use super::diagnostics::SnapshotParser;
use super::pat::{CommaRecoveryMode, Expected, RecoverColon, RecoverComma};
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
use super::{
AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Recovered, Restrictions,
SemiColonMode, SeqSep, TokenExpectType, TokenType, Trailing, TrailingToken,
};
use crate::errors;
use crate::maybe_recover_from_interpolated_ty_qpath;
use ast::mut_visit::{noop_visit_expr, MutVisitor};
use ast::token::IdentIsRaw;
use ast::{CoroutineKind, ForLoopKind, GenBlockKind, Pat, Path, PathSegment};
use core::mem;
use core::ops::ControlFlow;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::Spacing;
use rustc_ast::util::case::Case;
use rustc_ast::util::classify;
use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
use rustc_ast::visit::{walk_expr, Visitor};
use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, UnOp, DUMMY_NODE_ID};
use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
use rustc_ast::{Arm, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
use rustc_ast::{ClosureBinder, MetaItemLit, StmtKind};
use rustc_ast_pretty::pprust;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::{Applicability, Diag, PResult, StashKey, Subdiagnostic};
use rustc_lexer::unescape::unescape_char;
use rustc_macros::Subdiagnostic;
use rustc_session::errors::{report_lit_error, ExprParenthesesNeeded};
use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
use rustc_session::lint::BuiltinLintDiag;
use rustc_span::source_map::{self, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{BytePos, ErrorGuaranteed, Pos, Span};
use thin_vec::{thin_vec, ThinVec};
macro_rules! maybe_whole_expr {
($p:expr) => {
if let token::Interpolated(nt) = &$p.token.kind {
match &nt.0 {
token::NtExpr(e) | token::NtLiteral(e) => {
let e = e.clone();
$p.bump();
return Ok(e);
}
token::NtPath(path) => {
let path = (**path).clone();
$p.bump();
return Ok($p.mk_expr($p.prev_token.span, ExprKind::Path(None, path)));
}
token::NtBlock(block) => {
let block = block.clone();
$p.bump();
return Ok($p.mk_expr($p.prev_token.span, ExprKind::Block(block, None)));
}
_ => {}
};
}
};
}
#[derive(Debug)]
pub(super) enum LhsExpr {
NotYetParsed,
AttributesParsed(AttrWrapper),
AlreadyParsed { expr: P<Expr>, starts_statement: bool },
}
impl From<Option<AttrWrapper>> for LhsExpr {
fn from(o: Option<AttrWrapper>) -> Self {
if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
}
}
impl From<P<Expr>> for LhsExpr {
fn from(expr: P<Expr>) -> Self {
LhsExpr::AlreadyParsed { expr, starts_statement: false }
}
}
#[derive(Debug)]
enum DestructuredFloat {
Single(Symbol, Span),
TrailingDot(Symbol, Span, Span),
MiddleDot(Symbol, Span, Span, Symbol, Span),
Error,
}
impl<'a> Parser<'a> {
#[inline]
pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
self.current_closure.take();
self.parse_expr_res(Restrictions::empty(), None)
}
pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
self.collect_tokens_no_attrs(|this| this.parse_expr())
}
pub fn parse_expr_anon_const(&mut self) -> PResult<'a, AnonConst> {
self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
}
fn parse_expr_catch_underscore(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
match self.parse_expr_res(restrictions, None) {
Ok(expr) => Ok(expr),
Err(err) => match self.token.ident() {
Some((Ident { name: kw::Underscore, .. }, IdentIsRaw::No))
if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
{
let guar = err.emit();
self.bump();
Ok(self.mk_expr(self.prev_token.span, ExprKind::Err(guar)))
}
_ => Err(err),
},
}
}
fn parse_expr_paren_seq(&mut self) -> PResult<'a, ThinVec<P<Expr>>> {
self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore(Restrictions::empty()))
.map(|(r, _)| r)
}
#[inline]
pub(super) fn parse_expr_res(
&mut self,
r: Restrictions,
already_parsed_attrs: Option<AttrWrapper>,
) -> PResult<'a, P<Expr>> {
self.with_res(r, |this| this.parse_expr_assoc(already_parsed_attrs))
}
#[inline]
fn parse_expr_assoc(
&mut self,
already_parsed_attrs: Option<AttrWrapper>,
) -> PResult<'a, P<Expr>> {
self.parse_expr_assoc_with(0, already_parsed_attrs.into())
}
pub(super) fn parse_expr_assoc_with(
&mut self,
min_prec: usize,
lhs: LhsExpr,
) -> PResult<'a, P<Expr>> {
let mut starts_stmt = false;
let mut lhs = if let LhsExpr::AlreadyParsed { expr, starts_statement } = lhs {
starts_stmt = starts_statement;
expr
} else {
let attrs = match lhs {
LhsExpr::AttributesParsed(attrs) => Some(attrs),
_ => None,
};
if self.token.is_range_separator() {
return self.parse_expr_prefix_range(attrs);
} else {
self.parse_expr_prefix(attrs)?
}
};
if !self.should_continue_as_assoc_expr(&lhs) {
return Ok(lhs);
}
self.expected_tokens.push(TokenType::Operator);
while let Some(op) = self.check_assoc_op() {
let lhs_span = self.interpolated_or_expr_span(&lhs);
let cur_op_span = self.token.span;
let restrictions = if op.node.is_assign_like() {
self.restrictions & Restrictions::NO_STRUCT_LITERAL
} else {
self.restrictions
};
let prec = op.node.precedence();
if prec < min_prec {
break;
}
if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
self.err_dotdotdot_syntax(self.token.span);
}
if self.token == token::LArrow {
self.err_larrow_operator(self.token.span);
}
self.bump();
if op.node.is_comparison() {
if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
return Ok(expr);
}
}
if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
&& self.token.kind == token::Eq
&& self.prev_token.span.hi() == self.token.span.lo()
{
let sp = op.span.to(self.token.span);
let sugg = match op.node {
AssocOp::Equal => "==",
AssocOp::NotEqual => "!=",
_ => unreachable!(),
}
.into();
let invalid = format!("{sugg}=");
self.dcx().emit_err(errors::InvalidComparisonOperator {
span: sp,
invalid: invalid.clone(),
sub: errors::InvalidComparisonOperatorSub::Correctable {
span: sp,
invalid,
correct: sugg,
},
});
self.bump();
}
if op.node == AssocOp::Less
&& self.token.kind == token::Gt
&& self.prev_token.span.hi() == self.token.span.lo()
{
let sp = op.span.to(self.token.span);
self.dcx().emit_err(errors::InvalidComparisonOperator {
span: sp,
invalid: "<>".into(),
sub: errors::InvalidComparisonOperatorSub::Correctable {
span: sp,
invalid: "<>".into(),
correct: "!=".into(),
},
});
self.bump();
}
if op.node == AssocOp::LessEqual
&& self.token.kind == token::Gt
&& self.prev_token.span.hi() == self.token.span.lo()
{
let sp = op.span.to(self.token.span);
self.dcx().emit_err(errors::InvalidComparisonOperator {
span: sp,
invalid: "<=>".into(),
sub: errors::InvalidComparisonOperatorSub::Spaceship(sp),
});
self.bump();
}
if self.prev_token == token::BinOp(token::Plus)
&& self.token == token::BinOp(token::Plus)
&& self.prev_token.span.between(self.token.span).is_empty()
{
let op_span = self.prev_token.span.to(self.token.span);
self.bump();
lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?;
continue;
}
if self.prev_token == token::BinOp(token::Minus)
&& self.token == token::BinOp(token::Minus)
&& self.prev_token.span.between(self.token.span).is_empty()
&& !self.look_ahead(1, |tok| tok.can_begin_expr())
{
let op_span = self.prev_token.span.to(self.token.span);
self.bump();
lhs = self.recover_from_postfix_decrement(lhs, op_span, starts_stmt)?;
continue;
}
let op = op.node;
if op == AssocOp::As {
lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
continue;
} else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
lhs = self.parse_expr_range(prec, lhs, op, cur_op_span)?;
break;
}
let fixity = op.fixity();
let prec_adjustment = match fixity {
Fixity::Right => 0,
Fixity::Left => 1,
Fixity::None => 1,
};
let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
this.parse_expr_assoc_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
})?;
let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
lhs = match op {
AssocOp::Add
| AssocOp::Subtract
| AssocOp::Multiply
| AssocOp::Divide
| AssocOp::Modulus
| AssocOp::LAnd
| AssocOp::LOr
| AssocOp::BitXor
| AssocOp::BitAnd
| AssocOp::BitOr
| AssocOp::ShiftLeft
| AssocOp::ShiftRight
| AssocOp::Equal
| AssocOp::Less
| AssocOp::LessEqual
| AssocOp::NotEqual
| AssocOp::Greater
| AssocOp::GreaterEqual => {
let ast_op = op.to_ast_binop().unwrap();
let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
self.mk_expr(span, binary)
}
AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
AssocOp::AssignOp(k) => {
let aop = match k {
token::Plus => BinOpKind::Add,
token::Minus => BinOpKind::Sub,
token::Star => BinOpKind::Mul,
token::Slash => BinOpKind::Div,
token::Percent => BinOpKind::Rem,
token::Caret => BinOpKind::BitXor,
token::And => BinOpKind::BitAnd,
token::Or => BinOpKind::BitOr,
token::Shl => BinOpKind::Shl,
token::Shr => BinOpKind::Shr,
};
let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
self.mk_expr(span, aopexpr)
}
AssocOp::As | AssocOp::DotDot | AssocOp::DotDotEq => {
self.dcx().span_bug(span, "AssocOp should have been handled by special case")
}
};
if let Fixity::None = fixity {
break;
}
}
Ok(lhs)
}
fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
(true, None) => false,
(false, _) => true, (true, Some(AssocOp::Multiply)) | (true, Some(AssocOp::Subtract)) | (true, Some(AssocOp::Add)) | (true, Some(AssocOp::LAnd)) | (true, Some(AssocOp::LOr)) | (true, Some(AssocOp::BitOr)) => {
let sp = self.psess.source_map().start_point(self.token.span);
self.psess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
false
}
(true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
(true, Some(_)) => {
self.error_found_expr_would_be_stmt(lhs);
true
}
}
}
fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
self.dcx().emit_err(errors::FoundExprWouldBeStmt {
span: self.token.span,
token: self.token.clone(),
suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
});
}
pub fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
(
Some(
AssocOp::ShiftRight
| AssocOp::Greater
| AssocOp::GreaterEqual
| AssocOp::AssignOp(token::BinOpToken::Shr),
),
_,
) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
return None;
}
(
Some(
AssocOp::Assign
| AssocOp::AssignOp(_)
| AssocOp::BitOr
| AssocOp::DotDot
| AssocOp::DotDotEq,
),
_,
) if self.restrictions.contains(Restrictions::IS_PAT) => {
return None;
}
(Some(op), _) => (op, self.token.span),
(None, Some((Ident { name: sym::and, span }, IdentIsRaw::No)))
if self.may_recover() =>
{
self.dcx().emit_err(errors::InvalidLogicalOperator {
span: self.token.span,
incorrect: "and".into(),
sub: errors::InvalidLogicalOperatorSub::Conjunction(self.token.span),
});
(AssocOp::LAnd, span)
}
(None, Some((Ident { name: sym::or, span }, IdentIsRaw::No))) if self.may_recover() => {
self.dcx().emit_err(errors::InvalidLogicalOperator {
span: self.token.span,
incorrect: "or".into(),
sub: errors::InvalidLogicalOperatorSub::Disjunction(self.token.span),
});
(AssocOp::LOr, span)
}
_ => return None,
};
Some(source_map::respan(span, op))
}
fn expr_is_complete(&self, e: &Expr) -> bool {
self.restrictions.contains(Restrictions::STMT_EXPR)
&& !classify::expr_requires_semi_to_be_stmt(e)
}
fn parse_expr_range(
&mut self,
prec: usize,
lhs: P<Expr>,
op: AssocOp,
cur_op_span: Span,
) -> PResult<'a, P<Expr>> {
let rhs = if self.is_at_start_of_range_notation_rhs() {
let maybe_lt = self.token.clone();
Some(
self.parse_expr_assoc_with(prec + 1, LhsExpr::NotYetParsed)
.map_err(|err| self.maybe_err_dotdotlt_syntax(maybe_lt, err))?,
)
} else {
None
};
let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
let limits =
if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
let range = self.mk_range(Some(lhs), rhs, limits);
Ok(self.mk_expr(span, range))
}
fn is_at_start_of_range_notation_rhs(&self) -> bool {
if self.token.can_begin_expr() {
if self.token == token::OpenDelim(Delimiter::Brace) {
return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
}
true
} else {
false
}
}
fn parse_expr_prefix_range(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
if self.token == token::DotDotDot {
self.err_dotdotdot_syntax(self.token.span);
}
debug_assert!(
self.token.is_range_separator(),
"parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
self.token
);
let limits = match self.token.kind {
token::DotDot => RangeLimits::HalfOpen,
_ => RangeLimits::Closed,
};
let op = AssocOp::from_token(&self.token);
let attrs = self.parse_or_use_outer_attributes(attrs)?;
self.collect_tokens_for_expr(attrs, |this, attrs| {
let lo = this.token.span;
let maybe_lt = this.look_ahead(1, |t| t.clone());
this.bump();
let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
this.parse_expr_assoc_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
.map(|x| (lo.to(x.span), Some(x)))
.map_err(|err| this.maybe_err_dotdotlt_syntax(maybe_lt, err))?
