1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_index::IndexVec;
use rustc_middle::mir::coverage::{BlockMarkerId, BranchSpan, CoverageKind};
use rustc_middle::mir::{
self, AggregateKind, BasicBlock, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
TerminatorKind,
};
use rustc_span::{ExpnKind, MacroKind, Span, Symbol};
use crate::coverage::graph::{
BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB,
};
use crate::coverage::spans::{BcbMapping, BcbMappingKind};
use crate::coverage::ExtractedHirInfo;
/// Traverses the MIR body to produce an initial collection of coverage-relevant
/// spans, each associated with a node in the coverage graph (BCB) and possibly
/// other metadata.
///
/// The returned spans are sorted in a specific order that is expected by the
/// subsequent span-refinement step.
pub(super) fn mir_to_initial_sorted_coverage_spans(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
basic_coverage_blocks: &CoverageGraph,
) -> Vec<SpanFromMir> {
let &ExtractedHirInfo { body_span, .. } = hir_info;
let mut initial_spans = vec![];
for (bcb, bcb_data) in basic_coverage_blocks.iter_enumerated() {
initial_spans.extend(bcb_to_initial_coverage_spans(mir_body, body_span, bcb, bcb_data));
}
// Only add the signature span if we found at least one span in the body.
if !initial_spans.is_empty() {
// If there is no usable signature span, add a fake one (before refinement)
// to avoid an ugly gap between the body start and the first real span.
// FIXME: Find a more principled way to solve this problem.
let fn_sig_span = hir_info.fn_sig_span_extended.unwrap_or_else(|| body_span.shrink_to_lo());
initial_spans.push(SpanFromMir::for_fn_sig(fn_sig_span));
}
initial_spans.sort_by(|a, b| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb));
remove_unwanted_macro_spans(&mut initial_spans);
split_visible_macro_spans(&mut initial_spans);
initial_spans.sort_by(|a, b| {
// First sort by span start.
Ord::cmp(&a.span.lo(), &b.span.lo())
// If span starts are the same, sort by span end in reverse order.
// This ensures that if spans A and B are adjacent in the list,
// and they overlap but are not equal, then either:
// - Span A extends further left, or
// - Both have the same start and span A extends further right
.then_with(|| Ord::cmp(&a.span.hi(), &b.span.hi()).reverse())
// If two spans have the same lo & hi, put hole spans first,
// as they take precedence over non-hole spans.
.then_with(|| Ord::cmp(&a.is_hole, &b.is_hole).reverse())
// After deduplication, we want to keep only the most-dominated BCB.
.then_with(|| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb).reverse())
});
// Among covspans with the same span, keep only one. Hole spans take
// precedence, otherwise keep the one with the most-dominated BCB.
// (Ideally we should try to preserve _all_ non-dominating BCBs, but that
// requires a lot more complexity in the span refiner, for little benefit.)
initial_spans.dedup_by(|b, a| a.span.source_equal(b.span));
initial_spans
}
/// Macros that expand into branches (e.g. `assert!`, `trace!`) tend to generate
/// multiple condition/consequent blocks that have the span of the whole macro
/// invocation, which is unhelpful. Keeping only the first such span seems to
/// give better mappings, so remove the others.
///
/// (The input spans should be sorted in BCB dominator order, so that the
/// retained "first" span is likely to dominate the others.)
fn remove_unwanted_macro_spans(initial_spans: &mut Vec<SpanFromMir>) {
let mut seen_macro_spans = FxHashSet::default();
initial_spans.retain(|covspan| {
// Ignore (retain) hole spans and non-macro-expansion spans.
if covspan.is_hole || covspan.visible_macro.is_none() {
return true;
}
// Retain only the first macro-expanded covspan with this span.
seen_macro_spans.insert(covspan.span)
});
}
/// When a span corresponds to a macro invocation that is visible from the
/// function body, split it into two parts. The first part covers just the
/// macro name plus `!`, and the second part covers the rest of the macro
/// invocation. This seems to give better results for code that uses macros.
fn split_visible_macro_spans(initial_spans: &mut Vec<SpanFromMir>) {
let mut extra_spans = vec![];
initial_spans.retain(|covspan| {
if covspan.is_hole {
return true;
}
let Some(visible_macro) = covspan.visible_macro else { return true };
let split_len = visible_macro.as_str().len() as u32 + 1;
let (before, after) = covspan.span.split_at(split_len);
if !covspan.span.contains(before) || !covspan.span.contains(after) {
// Something is unexpectedly wrong with the split point.
// The debug assertion in `split_at` will have already caught this,
// but in release builds it's safer to do nothing and maybe get a
// bug report for unexpected coverage, rather than risk an ICE.
return true;
}
assert!(!covspan.is_hole);
extra_spans.push(SpanFromMir::new(before, covspan.visible_macro, covspan.bcb, false));
extra_spans.push(SpanFromMir::new(after, covspan.visible_macro, covspan.bcb, false));
false // Discard the original covspan that we just split.
