len_with_tag_or_marker & !PARENT_TAG == len == span_data.hi - span_data.lo`
///   (must be `<= MAX_LEN`)
/// - `span.len_with_tag_or_marker` has top bit (`PARENT_TAG`) set
/// - `span.ctxt_or_parent_or_marker == span_data.parent` (must be `<= MAX_CTXT`)
///
/// Partially-interned format (requires non-huge context):
/// - `span.lo_or_index == index` (indexes into the interner table)
/// - `span.len_with_tag_or_marker == BASE_LEN_INTERNED_MARKER`
/// - `span.ctxt_or_parent_or_marker == span_data.ctxt` (must be `<= MAX_CTXT`)
///
/// Fully-interned format (all cases not covered above):
/// - `span.lo_or_index == index` (indexes into the interner table)
/// - `span.len_with_tag_or_marker == BASE_LEN_INTERNED_MARKER`
/// - `span.ctxt_or_parent_or_marker == CTXT_INTERNED_MARKER`
///
/// The partially-interned form requires looking in the interning table for
/// lo and length, but the context is stored inline as well as interned.
/// This is useful because context lookups are often done in isolation, and
/// inline lookups are quicker.
///
/// Notes about the choice of field sizes:
/// - `lo` is 32 bits in both `Span` and `SpanData`, which means that `lo`
///   values never cause interning. The number of bits needed for `lo`
///   depends on the crate size. 32 bits allows up to 4 GiB of code in a crate.
///   Having no compression on this field means there is no performance cliff
///   if a crate exceeds a particular size.
/// - `len` is ~15 bits in `Span` (a u16, minus 1 bit for PARENT_TAG) and 32
///   bits in `SpanData`, which means that large `len` values will cause
///   interning. The number of bits needed for `len` does not depend on the
///   crate size. The most common numbers of bits for `len` are from 0 to 7,
///   with a peak usually at 3 or 4, and then it drops off quickly from 8
///   onwards. 15 bits is enough for 99.99%+ of cases, but larger values
///   (sometimes 20+ bits) might occur dozens of times in a typical crate.
/// - `ctxt_or_parent_or_marker` is 16 bits in `Span` and two 32 bit fields in
///   `SpanData`, which means intering will happen if `ctxt` is large, if
///   `parent` is large, or if both values are non-zero. The number of bits
///   needed for `ctxt` values depend partly on the crate size and partly on
///   the form of the code. No crates in `rustc-perf` need more than 15 bits
///   for `ctxt_or_parent_or_marker`, but larger crates might need more than 16
///   bits. The number of bits needed for `parent` hasn't been measured,
///   because `parent` isn't currently used by default.
///
/// In order to reliably use parented spans in incremental compilation,
/// the dependency to the parent definition's span. This is performed
/// using the callback `SPAN_TRACK` to access the query engine.
///
#[derive(Clone, Copy, Eq, PartialEq, Hash)]
#[rustc_pass_by_value]
pub struct Span {
    lo_or_index: u32,
    len_with_tag_or_marker: u16,
    ctxt_or_parent_or_marker: u16,
}

// `MAX_LEN` is chosen so that `PARENT_TAG | MAX_LEN` is distinct from
// `BASE_LEN_INTERNED_MARKER`. (If `MAX_LEN` was 1 higher, this wouldn't be true.)
const MAX_LEN: u32 = 0b0111_1111_1111_1110;
const MAX_CTXT: u32 = 0b0111_1111_1111_1110;
const PARENT_TAG: u16 = 0b1000_0000_0000_0000;
const BASE_LEN_INTERNED_MARKER: u16 = 0b1111_1111_1111_1111;
const CTXT_INTERNED_MARKER: u16 = 0b1111_1111_1111_1111;

/// The dummy span has zero position, length, and context, and no parent.
pub const DUMMY_SP: Span =
    Span { lo_or_index: 0, len_with_tag_or_marker: 0, ctxt_or_parent_or_marker: 0 };

impl Span {
    #[inline]
    pub fn new(
        mut lo: BytePos,
        mut hi: BytePos,
        ctxt: SyntaxContext,
        parent: Option<LocalDefId>,
    ) -> Self {
        if lo > hi {
            std::mem::swap(&mut lo, &mut hi);
        }

        let (lo2, len, ctxt2) = (lo.0, hi.0 - lo.0, ctxt.as_u32());

        if len <= MAX_LEN {
            if ctxt2 <= MAX_CTXT && parent.is_none() {
                // Inline-context format.
                return Span {
                    lo_or_index: lo2,
                    len_with_tag_or_marker: len as u16,
                    ctxt_or_parent_or_marker: ctxt2 as u16,
                };
            } else if ctxt2 == SyntaxContext::root().as_u32()
                && let Some(parent) = parent
                && let parent2 = parent.local_def_index.as_u32()
                && parent2 <= MAX_CTXT
            {
                // Inline-parent format.
                return Span {
                    lo_or_index: lo2,
                    len_with_tag_or_marker: PARENT_TAG | len as u16,
                    ctxt_or_parent_or_marker: parent2 as u16,
                };
            }
        }