} else {
(lo, None)
};
let range = this.mk_range(None, opt_end, limits);
Ok(this.mk_expr_with_attrs(span, range, attrs))
})
}
fn parse_expr_prefix(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let lo = self.token.span;
macro_rules! make_it {
($this:ident, $attrs:expr, |this, _| $body:expr) => {
$this.collect_tokens_for_expr($attrs, |$this, attrs| {
let (hi, ex) = $body?;
Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
})
};
}
let this = self;
match this.token.uninterpolate().kind {
token::Not => make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Not)),
token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)),
token::BinOp(token::Minus) => {
make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Neg))
}
token::BinOp(token::Star) => {
make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Deref))
}
token::BinOp(token::And) | token::AndAnd => {
make_it!(this, attrs, |this, _| this.parse_expr_borrow(lo))
}
token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
let mut err = errors::LeadingPlusNotSupported {
span: lo,
remove_plus: None,
add_parentheses: None,
};
if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
} else {
err.remove_plus = Some(lo);
}
this.dcx().emit_err(err);
this.bump();
this.parse_expr_prefix(None)
}
token::BinOp(token::Plus)
if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
{
let starts_stmt = this.prev_token == token::Semi
|| this.prev_token == token::CloseDelim(Delimiter::Brace);
let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
this.bump();
this.bump();
let operand_expr = this.parse_expr_dot_or_call(Default::default())?;
this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt)
}
token::Ident(..) if this.token.is_keyword(kw::Box) => {
make_it!(this, attrs, |this, _| this.parse_expr_box(lo))
}
token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
}
_ => return this.parse_expr_dot_or_call(Some(attrs)),
}
}
fn parse_expr_prefix_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
self.bump();
let expr = self.parse_expr_prefix(None)?;
let span = self.interpolated_or_expr_span(&expr);
Ok((lo.to(span), expr))
}
fn parse_expr_unary(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
let (span, expr) = self.parse_expr_prefix_common(lo)?;
Ok((span, self.mk_unary(op, expr)))
}
fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.dcx().emit_err(errors::TildeAsUnaryOperator(lo));
self.parse_expr_unary(lo, UnOp::Not)
}
fn parse_expr_box(&mut self, box_kw: Span) -> PResult<'a, (Span, ExprKind)> {
let (span, _) = self.parse_expr_prefix_common(box_kw)?;
let inner_span = span.with_lo(box_kw.hi());
let code = self.psess.source_map().span_to_snippet(inner_span).unwrap();
let guar = self.dcx().emit_err(errors::BoxSyntaxRemoved { span: span, code: code.trim() });
Ok((span, ExprKind::Err(guar)))
}
fn is_mistaken_not_ident_negation(&self) -> bool {
let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
token::Literal(..) | token::Pound => true,
_ => t.is_whole_expr(),
};
self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
}
fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
let negated_token = self.look_ahead(1, |t| t.clone());
let sub_diag = if negated_token.is_numeric_lit() {
errors::NotAsNegationOperatorSub::SuggestNotBitwise
} else if negated_token.is_bool_lit() {
errors::NotAsNegationOperatorSub::SuggestNotLogical
} else {
errors::NotAsNegationOperatorSub::SuggestNotDefault
};
self.dcx().emit_err(errors::NotAsNegationOperator {
negated: negated_token.span,
negated_desc: super::token_descr(&negated_token),
sub: sub_diag(
self.psess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
),
});
self.parse_expr_unary(lo, UnOp::Not)
}
fn interpolated_or_expr_span(&self, expr: &Expr) -> Span {
match self.prev_token.kind {
TokenKind::Interpolated(..) => self.prev_token.span,
_ => expr.span,
}
}
fn parse_assoc_op_cast(
&mut self,
lhs: P<Expr>,
lhs_span: Span,
expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
) -> PResult<'a, P<Expr>> {
let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, rhs.span), expr_kind(lhs, rhs))
};
let parser_snapshot_before_type = self.clone();
let cast_expr = match self.parse_as_cast_ty() {
Ok(rhs) => mk_expr(self, lhs, rhs),
Err(type_err) => {
if !self.may_recover() {
return Err(type_err);
}
let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
match (&lhs.kind, &self.token.kind) {
(
ExprKind::Path(None, ast::Path { segments, .. }),
token::Ident(kw::For | kw::Loop | kw::While, IdentIsRaw::No),
) if segments.len() == 1 => {
let snapshot = self.create_snapshot_for_diagnostic();
let label = Label {
ident: Ident::from_str_and_span(
&format!("'{}", segments[0].ident),
segments[0].ident.span,
),
};
match self.parse_expr_labeled(label, false) {
Ok(expr) => {
type_err.cancel();
self.dcx().emit_err(errors::MalformedLoopLabel {
span: label.ident.span,
correct_label: label.ident,
});
return Ok(expr);
}
Err(err) => {
err.cancel();
self.restore_snapshot(snapshot);
}
}
}
_ => {}
}
match self.parse_path(PathStyle::Expr) {
Ok(path) => {
let span_after_type = parser_snapshot_after_type.token.span;
let expr = mk_expr(
self,
lhs,
self.mk_ty(path.span, TyKind::Path(None, path.clone())),
);
let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
let suggestion = errors::ComparisonOrShiftInterpretedAsGenericSugg {
left: expr.span.shrink_to_lo(),
right: expr.span.shrink_to_hi(),
};
match self.token.kind {
token::Lt => {
self.dcx().emit_err(errors::ComparisonInterpretedAsGeneric {
comparison: self.token.span,
r#type: path,
args: args_span,
suggestion,
})
}
token::BinOp(token::Shl) => {
self.dcx().emit_err(errors::ShiftInterpretedAsGeneric {
shift: self.token.span,
r#type: path,
args: args_span,
suggestion,
})
}
_ => {
*self = parser_snapshot_after_type;
return Err(type_err);
}
};
type_err.cancel();
expr
}
Err(path_err) => {
path_err.cancel();
*self = parser_snapshot_after_type;
return Err(type_err);
}
}
}
};
self.parse_and_disallow_postfix_after_cast(cast_expr)
}
fn parse_and_disallow_postfix_after_cast(
&mut self,
cast_expr: P<Expr>,
) -> PResult<'a, P<Expr>> {
if let ExprKind::Type(_, _) = cast_expr.kind {
panic!("ExprKind::Type must not be parsed");
}
let span = cast_expr.span;
let with_postfix = self.parse_expr_dot_or_call_with_(cast_expr, span)?;
if !matches!(with_postfix.kind, ExprKind::Cast(_, _)) {
let msg = format!(
"cast cannot be followed by {}",
match with_postfix.kind {
ExprKind::Index(..) => "indexing",
ExprKind::Try(_) => "`?`",
ExprKind::Field(_, _) => "a field access",
ExprKind::MethodCall(_) => "a method call",
ExprKind::Call(_, _) => "a function call",
ExprKind::Await(_, _) => "`.await`",
ExprKind::Err(_) => return Ok(with_postfix),
_ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
}
);
let mut err = self.dcx().struct_span_err(span, msg);
let suggest_parens = |err: &mut Diag<'_>| {
let suggestions = vec![
(span.shrink_to_lo(), "(".to_string()),
(span.shrink_to_hi(), ")".to_string()),
];
err.multipart_suggestion(
"try surrounding the expression in parentheses",
suggestions,
Applicability::MachineApplicable,
);
};
suggest_parens(&mut err);
err.emit();
};
Ok(with_postfix)
}
fn parse_expr_borrow(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.expect_and()?;
let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
let lifetime = has_lifetime.then(|| self.expect_lifetime()); let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
let expr = if self.token.is_range_separator() {
self.parse_expr_prefix_range(None)
} else {
self.parse_expr_prefix(None)
}?;
let hi = self.interpolated_or_expr_span(&expr);
let span = lo.to(hi);
if let Some(lt) = lifetime {
self.error_remove_borrow_lifetime(span, lt.ident.span);
}
Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
}
fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
self.dcx().emit_err(errors::LifetimeInBorrowExpression { span, lifetime_span: lt_span });
}
fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
let found_raw = self.eat_keyword(kw::Raw);
assert!(found_raw);
let mutability = self.parse_const_or_mut().unwrap();
self.psess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
(ast::BorrowKind::Raw, mutability)
} else {
(ast::BorrowKind::Ref, self.parse_mutability())
}
}
fn parse_expr_dot_or_call(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
self.collect_tokens_for_expr(attrs, |this, attrs| {
let base = this.parse_expr_bottom()?;
let span = this.interpolated_or_expr_span(&base);
this.parse_expr_dot_or_call_with(base, span, attrs)
})
}
pub(super) fn parse_expr_dot_or_call_with(
&mut self,
e0: P<Expr>,
lo: Span,
mut attrs: ast::AttrVec,
) -> PResult<'a, P<Expr>> {
let res = self.parse_expr_dot_or_call_with_(e0, lo);
if attrs.is_empty() {
res
} else {
res.map(|expr| {
expr.map(|mut expr| {
attrs.extend(expr.attrs);
expr.attrs = attrs;
expr
})
})
}
}
fn parse_expr_dot_or_call_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
loop {
let has_question =
if self.prev_token.kind == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
self.eat_noexpect(&token::Question)
} else {
self.eat(&token::Question)
};
if has_question {
e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
continue;
}
let has_dot = if self.prev_token.kind == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
self.eat_noexpect(&token::Dot)
} else {
self.eat(&token::Dot)
};
if has_dot {
e = self.parse_dot_suffix_expr(lo, e)?;
continue;
}
if self.expr_is_complete(&e) {
return Ok(e);
}
e = match self.token.kind {
token::OpenDelim(Delimiter::Parenthesis) => self.parse_expr_fn_call(lo, e),
token::OpenDelim(Delimiter::Bracket) => self.parse_expr_index(lo, e)?,
_ => return Ok(e),
}
}
}
pub fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
match self.token.uninterpolate().kind {
token::Ident(..) => self.parse_dot_suffix(base, lo),
token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
Ok(self.parse_expr_tuple_field_access(lo, base, symbol, suffix, None))
}
token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
Ok(self.parse_expr_tuple_field_access_float(lo, base, symbol, suffix))
}
_ => {
self.error_unexpected_after_dot();
Ok(base)
}
}
}
fn error_unexpected_after_dot(&self) {
let actual = pprust::token_to_string(&self.token);
let span = self.token.span;
let sm = self.psess.source_map();
let (span, actual) = match (&self.token.kind, self.subparser_name) {
(token::Eof, Some(_)) if let Ok(actual) = sm.span_to_snippet(sm.next_point(span)) => {
(span.shrink_to_hi(), actual.into())
}
_ => (span, actual),
};
self.dcx().emit_err(errors::UnexpectedTokenAfterDot { span, actual });
}
fn break_up_float(&self, float: Symbol, span: Span) -> DestructuredFloat {
#[derive(Debug)]
enum FloatComponent {
IdentLike(String),
Punct(char),
}
use FloatComponent::*;
let float_str = float.as_str();
let mut components = Vec::new();
let mut ident_like = String::new();
for c in float_str.chars() {
if c == '_' || c.is_ascii_alphanumeric() {
ident_like.push(c);
} else if matches!(c, '.' | '+' | '-') {
if !ident_like.is_empty() {
components.push(IdentLike(mem::take(&mut ident_like)));
}
components.push(Punct(c));
} else {
panic!("unexpected character in a float token: {c:?}")
}
}
if !ident_like.is_empty() {
components.push(IdentLike(ident_like));
}
let can_take_span_apart =
|| self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
match &*components {
[IdentLike(i)] => {
DestructuredFloat::Single(Symbol::intern(i), span)
}
[IdentLike(i), Punct('.')] => {
let (ident_span, dot_span) = if can_take_span_apart() {
let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
let ident_span = span.with_hi(span.lo + ident_len);
let dot_span = span.with_lo(span.lo + ident_len);
(ident_span, dot_span)
} else {
(span, span)
};
let symbol = Symbol::intern(i);
DestructuredFloat::TrailingDot(symbol, ident_span, dot_span)
}
[IdentLike(i1), Punct('.'), IdentLike(i2)] => {
let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
let ident1_span = span.with_hi(span.lo + ident1_len);
let dot_span = span
.with_lo(span.lo + ident1_len)
.with_hi(span.lo + ident1_len + BytePos(1));
let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
(ident1_span, dot_span, ident2_span)
} else {
(span, span, span)
};
let symbol1 = Symbol::intern(i1);
let symbol2 = Symbol::intern(i2);
DestructuredFloat::MiddleDot(symbol1, ident1_span, dot_span, symbol2, ident2_span)
}
[IdentLike(_), Punct('+' | '-')] |
[IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
[IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
[IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
self.error_unexpected_after_dot();
DestructuredFloat::Error
}
_ => panic!("unexpected components in a float token: {components:?}"),