});
// The newly-split spans are added at the end, so any previous sorting
// is not preserved.
initial_spans.extend(extra_spans);
}
// Generate a set of coverage spans from the filtered set of `Statement`s and `Terminator`s of
// the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One coverage span is generated
// for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
// merge some coverage spans, at which point a coverage span may represent multiple
// `Statement`s and/or `Terminator`s.)
fn bcb_to_initial_coverage_spans<'a, 'tcx>(
mir_body: &'a mir::Body<'tcx>,
body_span: Span,
bcb: BasicCoverageBlock,
bcb_data: &'a BasicCoverageBlockData,
) -> impl Iterator<Item = SpanFromMir> + Captures<'a> + Captures<'tcx> {
bcb_data.basic_blocks.iter().flat_map(move |&bb| {
let data = &mir_body[bb];
let unexpand = move |expn_span| {
unexpand_into_body_span_with_visible_macro(expn_span, body_span)
// Discard any spans that fill the entire body, because they tend
// to represent compiler-inserted code, e.g. implicitly returning `()`.
.filter(|(span, _)| !span.source_equal(body_span))
};
let statement_spans = data.statements.iter().filter_map(move |statement| {
let expn_span = filtered_statement_span(statement)?;
let (span, visible_macro) = unexpand(expn_span)?;
// A statement that looks like the assignment of a closure expression
// is treated as a "hole" span, to be carved out of other spans.
Some(SpanFromMir::new(span, visible_macro, bcb, is_closure_like(statement)))
});
let terminator_span = Some(data.terminator()).into_iter().filter_map(move |terminator| {
let expn_span = filtered_terminator_span(terminator)?;
let (span, visible_macro) = unexpand(expn_span)?;
Some(SpanFromMir::new(span, visible_macro, bcb, false))
});
statement_spans.chain(terminator_span)
})
}
fn is_closure_like(statement: &Statement<'_>) -> bool {
match statement.kind {
StatementKind::Assign(box (_, Rvalue::Aggregate(box ref agg_kind, _))) => match agg_kind {
AggregateKind::Closure(_, _)
| AggregateKind::Coroutine(_, _)
| AggregateKind::CoroutineClosure(..) => true,
_ => false,
},
_ => false,
}
}
/// If the MIR `Statement` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
match statement.kind {
// These statements have spans that are often outside the scope of the executed source code
// for their parent `BasicBlock`.
StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
// Ignore `ConstEvalCounter`s
| StatementKind::ConstEvalCounter
// Ignore `Nop`s
| StatementKind::Nop => None,
// FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
// statements be more consistent?
//
// FakeReadCause::ForGuardBinding, in this example:
// match somenum {
// x if x < 1 => { ... }
// }...
// The BasicBlock within the match arm code included one of these statements, but the span
// for it covered the `1` in this source. The actual statements have nothing to do with that
// source span:
// FakeRead(ForGuardBinding, _4);
// where `_4` is:
// _4 = &_1; (at the span for the first `x`)
// and `_1` is the `Place` for `somenum`.
//
// If and when the Issue is resolved, remove this special case match pattern:
StatementKind::FakeRead(box (FakeReadCause::ForGuardBinding, _)) => None,
// Retain spans from most other statements.
StatementKind::FakeRead(box (_, _)) // Not including `ForGuardBinding`
| StatementKind::Intrinsic(..)
| StatementKind::Coverage(box mir::Coverage {
// The purpose of `SpanMarker` is to be matched and accepted here.
kind: CoverageKind::SpanMarker
})
| StatementKind::Assign(_)
| StatementKind::SetDiscriminant { .. }
| StatementKind::Deinit(..)
| StatementKind::Retag(_, _)
| StatementKind::PlaceMention(..)
| StatementKind::AscribeUserType(_, _) => {
Some(statement.source_info.span)
}
StatementKind::Coverage(box mir::Coverage {
// Block markers are used for branch coverage, so ignore them here.
kind: CoverageKind::BlockMarker {..}
}) => None,
StatementKind::Coverage(box mir::Coverage {
// These coverage statements should not exist prior to coverage instrumentation.
kind: CoverageKind::CounterIncrement { .. } | CoverageKind::ExpressionUsed { .. }
}) => bug!("Unexpected coverage statement found during coverage instrumentation: {statement:?}"),
}
}
/// If the MIR `Terminator` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
match terminator.kind {
// These terminators have spans that don't positively contribute to computing a reasonable
// span of actually executed source code. (For example, SwitchInt terminators extracted from
// an `if condition { block }` has a span that includes the executed block, if true,
// but for coverage, the code region executed, up to *and* through the SwitchInt,
// actually stops before the if's block.)
TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
| TerminatorKind::Assert { .. }
| TerminatorKind::Drop { .. }
| TerminatorKind::SwitchInt { .. }
// For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::Goto { .. } => None,
// Call `func` operand can have a more specific span when part of a chain of calls
| TerminatorKind::Call { ref func, .. } => {
let mut span = terminator.source_info.span;
if let mir::Operand::Constant(box constant) = func {
if constant.span.lo() > span.lo() {
span = span.with_lo(constant.span.lo());
}
}
Some(span)
}
// Retain spans from all other terminators
TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Yield { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {
Some(terminator.source_info.span)
}
}
}
/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
/// within the function's body source. This span is guaranteed to be contained
/// within, or equal to, the `body_span`. If the extrapolated span is not
/// contained within the `body_span`, `None` is returned.
///
/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
/// etc.).
fn unexpand_into_body_span_with_visible_macro(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Symbol>)> {
let (span, prev) = unexpand_into_body_span_with_prev(original_span, body_span)?;
let visible_macro = prev
.map(|prev| match prev.ctxt().outer_expn_data().kind {
ExpnKind::Macro(MacroKind::Bang, name) => Some(name),
_ => None,
})
.flatten();
Some((span, visible_macro))
}
/// Walks through the expansion ancestors of `original_span` to find a span that
/// is contained in `body_span` and has the same [`SyntaxContext`] as `body_span`.
/// The ancestor that was traversed just before the matching span (if any) is
/// also returned.
///
/// For example, a return value of `Some((ancestor, Some(prev))` means that:
/// - `ancestor == original_span.find_ancestor_inside_same_ctxt(body_span)`
/// - `ancestor == prev.parent_callsite()`
///
/// [`SyntaxContext`]: rustc_span::SyntaxContext
fn unexpand_into_body_span_with_prev(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Span>)> {
let mut prev = None;
let mut curr = original_span;
while !body_span.contains(curr) || !curr.eq_ctxt(body_span) {
prev = Some(curr);
curr = curr.parent_callsite()?;
}
debug_assert_eq!(Some(curr), original_span.find_ancestor_in_same_ctxt(body_span));
if let Some(prev) = prev {
debug_assert_eq!(Some(curr), prev.parent_callsite());
}
Some((curr, prev))
}
#[derive(Debug)]
pub(super) struct SpanFromMir {
/// A span that has been extracted from MIR and then "un-expanded" back to
/// within the current function's `body_span`. After various intermediate
/// processing steps, this span is emitted as part of the final coverage
/// mappings.
///
/// With the exception of `fn_sig_span`, this should always be contained
/// within `body_span`.
pub(super) span: Span,
visible_macro: Option<Symbol>,
pub(super) bcb: BasicCoverageBlock,
/// If true, this covspan represents a "hole" that should be carved out
/// from other spans, e.g. because it represents a closure expression that
/// will be instrumented separately as its own function.
pub(super) is_hole: bool,
}
impl SpanFromMir {
fn for_fn_sig(fn_sig_span: Span) -> Self {
Self::new(fn_sig_span, None, START_BCB, false)
}
fn new(
span: Span,
visible_macro: Option<Symbol>,
bcb: BasicCoverageBlock,
is_hole: bool,
) -> Self {
Self { span, visible_macro, bcb, is_hole }
}
}
pub(super) fn extract_branch_mappings(
mir_body: &mir::Body<'_>,
body_span: Span,
basic_coverage_blocks: &CoverageGraph,
) -> Vec<BcbMapping> {
let Some(branch_info) = mir_body.coverage_branch_info.as_deref() else {
return vec![];
};
let mut block_markers = IndexVec::<BlockMarkerId, Option<BasicBlock>>::from_elem_n(
None,
branch_info.num_block_markers,
);
// Fill out the mapping from block marker IDs to their enclosing blocks.
for (bb, data) in mir_body.basic_blocks.iter_enumerated() {
for statement in &data.statements {
if let StatementKind::Coverage(coverage) = &statement.kind
&& let CoverageKind::BlockMarker { id } = coverage.kind
{
block_markers[id] = Some(bb);
}
}
}
branch_info
.branch_spans
.iter()
.filter_map(|&BranchSpan { span: raw_span, true_marker, false_marker }| {
// For now, ignore any branch span that was introduced by
// expansion. This makes things like assert macros less noisy.
if !raw_span.ctxt().outer_expn_data().is_root() {
return None;
}
let (span, _) = unexpand_into_body_span_with_visible_macro(raw_span, body_span)?;
let bcb_from_marker = |marker: BlockMarkerId| {
Some(basic_coverage_blocks.bcb_from_bb(block_markers[marker]?)?)
};
let true_bcb = bcb_from_marker(true_marker)?;
let false_bcb = bcb_from_marker(false_marker)?;
Some(BcbMapping { kind: BcbMappingKind::Branch { true_bcb, false_bcb }, span })
})
.collect::<Vec<_>>()
}