1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use crate::dep_graph::DepNodeIndex;

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::sync::{Lock, OnceLock};
use rustc_hir::def_id::LOCAL_CRATE;
use rustc_index::{Idx, IndexVec};
use rustc_span::def_id::DefId;
use rustc_span::def_id::DefIndex;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;

pub trait CacheSelector<'tcx, V> {
    type Cache
    where
        V: Copy;
}

pub trait QueryCache: Sized {
    type Key: Hash + Eq + Copy + Debug;
    type Value: Copy;

    /// Checks if the query is already computed and in the cache.
    fn lookup(&self, key: &Self::Key) -> Option<(Self::Value, DepNodeIndex)>;

    fn complete(&self, key: Self::Key, value: Self::Value, index: DepNodeIndex);

    fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex));
}

pub struct DefaultCacheSelector<K>(PhantomData<K>);

impl<'tcx, K: Eq + Hash, V: 'tcx> CacheSelector<'tcx, V> for DefaultCacheSelector<K> {
    type Cache = DefaultCache<K, V>
    where
        V: Copy;
}

pub struct DefaultCache<K, V> {
    cache: Sharded<FxHashMap<K, (V, DepNodeIndex)>>,
}

impl<K, V> Default for DefaultCache<K, V> {
    fn default() -> Self {
        DefaultCache { cache: Default::default() }
    }
}

impl<K, V> QueryCache for DefaultCache<K, V>
where
    K: Eq + Hash + Copy + Debug,
    V: Copy,
{
    type Key = K;
    type Value = V;

    #[inline(always)]
    fn lookup(&self, key: &K) -> Option<(V, DepNodeIndex)> {
        let key_hash = sharded::make_hash(key);
        let lock = self.cache.lock_shard_by_hash(key_hash);
        let result = lock.raw_entry().from_key_hashed_nocheck(key_hash, key);

        if let Some((_, value)) = result { Some(*value) } else { None }
    }

    #[inline]
    fn complete(&self, key: K, value: V, index: DepNodeIndex) {
        let mut lock = self.cache.lock_shard_by_value(&key);
        // We may be overwriting another value. This is all right, since the dep-graph
        // will check that the fingerprint matches.
        lock.insert(key, (value, index));
    }

    fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
        for shard in self.cache.lock_shards() {
            for (k, v) in shard.iter() {
                f(k, &v.0, v.1);
            }
        }
    }
}

pub struct SingleCacheSelector;

impl<'tcx, V: 'tcx> CacheSelector<'tcx, V> for SingleCacheSelector {
    type Cache = SingleCache<V>
    where
        V: Copy;
}

pub struct SingleCache<V> {
    cache: OnceLock<(V, DepNodeIndex)>,
}

impl<V> Default for SingleCache<V> {
    fn default() -> Self {
        SingleCache { cache: OnceLock::new() }
    }
}

impl<V> QueryCache for SingleCache<V>
where
    V: Copy,
{
    type Key = ();
    type Value = V;

    #[inline(always)]
    fn lookup(&self, _key: &()) -> Option<(V, DepNodeIndex)> {
        self.cache.get().copied()
    }

    #[inline]
    fn complete(&self, _key: (), value: V, index: DepNodeIndex) {
        self.cache.set((value, index)).ok();
    }

    fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
        if let Some(value) = self.cache.get() {
            f(&(), &value.0, value.1)
        }
    }
}

pub struct VecCacheSelector<K>(PhantomData<K>);

impl<'tcx, K: Idx, V: 'tcx> CacheSelector<'tcx, V> for VecCacheSelector<K> {
    type Cache = VecCache<K, V>
    where
        V: Copy;
}

pub struct VecCache<K: Idx, V> {
    cache: Sharded<IndexVec<K, Option<(V, DepNodeIndex)>>>,
}

impl<K: Idx, V> Default for VecCache<K, V> {
    fn default() -> Self {
        VecCache { cache: Default::default() }
    }
}

impl<K, V> QueryCache for VecCache<K, V>
where
    K: Eq + Idx + Copy + Debug,
    V: Copy,
{
    type Key = K;
    type Value = V;

    #[inline(always)]
    fn lookup(&self, key: &K) -> Option<(V, DepNodeIndex)> {
        // FIXME: lock_shard_by_hash will use high bits which are usually zero in the index() passed
        // here. This makes sharding essentially useless, always selecting the zero'th shard.
        let lock = self.cache.lock_shard_by_hash(key.index() as u64);
        if let Some(Some(value)) = lock.get(*key) { Some(*value) } else { None }
    }

    #[inline]
    fn complete(&self, key: K, value: V, index: DepNodeIndex) {
        let mut lock = self.cache.lock_shard_by_hash(key.index() as u64);
        lock.insert(key, (value, index));
    }

    fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
        for shard in self.cache.lock_shards() {
            for (k, v) in shard.iter_enumerated() {
                if let Some(v) = v {
                    f(&k, &v.0, v.1);
                }
            }
        }
    }
}

pub struct DefIdCacheSelector;

impl<'tcx, V: 'tcx> CacheSelector<'tcx, V> for DefIdCacheSelector {
    type Cache = DefIdCache<V>
    where
        V: Copy;
}

pub struct DefIdCache<V> {
    /// Stores the local DefIds in a dense map. Local queries are much more often dense, so this is
    /// a win over hashing query keys at marginal memory cost (~5% at most) compared to FxHashMap.
    ///
    /// The second element of the tuple is the set of keys actually present in the IndexVec, used
    /// for faster iteration in `iter()`.
    // FIXME: This may want to be sharded, like VecCache. However *how* to shard an IndexVec isn't
    // super clear; VecCache is effectively not sharded today (see FIXME there). For now just omit
    // that complexity here.
    local: Lock<(IndexVec<DefIndex, Option<(V, DepNodeIndex)>>, Vec<DefIndex>)>,
    foreign: DefaultCache<DefId, V>,
}

impl<V> Default for DefIdCache<V> {
    fn default() -> Self {
        DefIdCache { local: Default::default(), foreign: Default::default() }
    }
}

impl<V> QueryCache for DefIdCache<V>
where
    V: Copy,
{
    type Key = DefId;
    type Value = V;

    #[inline(always)]
    fn lookup(&self, key: &DefId) -> Option<(V, DepNodeIndex)> {
        if key.krate == LOCAL_CRATE {
            let cache = self.local.lock();
            cache.0.get(key.index).and_then(|v| *v)
        } else {
            self.foreign.lookup(key)
        }
    }

    #[inline]
    fn complete(&self, key: DefId, value: V, index: DepNodeIndex) {
        if key.krate == LOCAL_CRATE {
            let mut cache = self.local.lock();
            let (cache, present) = &mut *cache;
            let slot = cache.ensure_contains_elem(key.index, Default::default);
            if slot.is_none() {
                // FIXME: Only store the present set when running in incremental mode. `iter` is not
                // used outside of saving caches to disk and self-profile.
                present.push(key.index);
            }
            *slot = Some((value, index));
        } else {
            self.foreign.complete(key, value, index)
        }
    }

    fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
        let guard = self.local.lock();
        let (cache, present) = &*guard;
        for &idx in present.iter() {
            let value = cache[idx].unwrap();
            f(&DefId { krate: LOCAL_CRATE, index: idx }, &value.0, value.1);
        }
        self.foreign.iter(f);
    }
}