}
}
fn parse_expr_tuple_field_access_float(
&mut self,
lo: Span,
base: P<Expr>,
float: Symbol,
suffix: Option<Symbol>,
) -> P<Expr> {
match self.break_up_float(float, self.token.span) {
DestructuredFloat::Single(sym, _sp) => {
self.parse_expr_tuple_field_access(lo, base, sym, suffix, None)
}
DestructuredFloat::TrailingDot(sym, ident_span, dot_span) => {
assert!(suffix.is_none());
self.token = Token::new(token::Ident(sym, IdentIsRaw::No), ident_span);
let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
self.parse_expr_tuple_field_access(lo, base, sym, None, Some(next_token))
}
DestructuredFloat::MiddleDot(symbol1, ident1_span, dot_span, symbol2, ident2_span) => {
self.token = Token::new(token::Ident(symbol1, IdentIsRaw::No), ident1_span);
let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
let base1 =
self.parse_expr_tuple_field_access(lo, base, symbol1, None, Some(next_token1));
let next_token2 = Token::new(token::Ident(symbol2, IdentIsRaw::No), ident2_span);
self.bump_with((next_token2, self.token_spacing)); self.parse_expr_tuple_field_access(lo, base1, symbol2, suffix, None)
}
DestructuredFloat::Error => base,
}
}
fn parse_floating_field_access(&mut self) -> PResult<'a, P<[Ident]>> {
let mut fields = Vec::new();
let mut trailing_dot = None;
loop {
let expr = self.parse_expr()?;
let mut current = &expr;
let start_idx = fields.len();
loop {
match current.kind {
ExprKind::Field(ref left, right) => {
fields.insert(start_idx, right);
trailing_dot = None;
current = left;
}
ExprKind::Index(ref left, ref _right, span) => {
self.dcx().emit_err(errors::ArrayIndexInOffsetOf(span));
current = left;
}
ExprKind::Lit(token::Lit {
kind: token::Float | token::Integer,
symbol,
suffix,
}) => {
if let Some(suffix) = suffix {
self.expect_no_tuple_index_suffix(current.span, suffix);
}
match self.break_up_float(symbol, current.span) {
DestructuredFloat::Single(sym, sp) => {
trailing_dot = None;
fields.insert(start_idx, Ident::new(sym, sp));
}
DestructuredFloat::TrailingDot(sym, sym_span, dot_span) => {
assert!(suffix.is_none());
trailing_dot = Some(dot_span);
fields.insert(start_idx, Ident::new(sym, sym_span));
}
DestructuredFloat::MiddleDot(
symbol1,
span1,
_dot_span,
symbol2,
span2,
) => {
trailing_dot = None;
fields.insert(start_idx, Ident::new(symbol2, span2));
fields.insert(start_idx, Ident::new(symbol1, span1));
}
DestructuredFloat::Error => {
trailing_dot = None;
fields.insert(start_idx, Ident::new(symbol, self.prev_token.span));
}
}
break;
}
ExprKind::Path(None, Path { ref segments, .. }) => {
match &segments[..] {
[PathSegment { ident, args: None, .. }] => {
trailing_dot = None;
fields.insert(start_idx, *ident)
}
_ => {
self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
break;
}
}
break;
}
_ => {
self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
break;
}
}
}
if matches!(self.token.kind, token::CloseDelim(..) | token::Comma) {
break;
} else if trailing_dot.is_none() {
self.dcx().emit_err(errors::InvalidOffsetOf(self.token.span));
break;
}
}
if let Some(dot) = trailing_dot {
self.dcx().emit_err(errors::InvalidOffsetOf(dot));
}
Ok(fields.into_iter().collect())
}
fn parse_expr_tuple_field_access(
&mut self,
lo: Span,
base: P<Expr>,
field: Symbol,
suffix: Option<Symbol>,
next_token: Option<(Token, Spacing)>,
) -> P<Expr> {
match next_token {
Some(next_token) => self.bump_with(next_token),
None => self.bump(),
}
let span = self.prev_token.span;
let field = ExprKind::Field(base, Ident::new(field, span));
if let Some(suffix) = suffix {
self.expect_no_tuple_index_suffix(span, suffix);
}
self.mk_expr(lo.to(span), field)
}
fn parse_expr_fn_call(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
let snapshot = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis) {
Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
} else {
None
};
let open_paren = self.token.span;
let seq = self
.parse_expr_paren_seq()
.map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
match self.maybe_recover_struct_lit_bad_delims(lo, open_paren, seq, snapshot) {
Ok(expr) => expr,
Err(err) => self.recover_seq_parse_error(Delimiter::Parenthesis, lo, err),
}
}
#[instrument(skip(self, seq, snapshot), level = "trace")]
fn maybe_recover_struct_lit_bad_delims(
&mut self,
lo: Span,
open_paren: Span,
seq: PResult<'a, P<Expr>>,
snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
) -> PResult<'a, P<Expr>> {
match (self.may_recover(), seq, snapshot) {
(true, Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
snapshot.bump(); match snapshot.parse_struct_fields(path.clone(), false, Delimiter::Parenthesis) {
Ok((fields, ..))
if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) =>
{
self.restore_snapshot(snapshot);
let close_paren = self.prev_token.span;
let span = lo.to(close_paren);
let fields: Vec<_> =
fields.into_iter().filter(|field| !field.is_shorthand).collect();
let guar = if !fields.is_empty() &&
self.span_to_snippet(close_paren).is_ok_and(|snippet| snippet == ")")
{
err.cancel();
self.dcx()
.create_err(errors::ParenthesesWithStructFields {
span,
r#type: path,
braces_for_struct: errors::BracesForStructLiteral {
first: open_paren,
second: close_paren,
},
no_fields_for_fn: errors::NoFieldsForFnCall {
fields: fields
.into_iter()
.map(|field| field.span.until(field.expr.span))
.collect(),
},
})
.emit()
} else {
err.emit()
};
Ok(self.mk_expr_err(span, guar))
}
Ok(_) => Err(err),
Err(err2) => {
err2.cancel();
Err(err)
}
}
}
(_, seq, _) => seq,
}
}
fn parse_expr_index(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
let prev_span = self.prev_token.span;
let open_delim_span = self.token.span;
self.bump(); let index = self.parse_expr()?;
self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
self.expect(&token::CloseDelim(Delimiter::Bracket))?;
Ok(self.mk_expr(
lo.to(self.prev_token.span),
self.mk_index(base, index, open_delim_span.to(self.prev_token.span)),
))
}
fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
if self.token.uninterpolated_span().at_least_rust_2018() && self.eat_keyword(kw::Await) {
return Ok(self.mk_await_expr(self_arg, lo));
}
let fn_span_lo = self.token.span;
let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
self.check_trailing_angle_brackets(&seg, &[&token::OpenDelim(Delimiter::Parenthesis)]);
self.check_turbofish_missing_angle_brackets(&mut seg);
if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
let args = self.parse_expr_paren_seq()?;
let fn_span = fn_span_lo.to(self.prev_token.span);
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(
span,
ExprKind::MethodCall(Box::new(ast::MethodCall {
seg,
receiver: self_arg,
args,
span: fn_span,
})),
))
} else {
if let Some(args) = seg.args {
self.dcx().emit_err(errors::FieldExpressionWithGeneric(args.span()));
}
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
}
}
fn parse_expr_bottom(&mut self) -> PResult<'a, P<Expr>> {
maybe_recover_from_interpolated_ty_qpath!(self, true);
maybe_whole_expr!(self);
let restrictions = self.restrictions;
self.with_res(restrictions - Restrictions::ALLOW_LET, |this| {
let lo = this.token.span;
if let token::Literal(_) = this.token.kind {
this.parse_expr_lit()
} else if this.check(&token::OpenDelim(Delimiter::Parenthesis)) {
this.parse_expr_tuple_parens(restrictions)
} else if this.check(&token::OpenDelim(Delimiter::Brace)) {
this.parse_expr_block(None, lo, BlockCheckMode::Default)
} else if this.check(&token::BinOp(token::Or)) || this.check(&token::OrOr) {
this.parse_expr_closure().map_err(|mut err| {
if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
err.subdiagnostic(this.dcx(), ExprParenthesesNeeded::surrounding(*sp));
}
err
})
} else if this.check(&token::OpenDelim(Delimiter::Bracket)) {
this.parse_expr_array_or_repeat(Delimiter::Bracket)
} else if this.is_builtin() {
this.parse_expr_builtin()
} else if this.check_path() {
this.parse_expr_path_start()
} else if this.check_keyword(kw::Move)
|| this.check_keyword(kw::Static)
|| this.check_const_closure()
{
this.parse_expr_closure()
} else if this.eat_keyword(kw::If) {
this.parse_expr_if()
} else if this.check_keyword(kw::For) {
if this.choose_generics_over_qpath(1) {
this.parse_expr_closure()
} else {
assert!(this.eat_keyword(kw::For));
this.parse_expr_for(None, this.prev_token.span)
}
} else if this.eat_keyword(kw::While) {
this.parse_expr_while(None, this.prev_token.span)
} else if let Some(label) = this.eat_label() {
this.parse_expr_labeled(label, true)
} else if this.eat_keyword(kw::Loop) {
let sp = this.prev_token.span;
this.parse_expr_loop(None, this.prev_token.span).map_err(|mut err| {
err.span_label(sp, "while parsing this `loop` expression");
err
})
} else if this.eat_keyword(kw::Match) {
let match_sp = this.prev_token.span;
this.parse_expr_match().map_err(|mut err| {
err.span_label(match_sp, "while parsing this `match` expression");
err
})
} else if this.eat_keyword(kw::Unsafe) {
let sp = this.prev_token.span;
this.parse_expr_block(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
|mut err| {
err.span_label(sp, "while parsing this `unsafe` expression");
err
},
)
} else if this.check_inline_const(0) {
this.parse_const_block(lo.to(this.token.span), false)
} else if this.may_recover() && this.is_do_catch_block() {
this.recover_do_catch()
} else if this.is_try_block() {
this.expect_keyword(kw::Try)?;
this.parse_try_block(lo)
} else if this.eat_keyword(kw::Return) {
this.parse_expr_return()
} else if this.eat_keyword(kw::Continue) {
this.parse_expr_continue(lo)
} else if this.eat_keyword(kw::Break) {
this.parse_expr_break()
} else if this.eat_keyword(kw::Yield) {
this.parse_expr_yield()
} else if this.is_do_yeet() {
this.parse_expr_yeet()
} else if this.eat_keyword(kw::Become) {
this.parse_expr_become()
} else if this.check_keyword(kw::Let) {
this.parse_expr_let(restrictions)
} else if this.eat_keyword(kw::Underscore) {
Ok(this.mk_expr(this.prev_token.span, ExprKind::Underscore))
} else if this.token.uninterpolated_span().at_least_rust_2018() {
if this.token.uninterpolated_span().at_least_rust_2024()
&& (this.is_gen_block(kw::Gen, 0)
|| (this.check_keyword(kw::Async) && this.is_gen_block(kw::Gen, 1)))
{
this.parse_gen_block()
} else if this.check_keyword(kw::Async) {
if this.is_gen_block(kw::Async, 0) {
this.parse_gen_block()
} else {
this.parse_expr_closure()
}
} else if this.eat_keyword_noexpect(kw::Await) {
this.recover_incorrect_await_syntax(lo, this.prev_token.span)
} else {
this.parse_expr_lit()
}
} else {
this.parse_expr_lit()
}
})
}
fn parse_expr_lit(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
match self.parse_opt_token_lit() {
Some((token_lit, _)) => {
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
self.maybe_recover_from_bad_qpath(expr)
}
None => self.try_macro_suggestion(),
}
}
fn parse_expr_tuple_parens(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.expect(&token::OpenDelim(Delimiter::Parenthesis))?;
let (es, trailing_comma) = match self.parse_seq_to_end(
&token::CloseDelim(Delimiter::Parenthesis),
SeqSep::trailing_allowed(token::Comma),
|p| p.parse_expr_catch_underscore(restrictions.intersection(Restrictions::ALLOW_LET)),
) {
Ok(x) => x,
Err(err) => {
return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, err));
}
};
let kind = if es.len() == 1 && matches!(trailing_comma, Trailing::No) {
ExprKind::Paren(es.into_iter().next().unwrap())
} else {
ExprKind::Tup(es)
};
let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_array_or_repeat(&mut self, close_delim: Delimiter) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.bump(); let close = &token::CloseDelim(close_delim);
let kind = if self.eat(close) {
ExprKind::Array(ThinVec::new())
} else {
let first_expr = self.parse_expr()?;
if self.eat(&token::Semi) {
let count = self.parse_expr_anon_const()?;
self.expect(close)?;
ExprKind::Repeat(first_expr, count)
} else if self.eat(&token::Comma) {
let sep = SeqSep::trailing_allowed(token::Comma);
let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
exprs.insert(0, first_expr);
ExprKind::Array(exprs)
} else {
self.expect(close)?;
ExprKind::Array(thin_vec![first_expr])
}
};
let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_path_start(&mut self) -> PResult<'a, P<Expr>> {
let maybe_eq_tok = self.prev_token.clone();
let (qself, path) = if self.eat_lt() {
let lt_span = self.prev_token.span;
let (qself, path) = self.parse_qpath(PathStyle::Expr).map_err(|mut err| {
if maybe_eq_tok.kind == TokenKind::Eq && maybe_eq_tok.span.hi() == lt_span.lo() {
let eq_lt = maybe_eq_tok.span.to(lt_span);
err.span_suggestion(eq_lt, "did you mean", "<=", Applicability::Unspecified);
}
err
})?;
(Some(qself), path)
} else {
(None, self.parse_path(PathStyle::Expr)?)