        // Partially-interned or fully-interned format.
        let index =
            with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt, parent }));
        let ctxt_or_parent_or_marker = if ctxt2 <= MAX_CTXT {
            ctxt2 as u16 // partially-interned
        } else {
            CTXT_INTERNED_MARKER // fully-interned
        };
        Span {
            lo_or_index: index,
            len_with_tag_or_marker: BASE_LEN_INTERNED_MARKER,
            ctxt_or_parent_or_marker,
        }
    }

    #[inline]
    pub fn data(self) -> SpanData {
        let data = self.data_untracked();
        if let Some(parent) = data.parent {
            (*SPAN_TRACK)(parent);
        }
        data
    }

    /// Internal function to translate between an encoded span and the expanded representation.
    /// This function must not be used outside the incremental engine.
    #[inline]
    pub fn data_untracked(self) -> SpanData {
        if self.len_with_tag_or_marker != BASE_LEN_INTERNED_MARKER {
            if self.len_with_tag_or_marker & PARENT_TAG == 0 {
                // Inline-context format.
                let len = self.len_with_tag_or_marker as u32;
                debug_assert!(len <= MAX_LEN);
                SpanData {
                    lo: BytePos(self.lo_or_index),
                    hi: BytePos(self.lo_or_index + len),
                    ctxt: SyntaxContext::from_u32(self.ctxt_or_parent_or_marker as u32),
                    parent: None,
                }
            } else {
                // Inline-parent format.
                let len = (self.len_with_tag_or_marker & !PARENT_TAG) as u32;
                debug_assert!(len <= MAX_LEN);
                let parent = LocalDefId {
                    local_def_index: DefIndex::from_u32(self.ctxt_or_parent_or_marker as u32),
                };
                SpanData {
                    lo: BytePos(self.lo_or_index),
                    hi: BytePos(self.lo_or_index + len),
                    ctxt: SyntaxContext::root(),
                    parent: Some(parent),
                }
            }
        } else {
            // Fully-interned or partially-interned format. In either case,
            // the interned value contains all the data, so we don't need to
            // distinguish them.
            let index = self.lo_or_index;
            with_span_interner(|interner| interner.spans[index as usize])
        }
    }

    /// Returns `true` if this is a dummy span with any hygienic context.
    #[inline]
    pub fn is_dummy(self) -> bool {
        if self.len_with_tag_or_marker != BASE_LEN_INTERNED_MARKER {
            // Inline-context or inline-parent format.
            let lo = self.lo_or_index;
            let len = (self.len_with_tag_or_marker & !PARENT_TAG) as u32;
            debug_assert!(len <= MAX_LEN);
            lo == 0 && len == 0
        } else {
            // Fully-interned or partially-interned format.
            let index = self.lo_or_index;
            let data = with_span_interner(|interner| interner.spans[index as usize]);
            data.lo == BytePos(0) && data.hi == BytePos(0)
        }
    }

    // Returns either syntactic context, if it can be retrieved without taking the interner lock,
    // or an index into the interner if it cannot.
    fn inline_ctxt(self) -> Result<SyntaxContext, usize> {
        Ok(if self.len_with_tag_or_marker != BASE_LEN_INTERNED_MARKER {
            if self.len_with_tag_or_marker & PARENT_TAG == 0 {
                // Inline-context format.
                SyntaxContext::from_u32(self.ctxt_or_parent_or_marker as u32)
            } else {
                // Inline-parent format. We know that the SyntaxContext is root.
                SyntaxContext::root()
            }
        } else if self.ctxt_or_parent_or_marker != CTXT_INTERNED_MARKER {
            // Partially-interned format. This path avoids looking up the
            // interned value, and is the whole point of the
            // partially-interned format.
            SyntaxContext::from_u32(self.ctxt_or_parent_or_marker as u32)
        } else {
            // Fully-interned format.
            return Err(self.lo_or_index as usize);
        })
    }

    /// This function is used as a fast path when decoding the full `SpanData` is not necessary.
    /// It's a cut-down version of `data_untracked`.
    #[cfg_attr(not(test), rustc_diagnostic_item = "SpanCtxt")]
    #[inline]
    pub fn ctxt(self) -> SyntaxContext {
        self.inline_ctxt()
            .unwrap_or_else(|index| with_span_interner(|interner| interner.spans[index].ctxt))
    }

    #[inline]
    pub fn eq_ctxt(self, other: Span) -> bool {
        match (self.inline_ctxt(), other.inline_ctxt()) {
            (Ok(ctxt1), Ok(ctxt2)) => ctxt1 == ctxt2,
            (Ok(ctxt), Err(index)) | (Err(index), Ok(ctxt)) => {
                with_span_interner(|interner| ctxt == interner.spans[index].ctxt)
            }
            (Err(index1), Err(index2)) => with_span_interner(|interner| {
                interner.spans[index1].ctxt == interner.spans[index2].ctxt
            }),
        }
    }
}

#[derive(Default)]
pub struct SpanInterner {
    spans: FxIndexSet<SpanData>,
}

impl SpanInterner {
    fn intern(&mut self, span_data: &SpanData) -> u32 {
        let (index, _) = self.spans.insert_full(*span_data);
        index as u32
    }
}

// If an interner exists, return it. Otherwise, prepare a fresh one.
#[inline]
fn with_span_interner<T, F: FnOnce(&mut SpanInterner) -> T>(f: F) -> T {
    crate::with_session_globals(|session_globals| f(&mut session_globals.span_interner.lock()))
}