};
let (span, kind) = if self.eat(&token::Not) {
if qself.is_some() {
self.dcx().emit_err(errors::MacroInvocationWithQualifiedPath(path.span));
}
let lo = path.span;
let mac = P(MacCall { path, args: self.parse_delim_args()? });
(lo.to(self.prev_token.span), ExprKind::MacCall(mac))
} else if self.check(&token::OpenDelim(Delimiter::Brace))
&& let Some(expr) = self.maybe_parse_struct_expr(&qself, &path)
{
if qself.is_some() {
self.psess.gated_spans.gate(sym::more_qualified_paths, path.span);
}
return expr;
} else {
(path.span, ExprKind::Path(qself, path))
};
let expr = self.mk_expr(span, kind);
self.maybe_recover_from_bad_qpath(expr)
}
pub(super) fn parse_expr_labeled(
&mut self,
label_: Label,
mut consume_colon: bool,
) -> PResult<'a, P<Expr>> {
let lo = label_.ident.span;
let label = Some(label_);
let ate_colon = self.eat(&token::Colon);
let expr = if self.eat_keyword(kw::While) {
self.parse_expr_while(label, lo)
} else if self.eat_keyword(kw::For) {
self.parse_expr_for(label, lo)
} else if self.eat_keyword(kw::Loop) {
self.parse_expr_loop(label, lo)
} else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace))
|| self.token.is_whole_block()
{
self.parse_expr_block(label, lo, BlockCheckMode::Default)
} else if !ate_colon
&& self.may_recover()
&& (matches!(self.token.kind, token::CloseDelim(_) | token::Comma)
|| self.token.is_punct())
&& could_be_unclosed_char_literal(label_.ident)
{
let (lit, _) =
self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| {
self_.dcx().create_err(errors::UnexpectedTokenAfterLabel {
span: self_.token.span,
remove_label: None,
enclose_in_block: None,
})
});
consume_colon = false;
Ok(self.mk_expr(lo, ExprKind::Lit(lit)))
} else if !ate_colon
&& (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
{
let guar = self.dcx().emit_err(errors::UnexpectedTokenAfterLabel {
span: self.token.span,
remove_label: None,
enclose_in_block: None,
});
consume_colon = false;
Ok(self.mk_expr_err(lo, guar))
} else {
let mut err = errors::UnexpectedTokenAfterLabel {
span: self.token.span,
remove_label: None,
enclose_in_block: None,
};
let expr = self.parse_expr().map(|expr| {
let span = expr.span;
let found_labeled_breaks = {
struct FindLabeledBreaksVisitor;
impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
type Result = ControlFlow<()>;
fn visit_expr(&mut self, ex: &'ast Expr) -> ControlFlow<()> {
if let ExprKind::Break(Some(_label), _) = ex.kind {
ControlFlow::Break(())
} else {
walk_expr(self, ex)
}
}
}
FindLabeledBreaksVisitor.visit_expr(&expr).is_break()
};
if !found_labeled_breaks {
err.remove_label = Some(lo.until(span));
return expr;
}
err.enclose_in_block = Some(errors::UnexpectedTokenAfterLabelSugg {
left: span.shrink_to_lo(),
right: span.shrink_to_hi(),
});
let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
let blk = self.mk_block(thin_vec![stmt], BlockCheckMode::Default, span);
self.mk_expr(span, ExprKind::Block(blk, label))
});
self.dcx().emit_err(err);
expr
}?;
if !ate_colon && consume_colon {
self.dcx().emit_err(errors::RequireColonAfterLabeledExpression {
span: expr.span,
label: lo,
label_end: lo.shrink_to_hi(),
});
}
Ok(expr)
}
pub(super) fn recover_unclosed_char<L>(
&self,
ident: Ident,
mk_lit_char: impl FnOnce(Symbol, Span) -> L,
err: impl FnOnce(&Self) -> Diag<'a>,
) -> L {
assert!(could_be_unclosed_char_literal(ident));
self.dcx()
.try_steal_modify_and_emit_err(ident.span, StashKey::LifetimeIsChar, |err| {
err.span_suggestion_verbose(
ident.span.shrink_to_hi(),
"add `'` to close the char literal",
"'",
Applicability::MaybeIncorrect,
);
})
.unwrap_or_else(|| {
err(self)
.with_span_suggestion_verbose(
ident.span.shrink_to_hi(),
"add `'` to close the char literal",
"'",
Applicability::MaybeIncorrect,
)
.emit()
});
let name = ident.without_first_quote().name;
mk_lit_char(name, ident.span)
}
fn recover_do_catch(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.bump(); self.bump(); let span = lo.to(self.prev_token.span);
self.dcx().emit_err(errors::DoCatchSyntaxRemoved { span });
self.parse_try_block(lo)
}
fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
}
fn parse_expr_return(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let kind = ExprKind::Ret(self.parse_expr_opt()?);
let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_yeet(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.bump(); self.bump(); let kind = ExprKind::Yeet(self.parse_expr_opt()?);
let span = lo.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::yeet_expr, span);
let expr = self.mk_expr(span, kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_become(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let kind = ExprKind::Become(self.parse_expr()?);
let span = lo.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::explicit_tail_calls, span);
let expr = self.mk_expr(span, kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_break(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let mut label = self.eat_label();
let kind = if self.token == token::Colon
&& let Some(label) = label.take()
{
let lexpr = self.parse_expr_labeled(label, true)?;
self.dcx().emit_err(errors::LabeledLoopInBreak {
span: lexpr.span,
sub: errors::WrapInParentheses::Expression {
left: lexpr.span.shrink_to_lo(),
right: lexpr.span.shrink_to_hi(),
},
});
Some(lexpr)
} else if self.token != token::OpenDelim(Delimiter::Brace)
|| !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
{
let mut expr = self.parse_expr_opt()?;
if let Some(expr) = &mut expr {
if label.is_some()
&& matches!(
expr.kind,
ExprKind::While(_, _, None)
| ExprKind::ForLoop { label: None, .. }
| ExprKind::Loop(_, None, _)
| ExprKind::Block(_, None)
)
{
self.psess.buffer_lint_with_diagnostic(
BREAK_WITH_LABEL_AND_LOOP,
lo.to(expr.span),
ast::CRATE_NODE_ID,
"this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
BuiltinLintDiag::BreakWithLabelAndLoop(expr.span),
);
}
if self.may_recover()
&& let ExprKind::Path(None, p) = &expr.kind
&& let [segment] = &*p.segments
&& let &ast::PathSegment { ident, args: None, .. } = segment
&& let Some(next) = self.parse_expr_opt()?
{
label = Some(self.recover_ident_into_label(ident));
*expr = next;
}
}
expr
} else {
None
};
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_continue(&mut self, lo: Span) -> PResult<'a, P<Expr>> {
let mut label = self.eat_label();
if self.may_recover()
&& label.is_none()
&& let Some((ident, _)) = self.token.ident()
{
self.bump();
label = Some(self.recover_ident_into_label(ident));
}
let kind = ExprKind::Continue(label);
Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
}
fn parse_expr_yield(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let kind = ExprKind::Yield(self.parse_expr_opt()?);
let span = lo.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::yield_expr, span);
let expr = self.mk_expr(span, kind);
self.maybe_recover_from_bad_qpath(expr)
}
fn parse_expr_builtin(&mut self) -> PResult<'a, P<Expr>> {
self.parse_builtin(|this, lo, ident| {
if ident.name == sym::offset_of {
return Ok(Some(this.parse_expr_offset_of(lo)?));
}
Ok(None)
})
}
pub(crate) fn parse_builtin<T>(
&mut self,
parse: impl FnOnce(&mut Parser<'a>, Span, Ident) -> PResult<'a, Option<T>>,
) -> PResult<'a, T> {
let lo = self.token.span;
self.bump(); self.bump(); let Some((ident, IdentIsRaw::No)) = self.token.ident() else {
let err = self.dcx().create_err(errors::ExpectedBuiltinIdent { span: self.token.span });
return Err(err);
};
self.psess.gated_spans.gate(sym::builtin_syntax, ident.span);
self.bump();
self.expect(&TokenKind::OpenDelim(Delimiter::Parenthesis))?;
let ret = if let Some(res) = parse(self, lo, ident)? {
Ok(res)
} else {
let err = self.dcx().create_err(errors::UnknownBuiltinConstruct {
span: lo.to(ident.span),
name: ident.name,
});
return Err(err);
};
self.expect(&TokenKind::CloseDelim(Delimiter::Parenthesis))?;
ret
}
pub(crate) fn parse_expr_offset_of(&mut self, lo: Span) -> PResult<'a, P<Expr>> {
let container = self.parse_ty()?;
self.expect(&TokenKind::Comma)?;
let fields = self.parse_floating_field_access()?;
let trailing_comma = self.eat_noexpect(&TokenKind::Comma);
if let Err(mut e) =
self.expect_one_of(&[], &[TokenKind::CloseDelim(Delimiter::Parenthesis)])
{
if trailing_comma {
e.note("unexpected third argument to offset_of");
} else {
e.note("offset_of expects dot-separated field and variant names");
}
e.emit();
}
if self.may_recover() {
while !matches!(self.token.kind, token::CloseDelim(..) | token::Eof) {
self.bump();
}
}
let span = lo.to(self.token.span);
Ok(self.mk_expr(span, ExprKind::OffsetOf(container, fields)))
}
pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
match self.parse_opt_meta_item_lit() {
Some(lit) => match lit.kind {
ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
style,
symbol: lit.symbol,
suffix: lit.suffix,
span: lit.span,
symbol_unescaped,
}),
_ => Err(Some(lit)),
},
None => Err(None),
}
}
pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) {
(token::Lit { symbol: name, suffix: None, kind: token::Char }, span)
}
fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit {
ast::MetaItemLit {
symbol: name,
suffix: None,
kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
span,
}
}
fn handle_missing_lit<L>(
&mut self,
mk_lit_char: impl FnOnce(Symbol, Span) -> L,
) -> PResult<'a, L> {
if let token::Interpolated(nt) = &self.token.kind
&& let token::NtExpr(e) | token::NtLiteral(e) = &nt.0
&& matches!(e.kind, ExprKind::Err(_))
{
let mut err = self
.dcx()
.create_err(errors::InvalidInterpolatedExpression { span: self.token.span });
err.downgrade_to_delayed_bug();
return Err(err);
}
let token = self.token.clone();
let err = |self_: &Self| {
let msg = format!("unexpected token: {}", super::token_descr(&token));
self_.dcx().struct_span_err(token.span, msg)
};
if let Some(ident) = self.token.lifetime()
&& could_be_unclosed_char_literal(ident)
{
let lt = self.expect_lifetime();
Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err))
} else {
Err(err(self))
}
}
pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
self.parse_opt_token_lit()
.ok_or(())
.or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char))
}
pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
self.parse_opt_meta_item_lit()
.ok_or(())
.or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char))
}
fn recover_after_dot(&mut self) -> Option<Token> {
let mut recovered = None;
if self.token == token::Dot {
recovered = self.look_ahead(1, |next_token| {
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
next_token.kind
{
if suffix.map_or(true, |s| s == sym::f32 || s == sym::f64)
&& symbol.as_str().chars().all(|c| c.is_numeric() || c == '_')
&& self.token.span.hi() == next_token.span.lo()
{
let s = String::from("0.") + symbol.as_str();
let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
return Some(Token::new(kind, self.token.span.to(next_token.span)));
}
}
None
});
if let Some(token) = &recovered {
self.bump();
self.dcx().emit_err(errors::FloatLiteralRequiresIntegerPart {
span: token.span,
correct: pprust::token_to_string(token).into_owned(),
});
}
}
recovered
}
pub(super) fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
let recovered = self.recover_after_dot();
let token = recovered.as_ref().unwrap_or(&self.token);
let span = token.span;
token::Lit::from_token(token).map(|token_lit| {
self.bump();
(token_lit, span)
})
}
pub(super) fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
let recovered = self.recover_after_dot();
let token = recovered.as_ref().unwrap_or(&self.token);
match token::Lit::from_token(token) {
Some(lit) => {
match MetaItemLit::from_token_lit(lit, token.span) {
Ok(lit) => {
self.bump();
Some(lit)
}
Err(err) => {
let span = token.uninterpolated_span();
self.bump();
let guar = report_lit_error(self.psess, err, lit, span);
let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
let symbol = Symbol::intern(&suffixless_lit.to_string());
let lit = token::Lit::new(token::Err(guar), symbol, lit.suffix);
Some(
MetaItemLit::from_token_lit(lit, span)
.unwrap_or_else(|_| unreachable!()),
)
}
}
}
None => None,
}
}
pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) {
if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) {
self.dcx().emit_warn(errors::InvalidLiteralSuffixOnTupleIndex {
span,
suffix,
exception: Some(()),
});
} else {
self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
span,
suffix,
exception: None,
});
}
}
pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
maybe_whole_expr!(self);
let lo = self.token.span;
let minus_present = self.eat(&token::BinOp(token::Minus));
let (token_lit, span) = self.parse_token_lit()?;
let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
if minus_present {
Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
} else {
Ok(expr)
}
}
fn is_array_like_block(&mut self) -> bool {
self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
&& self.look_ahead(2, |t| t == &token::Comma)
&& self.look_ahead(3, |t| t.can_begin_expr())
}
fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<P<Expr>> {
let mut snapshot = self.create_snapshot_for_diagnostic();
match snapshot.parse_expr_array_or_repeat(Delimiter::Brace) {
Ok(arr) => {
let guar = self.dcx().emit_err(errors::ArrayBracketsInsteadOfSpaces {
span: arr.span,
sub: errors::ArrayBracketsInsteadOfSpacesSugg {
left: lo,
right: snapshot.prev_token.span,
},
});
self.restore_snapshot(snapshot);
Some(self.mk_expr_err(arr.span, guar))
}
Err(e) => {
e.cancel();
None
}
}
}
fn suggest_missing_semicolon_before_array(
&self,
prev_span: Span,
open_delim_span: Span,
) -> PResult<'a, ()> {
if !self.may_recover() {
return Ok(());
}
if self.token.kind == token::Comma {
if !self.psess.source_map().is_multiline(prev_span.until(self.token.span)) {
return Ok(());
}
let mut snapshot = self.create_snapshot_for_diagnostic();
snapshot.bump();
match snapshot.parse_seq_to_before_end(
&token::CloseDelim(Delimiter::Bracket),
SeqSep::trailing_allowed(token::Comma),
|p| p.parse_expr(),
) {
Ok(_)
if snapshot
.span_to_snippet(snapshot.token.span)
.is_ok_and(|snippet| snippet == "]") =>
{
return Err(self.dcx().create_err(errors::MissingSemicolonBeforeArray {
open_delim: open_delim_span,
semicolon: prev_span.shrink_to_hi(),
}));
}
Ok(_) => (),
Err(err) => err.cancel(),
}
}
Ok(())
}
pub(super) fn parse_expr_block(
&mut self,
opt_label: Option<Label>,
lo: Span,
blk_mode: BlockCheckMode,
) -> PResult<'a, P<Expr>> {
if self.may_recover() && self.is_array_like_block() {
if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
return Ok(arr);
}
}
if self.token.is_whole_block() {
self.dcx().emit_err(errors::InvalidBlockMacroSegment {
span: self.token.span,
context: lo.to(self.token.span),
wrap: errors::WrapInExplicitBlock {
lo: self.token.span.shrink_to_lo(),
hi: self.token.span.shrink_to_hi(),
},
});
}
let (attrs, blk) = self.parse_block_common(lo, blk_mode, true)?;
Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
}
fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
let blk = self.parse_block()?;
Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
}
fn parse_expr_closure(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
let before = self.prev_token.clone();
let binder = if self.check_keyword(kw::For) {
let lo = self.token.span;
let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
let span = lo.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::closure_lifetime_binder, span);
ClosureBinder::For { span, generic_params: lifetime_defs }
} else {
ClosureBinder::NotPresent
};
let constness = self.parse_closure_constness();
let movability =
if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
let coroutine_kind = if self.token.uninterpolated_span().at_least_rust_2018() {
self.parse_coroutine_kind(Case::Sensitive)
} else {
None
};
let capture_clause = self.parse_capture_clause()?;
let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
let decl_hi = self.prev_token.span;
let mut body = match fn_decl.output {
FnRetTy::Default(_) => {
let restrictions =
self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
let prev = self.prev_token.clone();
let token = self.token.clone();
match self.parse_expr_res(restrictions, None) {
Ok(expr) => expr,
Err(err) => self.recover_closure_body(err, before, prev, token, lo, decl_hi)?,
}
}
_ => {
let body_lo = self.token.span;
self.parse_expr_block(None, body_lo, BlockCheckMode::Default)?
}
};
match coroutine_kind {
Some(CoroutineKind::Async { span, .. }) => {
self.psess.gated_spans.gate(sym::async_closure, span);
}
Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
self.psess.gated_spans.gate(sym::gen_blocks, span);
}
None => {}
}
if self.token.kind == TokenKind::Semi
&& matches!(self.token_cursor.stack.last(), Some((.., Delimiter::Parenthesis)))
&& self.may_recover()
{
body = self.mk_expr_err(
body.span,
self.dcx().span_delayed_bug(body.span, "recovered a closure body as a block"),
);
}
let body_span = body.span;
let closure = self.mk_expr(
lo.to(body.span),
ExprKind::Closure(Box::new(ast::Closure {
binder,
capture_clause,
constness,
coroutine_kind,
movability,
fn_decl,
body,
fn_decl_span: lo.to(decl_hi),
fn_arg_span,
})),
);
let spans =
ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
self.current_closure = Some(spans);
Ok(closure)
}
fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
if self.eat_keyword(kw::Move) {
let move_kw_span = self.prev_token.span;
if self.check_keyword(kw::Async) {
let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
Err(self
.dcx()
.create_err(errors::AsyncMoveOrderIncorrect { span: move_async_span }))
} else {
Ok(CaptureBy::Value { move_kw: move_kw_span })
}
} else {
Ok(CaptureBy::Ref)
}
}
fn parse_fn_block_decl(&mut self) -> PResult<'a, (P<FnDecl>, Span)> {
let arg_start = self.token.span.lo();
let inputs = if self.eat(&token::OrOr) {
ThinVec::new()
} else {
self.expect(&token::BinOp(token::Or))?;
let args = self
.parse_seq_to_before_tokens(
&[&token::BinOp(token::Or), &token::OrOr],
SeqSep::trailing_allowed(token::Comma),
TokenExpectType::NoExpect,
|p| p.parse_fn_block_param(),
)?
.0;
self.expect_or()?;
args
};
let arg_span = self.prev_token.span.with_lo(arg_start);
let output =
self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
Ok((P(FnDecl { inputs, output }), arg_span))
}
fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
let lo = self.token.span;
let attrs = self.parse_outer_attributes()?;
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let pat = this.parse_pat_no_top_alt(Some(Expected::ParameterName), None)?;
let ty = if this.eat(&token::Colon) {
this.parse_ty()?
} else {
this.mk_ty(pat.span, TyKind::Infer)
};
Ok((
Param {
attrs,
ty,
pat,
span: lo.to(this.prev_token.span),
id: DUMMY_NODE_ID,
is_placeholder: false,
},
TrailingToken::MaybeComma,
))
})
}
fn parse_expr_if(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let cond = self.parse_expr_cond()?;
self.parse_if_after_cond(lo, cond)
}
fn parse_if_after_cond(&mut self, lo: Span, mut cond: P<Expr>) -> PResult<'a, P<Expr>> {
let cond_span = cond.span;
let mut recover_block_from_condition = |this: &mut Self| {
let block = match &mut cond.kind {
ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
if let ExprKind::Block(_, None) = right.kind =>
{
let guar = this.dcx().emit_err(errors::IfExpressionMissingThenBlock {
if_span: lo,
missing_then_block_sub:
errors::IfExpressionMissingThenBlockSub::UnfinishedCondition(
cond_span.shrink_to_lo().to(*binop_span),
),
let_else_sub: None,
});
std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi(), guar))
}
ExprKind::Block(_, None) => {
let guar = this.dcx().emit_err(errors::IfExpressionMissingCondition {
if_span: lo.with_neighbor(cond.span).shrink_to_hi(),
block_span: self.psess.source_map().start_point(cond_span),
});
std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi(), guar))
}
_ => {
return None;
}
};
if let ExprKind::Block(block, _) = &block.kind {
Some(block.clone())
} else {
unreachable!()
}
};
let thn = if self.token.is_keyword(kw::Else) {
if let Some(block) = recover_block_from_condition(self) {
block
} else {
let let_else_sub = matches!(cond.kind, ExprKind::Let(..))
.then(|| errors::IfExpressionLetSomeSub { if_span: lo.until(cond_span) });
let guar = self.dcx().emit_err(errors::IfExpressionMissingThenBlock {
if_span: lo,
missing_then_block_sub: errors::IfExpressionMissingThenBlockSub::AddThenBlock(
cond_span.shrink_to_hi(),
),
let_else_sub,
});
self.mk_block_err(cond_span.shrink_to_hi(), guar)
}
} else {
let attrs = self.parse_outer_attributes()?; let maybe_fatarrow = self.token.clone();
let block = if self.check(&token::OpenDelim(Delimiter::Brace)) {
self.parse_block()?
} else {
if let Some(block) = recover_block_from_condition(self) {
block
} else {
self.error_on_extra_if(&cond)?;
self.parse_block().map_err(|mut err| {
if self.prev_token == token::Semi
&& self.token == token::AndAnd
&& let maybe_let = self.look_ahead(1, |t| t.clone())
&& maybe_let.is_keyword(kw::Let)
{
err.span_suggestion(
self.prev_token.span,
"consider removing this semicolon to parse the `let` as part of the same chain",
"",
Applicability::MachineApplicable,
).span_note(
self.token.span.to(maybe_let.span),
"you likely meant to continue parsing the let-chain starting here",
);
} else {
if maybe_fatarrow.kind == token::FatArrow {
err.span_suggestion(
maybe_fatarrow.span,
"you might have meant to write a \"greater than or equal to\" comparison",
">=",
Applicability::MaybeIncorrect,
);
}
err.span_note(
cond_span,
"the `if` expression is missing a block after this condition",
);
}
err
})?
}
};
self.error_on_if_block_attrs(lo, false, block.span, attrs);
block
};
let els = if self.eat_keyword(kw::Else) { Some(self.parse_expr_else()?) } else { None };
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
}
fn parse_expr_cond(&mut self) -> PResult<'a, P<Expr>> {
let mut cond =
self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, None)?;
CondChecker::new(self).visit_expr(&mut cond);
if let ExprKind::Let(_, _, _, None) = cond.kind {
self.psess.gated_spans.ungate_last(sym::let_chains, cond.span);
}
Ok(cond)
}
fn parse_expr_let(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
let is_recovered = if !restrictions.contains(Restrictions::ALLOW_LET) {
let err = errors::ExpectedExpressionFoundLet {
span: self.token.span,
reason: ForbiddenLetReason::OtherForbidden,
missing_let: None,
comparison: None,
};
if self.prev_token.kind == token::BinOp(token::Or) {
return Err(self.dcx().create_err(err));
} else {
Some(self.dcx().emit_err(err))
}
} else {
None
};
self.bump(); let lo = self.prev_token.span;
let pat = self.parse_pat_allow_top_alt(
None,
RecoverComma::Yes,
RecoverColon::Yes,
CommaRecoveryMode::LikelyTuple,
)?;
if self.token == token::EqEq {
self.dcx().emit_err(errors::ExpectedEqForLetExpr {
span: self.token.span,
sugg_span: self.token.span,
});
self.bump();
} else {
self.expect(&token::Eq)?;
}
let expr = self.parse_expr_assoc_with(1 + prec_let_scrutinee_needs_par(), None.into())?;
let span = lo.to(expr.span);
Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span, is_recovered)))
}
fn parse_expr_else(&mut self) -> PResult<'a, P<Expr>> {
let else_span = self.prev_token.span; let attrs = self.parse_outer_attributes()?; let expr = if self.eat_keyword(kw::If) {
ensure_sufficient_stack(|| self.parse_expr_if())?
} else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) {
self.parse_simple_block()?
} else {
let snapshot = self.create_snapshot_for_diagnostic();
let first_tok = super::token_descr(&self.token);
let first_tok_span = self.token.span;
match self.parse_expr() {
Ok(cond)
if self.check(&TokenKind::OpenDelim(Delimiter::Brace))
&& classify::expr_requires_semi_to_be_stmt(&cond) =>
{
self.dcx().emit_err(errors::ExpectedElseBlock {
first_tok_span,
first_tok,
else_span,
condition_start: cond.span.shrink_to_lo(),
});
self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
}
Err(e) => {
e.cancel();
self.restore_snapshot(snapshot);
self.parse_simple_block()?
},
Ok(_) => {
self.restore_snapshot(snapshot);
self.parse_simple_block()?
},
}
};
self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
Ok(expr)
}
fn error_on_if_block_attrs(
&self,
ctx_span: Span,
is_ctx_else: bool,
branch_span: Span,
attrs: AttrWrapper,
) {
if !attrs.is_empty()
&& let [x0 @ xn] | [x0, .., xn] = &*attrs.take_for_recovery(self.psess)
{
let attributes = x0.span.to(xn.span);
let last = xn.span;
let ctx = if is_ctx_else { "else" } else { "if" };
self.dcx().emit_err(errors::OuterAttributeNotAllowedOnIfElse {
last,
branch_span,
ctx_span,
ctx: ctx.to_string(),
attributes,
});
}
}
fn error_on_extra_if(&mut self, cond: &P<Expr>) -> PResult<'a, ()> {
if let ExprKind::Binary(Spanned { span: binop_span, node: binop }, _, right) = &cond.kind
&& let BinOpKind::And = binop
&& let ExprKind::If(cond, ..) = &right.kind
{
Err(self.dcx().create_err(errors::UnexpectedIfWithIf(
binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()),
)))
} else {
Ok(())
}
}
fn parse_for_head(&mut self) -> PResult<'a, (P<Pat>, P<Expr>)> {
let begin_paren = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis) {
let start_span = self.token.span;
let left = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
Some((start_span, left))
} else {
None
};
let pat = match (
self.parse_pat_allow_top_alt(
None,
RecoverComma::Yes,
RecoverColon::Yes,
CommaRecoveryMode::LikelyTuple,
),
begin_paren,
) {
(Ok(pat), _) => pat, (Err(err), Some((start_span, left))) if self.eat_keyword(kw::In) => {
let expr = match self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None) {
Ok(expr) => expr,
Err(expr_err) => {
expr_err.cancel();
return Err(err);
}
};
return if self.token.kind == token::CloseDelim(Delimiter::Parenthesis) {
let span = vec![start_span, self.token.span];
let right = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
self.bump(); err.cancel();
self.dcx().emit_err(errors::ParenthesesInForHead {
span,
sugg: errors::ParenthesesInForHeadSugg { left, right },
});
Ok((self.mk_pat(start_span.to(right), ast::PatKind::Wild), expr))
} else {
Err(err) };
}
(Err(err), _) => return Err(err), };
if !self.eat_keyword(kw::In) {
self.error_missing_in_for_loop();
}
self.check_for_for_in_in_typo(self.prev_token.span);
let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
Ok((pat, expr))
}
fn parse_expr_for(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
let is_await =
self.token.uninterpolated_span().at_least_rust_2018() && self.eat_keyword(kw::Await);
if is_await {
self.psess.gated_spans.gate(sym::async_for_loop, self.prev_token.span);
}
let kind = if is_await { ForLoopKind::ForAwait } else { ForLoopKind::For };
let (pat, expr) = self.parse_for_head()?;
if matches!(expr.kind, ExprKind::Block(..))
&& !matches!(self.token.kind, token::OpenDelim(Delimiter::Brace))
&& self.may_recover()
{
let guar = self
.dcx()
.emit_err(errors::MissingExpressionInForLoop { span: expr.span.shrink_to_lo() });
let err_expr = self.mk_expr(expr.span, ExprKind::Err(guar));
let block = self.mk_block(thin_vec![], BlockCheckMode::Default, self.prev_token.span);
return Ok(self.mk_expr(
lo.to(self.prev_token.span),
ExprKind::ForLoop { pat, iter: err_expr, body: block, label: opt_label, kind },
));
}
let (attrs, loop_block) = self.parse_inner_attrs_and_block()?;
let kind = ExprKind::ForLoop { pat, iter: expr, body: loop_block, label: opt_label, kind };
self.recover_loop_else("for", lo)?;
Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
}
fn recover_loop_else(&mut self, loop_kind: &'static str, loop_kw: Span) -> PResult<'a, ()> {
if self.token.is_keyword(kw::Else) && self.may_recover() {
let else_span = self.token.span;
self.bump();
let else_clause = self.parse_expr_else()?;
self.dcx().emit_err(errors::LoopElseNotSupported {
span: else_span.to(else_clause.span),
loop_kind,
loop_kw,
});
}
Ok(())
}
fn error_missing_in_for_loop(&mut self) {
let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
let span = self.token.span;
self.bump();
(span, errors::MissingInInForLoopSub::InNotOf)
} else {
(self.prev_token.span.between(self.token.span), errors::MissingInInForLoopSub::AddIn)
};
self.dcx().emit_err(errors::MissingInInForLoop { span, sub: sub(span) });
}
fn parse_expr_while(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
let cond = self.parse_expr_cond().map_err(|mut err| {
err.span_label(lo, "while parsing the condition of this `while` expression");
err
})?;
let (attrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
err.span_label(lo, "while parsing the body of this `while` expression");
err.span_label(cond.span, "this `while` condition successfully parsed");
err
})?;
self.recover_loop_else("while", lo)?;
Ok(self.mk_expr_with_attrs(
lo.to(self.prev_token.span),
ExprKind::While(cond, body, opt_label),
attrs,
))
}
fn parse_expr_loop(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
let loop_span = self.prev_token.span;
let (attrs, body) = self.parse_inner_attrs_and_block()?;
self.recover_loop_else("loop", lo)?;
Ok(self.mk_expr_with_attrs(
lo.to(self.prev_token.span),
ExprKind::Loop(body, opt_label, loop_span),
attrs,
))
}
pub(crate) fn eat_label(&mut self) -> Option<Label> {
self.token.lifetime().map(|ident| {
self.bump();
Label { ident }
})
}
fn parse_expr_match(&mut self) -> PResult<'a, P<Expr>> {
let match_span = self.prev_token.span;
let lo = self.prev_token.span;
let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
if self.token == token::Semi {
e.span_suggestion_short(
match_span,
"try removing this `match`",
"",
Applicability::MaybeIncorrect, );
}
if self.maybe_recover_unexpected_block_label() {
e.cancel();
self.bump();
} else {
return Err(e);
}
}
let attrs = self.parse_inner_attributes()?;
let mut arms = ThinVec::new();
while self.token != token::CloseDelim(Delimiter::Brace) {
match self.parse_arm() {
Ok(arm) => arms.push(arm),
Err(e) => {
let guar = e.emit();
self.recover_stmt();
let span = lo.to(self.token.span);
if self.token == token::CloseDelim(Delimiter::Brace) {
self.bump();
}
arms.push(Arm {
attrs: Default::default(),
pat: self.mk_pat(span, ast::PatKind::Err(guar)),
guard: None,
body: Some(self.mk_expr_err(span, guar)),
span,
id: DUMMY_NODE_ID,
is_placeholder: false,
});
return Ok(self.mk_expr_with_attrs(
span,
ExprKind::Match(scrutinee, arms),
attrs,
));
}
}
}
let hi = self.token.span;
self.bump();
Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
}
fn parse_arm_body_missing_braces(
&mut self,
first_expr: &P<Expr>,
arrow_span: Span,
) -> Option<P<Expr>> {
if self.token.kind != token::Semi {
return None;
}
let start_snapshot = self.create_snapshot_for_diagnostic();
let semi_sp = self.token.span;
self.bump(); let mut stmts =
vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
let guar = this.dcx().emit_err(errors::MatchArmBodyWithoutBraces {
statements: span,
arrow: arrow_span,
num_statements: stmts.len(),
sub: if stmts.len() > 1 {
errors::MatchArmBodyWithoutBracesSugg::AddBraces {
left: span.shrink_to_lo(),
right: span.shrink_to_hi(),
}
} else {
errors::MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
},
});
this.mk_expr_err(span, guar)
};
loop {
if self.token.kind == token::CloseDelim(Delimiter::Brace) {
return Some(err(self, stmts));
}
if self.token.kind == token::Comma {
self.restore_snapshot(start_snapshot);
return None;
}
let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
match self.parse_pat_no_top_alt(None, None) {
Ok(_pat) => {
if self.token.kind == token::FatArrow {
self.restore_snapshot(pre_pat_snapshot);
return Some(err(self, stmts));
}
}
Err(err) => {
err.cancel();
}
}
self.restore_snapshot(pre_pat_snapshot);
match self.parse_stmt_without_recovery(true, ForceCollect::No) {
Ok(Some(stmt)) => {
stmts.push(stmt);
}
Ok(None) => {
self.restore_snapshot(start_snapshot);
break;
}
Err(stmt_err) => {
stmt_err.cancel();
self.restore_snapshot(start_snapshot);
break;
}
}
}
None
}
pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
let attrs = self.parse_outer_attributes()?;
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let lo = this.token.span;
let (pat, guard) = this.parse_match_arm_pat_and_guard()?;
let span_before_body = this.prev_token.span;
let arm_body;
let is_fat_arrow = this.check(&token::FatArrow);
let is_almost_fat_arrow = TokenKind::FatArrow
.similar_tokens()
.is_some_and(|similar_tokens| similar_tokens.contains(&this.token.kind));
let armless = (!is_fat_arrow && !is_almost_fat_arrow && pat.could_be_never_pattern())
|| matches!(this.token.kind, token::Comma | token::CloseDelim(Delimiter::Brace));
let mut result = if armless {
arm_body = None;
this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)]).map(
|x| {
if !pat.contains_never_pattern() {
this.psess.gated_spans.gate(sym::never_patterns, pat.span);
}
x
},
)
} else {
if let Err(mut err) = this.expect(&token::FatArrow) {
if is_almost_fat_arrow {
err.span_suggestion(
this.token.span,
"use a fat arrow to start a match arm",
"=>",
Applicability::MachineApplicable,
);
if matches!(
(&this.prev_token.kind, &this.token.kind),
(token::DotDotEq, token::Gt)
) {
err.delay_as_bug();
} else {
err.emit();
}
this.bump();
} else {
return Err(err);
}
}
let arrow_span = this.prev_token.span;
let arm_start_span = this.token.span;
let expr =
this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
err.span_label(arrow_span, "while parsing the `match` arm starting here");
err
})?;
let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
&& this.token != token::CloseDelim(Delimiter::Brace);
if !require_comma {
arm_body = Some(expr);
this.eat(&token::Comma);
Ok(Recovered::No)
} else if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
arm_body = Some(body);
Ok(Recovered::Yes)
} else {
let expr_span = expr.span;
arm_body = Some(expr);
this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)])
.map_err(|mut err| {
if this.token == token::FatArrow {
let sm = this.psess.source_map();
if let Ok(expr_lines) = sm.span_to_lines(expr_span)
&& let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
&& arm_start_lines.lines[0].end_col
== expr_lines.lines[0].end_col
&& expr_lines.lines.len() == 2
{
err.span_suggestion_short(
arm_start_span.shrink_to_hi(),
"missing a comma here to end this `match` arm",
",",
Applicability::MachineApplicable,
);
}
} else {
err.span_label(
arrow_span,
"while parsing the `match` arm starting here",
);
}
err
})
}
};
let hi_span = arm_body.as_ref().map_or(span_before_body, |body| body.span);
let arm_span = lo.to(hi_span);
let recover_missing_comma = arm_body.is_some() || pat.could_be_never_pattern();
if recover_missing_comma {
result = result.or_else(|err| {
let mut snapshot = this.create_snapshot_for_diagnostic();
let pattern_follows = snapshot
.parse_pat_allow_top_alt(
None,
RecoverComma::Yes,
RecoverColon::Yes,
CommaRecoveryMode::EitherTupleOrPipe,
)
.map_err(|err| err.cancel())
.is_ok();
if pattern_follows && snapshot.check(&TokenKind::FatArrow) {
err.cancel();
this.dcx().emit_err(errors::MissingCommaAfterMatchArm {
span: arm_span.shrink_to_hi(),
});
return Ok(Recovered::Yes);
}
Err(err)
});
}
result?;
Ok((
ast::Arm {
attrs,
pat,
guard,
body: arm_body,
span: arm_span,
id: DUMMY_NODE_ID,
is_placeholder: false,
},
TrailingToken::None,
))
})
}
fn parse_match_arm_guard(&mut self) -> PResult<'a, Option<P<Expr>>> {
fn check_let_expr(expr: &Expr) -> (bool, bool) {
match &expr.kind {
ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
let lhs_rslt = check_let_expr(lhs);
let rhs_rslt = check_let_expr(rhs);
(lhs_rslt.0 || rhs_rslt.0, false)
}
ExprKind::Let(..) => (true, true),
_ => (false, true),
}
}
if !self.eat_keyword(kw::If) {
return Ok(None);
}
let if_span = self.prev_token.span;
let mut cond = self.parse_match_guard_condition()?;
CondChecker::new(self).visit_expr(&mut cond);
let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
if has_let_expr {
if does_not_have_bin_op {
self.psess.gated_spans.ungate_last(sym::let_chains, cond.span);
}
let span = if_span.to(cond.span);
self.psess.gated_spans.gate(sym::if_let_guard, span);
}
Ok(Some(cond))
}
fn parse_match_arm_pat_and_guard(&mut self) -> PResult<'a, (P<Pat>, Option<P<Expr>>)> {
if self.token.kind == token::OpenDelim(Delimiter::Parenthesis) {
let left = self.token.span;
match self.parse_pat_allow_top_alt(
None,
RecoverComma::Yes,
RecoverColon::Yes,
CommaRecoveryMode::EitherTupleOrPipe,
) {
Ok(pat) => Ok((pat, self.parse_match_arm_guard()?)),
Err(err)
if let prev_sp = self.prev_token.span
&& let true = self.eat_keyword(kw::If) =>
{
let mut cond = match self.parse_match_guard_condition() {
Ok(cond) => cond,
Err(cond_err) => {
cond_err.cancel();
return Err(err);
}
};
err.cancel();
CondChecker::new(self).visit_expr(&mut cond);
self.eat_to_tokens(&[&token::CloseDelim(Delimiter::Parenthesis)]);
self.expect(&token::CloseDelim(Delimiter::Parenthesis))?;
let right = self.prev_token.span;
self.dcx().emit_err(errors::ParenthesesInMatchPat {
span: vec![left, right],
sugg: errors::ParenthesesInMatchPatSugg { left, right },
});
Ok((self.mk_pat(left.to(prev_sp), ast::PatKind::Wild), Some(cond)))
}
Err(err) => Err(err),
}
} else {
let pat = self.parse_pat_allow_top_alt(
None,
RecoverComma::Yes,
RecoverColon::Yes,
CommaRecoveryMode::EitherTupleOrPipe,
)?;
Ok((pat, self.parse_match_arm_guard()?))
}
}
fn parse_match_guard_condition(&mut self) -> PResult<'a, P<Expr>> {
self.parse_expr_res(Restrictions::ALLOW_LET | Restrictions::IN_IF_GUARD, None).map_err(
|mut err| {
if self.prev_token == token::OpenDelim(Delimiter::Brace) {
let sugg_sp = self.prev_token.span.shrink_to_lo();
self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
let msg = "you might have meant to start a match arm after the match guard";
if self.eat(&token::CloseDelim(Delimiter::Brace)) {
let applicability = if self.token.kind != token::FatArrow {
Applicability::MachineApplicable
} else {
Applicability::MaybeIncorrect
};
err.span_suggestion_verbose(sugg_sp, msg, "=> ", applicability);
}
}
err
},
)
}
pub(crate) fn is_builtin(&self) -> bool {
self.token.is_keyword(kw::Builtin) && self.look_ahead(1, |t| *t == token::Pound)
}
fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, P<Expr>> {
let (attrs, body) = self.parse_inner_attrs_and_block()?;
if self.eat_keyword(kw::Catch) {
Err(self.dcx().create_err(errors::CatchAfterTry { span: self.prev_token.span }))
} else {
let span = span_lo.to(body.span);
self.psess.gated_spans.gate(sym::try_blocks, span);
Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
}
}
fn is_do_catch_block(&self) -> bool {
self.token.is_keyword(kw::Do)
&& self.is_keyword_ahead(1, &[kw::Catch])
&& self
.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block())
&& !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
}
fn is_do_yeet(&self) -> bool {
self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
}
fn is_try_block(&self) -> bool {
self.token.is_keyword(kw::Try)
&& self
.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block())
&& self.token.uninterpolated_span().at_least_rust_2018()
}
fn parse_gen_block(&mut self) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
let kind = if self.eat_keyword(kw::Async) {
if self.eat_keyword(kw::Gen) { GenBlockKind::AsyncGen } else { GenBlockKind::Async }
} else {
assert!(self.eat_keyword(kw::Gen));
GenBlockKind::Gen
};
match kind {
GenBlockKind::Async => {
}
GenBlockKind::Gen | GenBlockKind::AsyncGen => {
self.psess.gated_spans.gate(sym::gen_blocks, lo.to(self.prev_token.span));
}
}
let capture_clause = self.parse_capture_clause()?;
let (attrs, body) = self.parse_inner_attrs_and_block()?;
let kind = ExprKind::Gen(capture_clause, body, kind);
Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
}
fn is_gen_block(&self, kw: Symbol, lookahead: usize) -> bool {
self.is_keyword_ahead(lookahead, &[kw])
&& ((
self.is_keyword_ahead(lookahead + 1, &[kw::Move])
&& self.look_ahead(lookahead + 2, |t| {
*t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block()
})
) || (
self.look_ahead(lookahead + 1, |t| {
*t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block()
})
))
}
pub(super) fn is_async_gen_block(&self) -> bool {
self.token.is_keyword(kw::Async) && self.is_gen_block(kw::Gen, 1)
}
fn is_certainly_not_a_block(&self) -> bool {
self.look_ahead(1, |t| t.is_ident())
&& (
self.look_ahead(2, |t| t == &token::Comma)
|| self.look_ahead(2, |t| t == &token::Colon)
&& (
self.look_ahead(4, |t| t == &token::Comma)
|| self.look_ahead(3, |t| !t.can_begin_type())
)
)
}
fn maybe_parse_struct_expr(
&mut self,
qself: &Option<P<ast::QSelf>>,
path: &ast::Path,
) -> Option<PResult<'a, P<Expr>>> {
let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
if struct_allowed || self.is_certainly_not_a_block() {
if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
return Some(Err(err));
}
let expr = self.parse_expr_struct(qself.clone(), path.clone(), true);
if let (Ok(expr), false) = (&expr, struct_allowed) {
self.dcx().emit_err(errors::StructLiteralNotAllowedHere {
span: expr.span,
sub: errors::StructLiteralNotAllowedHereSugg {
left: path.span.shrink_to_lo(),
right: expr.span.shrink_to_hi(),
},
});
}
return Some(expr);
}
None
}
pub(super) fn parse_struct_fields(
&mut self,
pth: ast::Path,
recover: bool,
close_delim: Delimiter,
) -> PResult<
'a,
(
ThinVec<ExprField>,
ast::StructRest,
Option<ErrorGuaranteed>, ),
> {
let mut fields = ThinVec::new();
let mut base = ast::StructRest::None;
let mut recovered_async = None;
let in_if_guard = self.restrictions.contains(Restrictions::IN_IF_GUARD);
let async_block_err = |e: &mut Diag<'_>, span: Span| {
errors::AsyncBlockIn2015 { span }.add_to_diag(e);
errors::HelpUseLatestEdition::new().add_to_diag(e);
};
while self.token != token::CloseDelim(close_delim) {
if self.eat(&token::DotDot) || self.recover_struct_field_dots(close_delim) {
let exp_span = self.prev_token.span;
if self.check(&token::CloseDelim(close_delim)) {
base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
break;
}
match self.parse_expr() {
Ok(e) => base = ast::StructRest::Base(e),
Err(e) if recover => {
e.emit();
self.recover_stmt();
}
Err(e) => return Err(e),
}
self.recover_struct_comma_after_dotdot(exp_span);
break;
}
let peek = self
.token
.ident()
.filter(|(ident, is_raw)| {
(!ident.is_reserved() || matches!(is_raw, IdentIsRaw::Yes))
&& self.look_ahead(1, |tok| *tok == token::Colon)
})
.map(|(ident, _)| ident);
let field_ident = |this: &Self, guar: ErrorGuaranteed| {
peek.map(|ident| {
let span = ident.span;
ExprField {
ident,
span,
expr: this.mk_expr_err(span, guar),
is_shorthand: false,
attrs: AttrVec::new(),
id: DUMMY_NODE_ID,
is_placeholder: false,
}
})
};
let parsed_field = match self.parse_expr_field() {
Ok(f) => Ok(f),
Err(mut e) => {
if pth == kw::Async {
async_block_err(&mut e, pth.span);
} else {
e.span_label(pth.span, "while parsing this struct");
}
if let Some((ident, _)) = self.token.ident()
&& !self.token.is_reserved_ident()
&& self.look_ahead(1, |t| {
AssocOp::from_token(t).is_some()
|| matches!(t.kind, token::OpenDelim(_))
|| t.kind == token::Dot
})
{
e.span_suggestion_verbose(
self.token.span.shrink_to_lo(),
"try naming a field",
&format!("{ident}: ",),
Applicability::MaybeIncorrect,
);
}
if in_if_guard && close_delim == Delimiter::Brace {
return Err(e);
}
if !recover {
return Err(e);
}
let guar = e.emit();
if pth == kw::Async {
recovered_async = Some(guar);
}
if self.token != token::Comma {
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
if self.token != token::Comma {
break;
}
}
Err(guar)
}
};
let is_shorthand = parsed_field.as_ref().is_ok_and(|f| f.is_shorthand);
self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon));
match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
Ok(_) => {
if let Some(f) =
parsed_field.or_else(|guar| field_ident(self, guar).ok_or(guar)).ok()
{
fields.push(f);
}
}
Err(mut e) => {
if pth == kw::Async {
async_block_err(&mut e, pth.span);
} else {
e.span_label(pth.span, "while parsing this struct");
if peek.is_some() {
e.span_suggestion(
self.prev_token.span.shrink_to_hi(),
"try adding a comma",
",",
Applicability::MachineApplicable,
);
}
}
if !recover {
return Err(e);
}
let guar = e.emit();
if pth == kw::Async {
recovered_async = Some(guar);
} else if let Some(f) = field_ident(self, guar) {
fields.push(f);
}
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
self.eat(&token::Comma);
}
}
}
Ok((fields, base, recovered_async))
}
pub(super) fn parse_expr_struct(
&mut self,
qself: Option<P<ast::QSelf>>,
pth: ast::Path,
recover: bool,
) -> PResult<'a, P<Expr>> {
let lo = pth.span;
let (fields, base, recovered_async) =
self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?;
let span = lo.to(self.token.span);
self.expect(&token::CloseDelim(Delimiter::Brace))?;
let expr = if let Some(guar) = recovered_async {
ExprKind::Err(guar)
} else {
ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
};
Ok(self.mk_expr(span, expr))
}
fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
if self.token != token::Comma {
return;
}
self.dcx().emit_err(errors::CommaAfterBaseStruct {
span: span.to(self.prev_token.span),
comma: self.token.span,
});
self.recover_stmt();
}
fn recover_struct_field_dots(&mut self, close_delim: Delimiter) -> bool {
if !self.look_ahead(1, |t| *t == token::CloseDelim(close_delim))
&& self.eat(&token::DotDotDot)
{
let span = self.prev_token.span;
self.dcx().emit_err(errors::MissingDotDot { token_span: span, sugg_span: span });
return true;
}
false
}
fn recover_ident_into_label(&mut self, ident: Ident) -> Label {
let label = format!("'{}", ident.name);
let ident = Ident { name: Symbol::intern(&label), span: ident.span };
self.dcx().emit_err(errors::ExpectedLabelFoundIdent {
span: ident.span,
start: ident.span.shrink_to_lo(),
});
Label { ident }
}
fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
let attrs = self.parse_outer_attributes()?;
self.recover_diff_marker();
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let lo = this.token.span;
let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
let is_wrong = this.token.is_ident()
&& !this.token.is_reserved_ident()
&& !this.look_ahead(1, |t| {
t == &token::Colon
|| t == &token::Eq
|| t == &token::Comma
|| t == &token::CloseDelim(Delimiter::Brace)
|| t == &token::CloseDelim(Delimiter::Parenthesis)
});
if is_wrong {
return Err(this.dcx().create_err(errors::ExpectedStructField {
span: this.look_ahead(1, |t| t.span),
ident_span: this.token.span,
token: this.look_ahead(1, |t| t.clone()),
}));
}
let (ident, expr) = if is_shorthand {
let ident = this.parse_ident_common(false)?;
let path = ast::Path::from_ident(ident);
(ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
} else {
let ident = this.parse_field_name()?;
this.error_on_eq_field_init(ident);
this.bump(); (ident, this.parse_expr()?)
};
Ok((
ast::ExprField {
ident,
span: lo.to(expr.span),
expr,
is_shorthand,
attrs,
id: DUMMY_NODE_ID,
is_placeholder: false,
},
TrailingToken::MaybeComma,
))
})
}
fn error_on_eq_field_init(&self, field_name: Ident) {
if self.token != token::Eq {
return;
}
self.dcx().emit_err(errors::EqFieldInit {
span: self.token.span,
eq: field_name.span.shrink_to_hi().to(self.token.span),
});
}
fn err_dotdotdot_syntax(&self, span: Span) {
self.dcx().emit_err(errors::DotDotDot { span });
}
fn err_larrow_operator(&self, span: Span) {
self.dcx().emit_err(errors::LeftArrowOperator { span });
}
fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
ExprKind::AssignOp(binop, lhs, rhs)
}
fn mk_range(
&mut self,
start: Option<P<Expr>>,
end: Option<P<Expr>>,
limits: RangeLimits,
) -> ExprKind {
if end.is_none() && limits == RangeLimits::Closed {
let guar = self.inclusive_range_with_incorrect_end();
ExprKind::Err(guar)
} else {
ExprKind::Range(start, end, limits)
}
}
fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
ExprKind::Unary(unop, expr)
}
fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
ExprKind::Binary(binop, lhs, rhs)
}
fn mk_index(&self, expr: P<Expr>, idx: P<Expr>, brackets_span: Span) -> ExprKind {
ExprKind::Index(expr, idx, brackets_span)
}
fn mk_call(&self, f: P<Expr>, args: ThinVec<P<Expr>>) -> ExprKind {
ExprKind::Call(f, args)
}
fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
let span = lo.to(self.prev_token.span);
let await_expr = self.mk_expr(span, ExprKind::Await(self_arg, self.prev_token.span));
self.recover_from_await_method_call();
await_expr
}
pub(crate) fn mk_expr_with_attrs(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
}
pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> P<Expr> {
self.mk_expr_with_attrs(span, kind, AttrVec::new())
}
pub(super) fn mk_expr_err(&self, span: Span, guar: ErrorGuaranteed) -> P<Expr> {
self.mk_expr(span, ExprKind::Err(guar))
}
fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
lhs.attrs
.iter()
.find(|a| a.style == AttrStyle::Outer)
.map_or(lhs_span, |a| a.span)
.to(rhs_span)
}
fn collect_tokens_for_expr(
&mut self,
attrs: AttrWrapper,
f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, P<Expr>>,
) -> PResult<'a, P<Expr>> {
self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
let res = f(this, attrs)?;
let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
&& this.token.kind == token::Semi
{
TrailingToken::Semi
} else if this.token.kind == token::Gt {
TrailingToken::Gt
} else {
TrailingToken::MaybeComma
};
Ok((res, trailing))
})
}
}
pub(crate) fn could_be_unclosed_char_literal(ident: Ident) -> bool {
ident.name.as_str().starts_with('\'')
&& unescape_char(ident.without_first_quote().name.as_str()).is_ok()
}
#[derive(Clone, Copy, Subdiagnostic)]
pub(crate) enum ForbiddenLetReason {
OtherForbidden,
#[note(parse_not_supported_or)]
NotSupportedOr(#[primary_span] Span),
#[note(parse_not_supported_parentheses)]
NotSupportedParentheses(#[primary_span] Span),
}
struct CondChecker<'a> {
parser: &'a Parser<'a>,
forbid_let_reason: Option<ForbiddenLetReason>,
missing_let: Option<errors::MaybeMissingLet>,
comparison: Option<errors::MaybeComparison>,
}
impl<'a> CondChecker<'a> {
fn new(parser: &'a Parser<'a>) -> Self {
CondChecker { parser, forbid_let_reason: None, missing_let: None, comparison: None }
}
}
impl MutVisitor for CondChecker<'_> {
fn visit_expr(&mut self, e: &mut P<Expr>) {
use ForbiddenLetReason::*;
let span = e.span;
match e.kind {
ExprKind::Let(_, _, _, ref mut is_recovered @ None) => {
if let Some(reason) = self.forbid_let_reason {
*is_recovered =
Some(self.parser.dcx().emit_err(errors::ExpectedExpressionFoundLet {
span,
reason,
missing_let: self.missing_let,
comparison: self.comparison,
}));
} else {
self.parser.psess.gated_spans.gate(sym::let_chains, span);
}
}
ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, _, _) => {
noop_visit_expr(e, self);
}
ExprKind::Binary(Spanned { node: BinOpKind::Or, span: or_span }, _, _)
if let None | Some(NotSupportedOr(_)) = self.forbid_let_reason =>
{
let forbid_let_reason = self.forbid_let_reason;
self.forbid_let_reason = Some(NotSupportedOr(or_span));
noop_visit_expr(e, self);
self.forbid_let_reason = forbid_let_reason;
}
ExprKind::Paren(ref inner)
if let None | Some(NotSupportedParentheses(_)) = self.forbid_let_reason =>
{
let forbid_let_reason = self.forbid_let_reason;
self.forbid_let_reason = Some(NotSupportedParentheses(inner.span));
noop_visit_expr(e, self);
self.forbid_let_reason = forbid_let_reason;
}
ExprKind::Assign(ref lhs, _, span) => {
let forbid_let_reason = self.forbid_let_reason;
self.forbid_let_reason = Some(OtherForbidden);
let missing_let = self.missing_let;
if let ExprKind::Binary(_, _, rhs) = &lhs.kind
&& let ExprKind::Path(_, _)
| ExprKind::Struct(_)
| ExprKind::Call(_, _)
| ExprKind::Array(_) = rhs.kind
{
self.missing_let =
Some(errors::MaybeMissingLet { span: rhs.span.shrink_to_lo() });
}
let comparison = self.comparison;
self.comparison = Some(errors::MaybeComparison { span: span.shrink_to_hi() });
noop_visit_expr(e, self);
self.forbid_let_reason = forbid_let_reason;
self.missing_let = missing_let;
self.comparison = comparison;
}
ExprKind::Unary(_, _)
| ExprKind::Await(_, _)
| ExprKind::AssignOp(_, _, _)
| ExprKind::Range(_, _, _)
| ExprKind::Try(_)
| ExprKind::AddrOf(_, _, _)
| ExprKind::Binary(_, _, _)
| ExprKind::Field(_, _)
| ExprKind::Index(_, _, _)
| ExprKind::Call(_, _)
| ExprKind::MethodCall(_)
| ExprKind::Tup(_)
| ExprKind::Paren(_) => {
let forbid_let_reason = self.forbid_let_reason;
self.forbid_let_reason = Some(OtherForbidden);
noop_visit_expr(e, self);
self.forbid_let_reason = forbid_let_reason;
}
ExprKind::Cast(ref mut op, _) | ExprKind::Type(ref mut op, _) => {
let forbid_let_reason = self.forbid_let_reason;
self.forbid_let_reason = Some(OtherForbidden);
self.visit_expr(op);
self.forbid_let_reason = forbid_let_reason;
}
ExprKind::Let(_, _, _, Some(_))
| ExprKind::Array(_)
| ExprKind::ConstBlock(_)
| ExprKind::Lit(_)
| ExprKind::If(_, _, _)
| ExprKind::While(_, _, _)
| ExprKind::ForLoop { .. }
| ExprKind::Loop(_, _, _)
| ExprKind::Match(_, _)
| ExprKind::Closure(_)
| ExprKind::Block(_, _)
| ExprKind::Gen(_, _, _)
| ExprKind::TryBlock(_)
| ExprKind::Underscore
| ExprKind::Path(_, _)
| ExprKind::Break(_, _)
| ExprKind::Continue(_)
| ExprKind::Ret(_)
| ExprKind::InlineAsm(_)
| ExprKind::OffsetOf(_, _)
| ExprKind::MacCall(_)
| ExprKind::Struct(_)
| ExprKind::Repeat(_, _)
| ExprKind::Yield(_)
| ExprKind::Yeet(_)
| ExprKind::Become(_)
| ExprKind::IncludedBytes(_)
| ExprKind::FormatArgs(_)
| ExprKind::Err(_)
| ExprKind::Dummy => {
}
}
}
}