1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
use rustc_data_structures::graph::WithNumNodes;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir;
use rustc_span::{BytePos, Span};

use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::from_mir::SpanFromMir;
use crate::coverage::ExtractedHirInfo;

mod from_mir;

#[derive(Clone, Copy, Debug)]
pub(super) enum BcbMappingKind {
    /// Associates an ordinary executable code span with its corresponding BCB.
    Code(BasicCoverageBlock),
    /// Associates a branch span with BCBs for its true and false arms.
    Branch { true_bcb: BasicCoverageBlock, false_bcb: BasicCoverageBlock },
}

#[derive(Debug)]
pub(super) struct BcbMapping {
    pub(super) kind: BcbMappingKind,
    pub(super) span: Span,
}

pub(super) struct CoverageSpans {
    bcb_has_mappings: BitSet<BasicCoverageBlock>,
    mappings: Vec<BcbMapping>,
}

impl CoverageSpans {
    pub(super) fn bcb_has_coverage_spans(&self, bcb: BasicCoverageBlock) -> bool {
        self.bcb_has_mappings.contains(bcb)
    }

    pub(super) fn all_bcb_mappings(&self) -> impl Iterator<Item = &BcbMapping> {
        self.mappings.iter()
    }
}

/// Extracts coverage-relevant spans from MIR, and associates them with
/// their corresponding BCBs.
///
/// Returns `None` if no coverage-relevant spans could be extracted.
pub(super) fn generate_coverage_spans(
    mir_body: &mir::Body<'_>,
    hir_info: &ExtractedHirInfo,
    basic_coverage_blocks: &CoverageGraph,
) -> Option<CoverageSpans> {
    let mut mappings = vec![];

    if hir_info.is_async_fn {
        // An async function desugars into a function that returns a future,
        // with the user code wrapped in a closure. Any spans in the desugared
        // outer function will be unhelpful, so just keep the signature span
        // and ignore all of the spans in the MIR body.
        if let Some(span) = hir_info.fn_sig_span_extended {
            mappings.push(BcbMapping { kind: BcbMappingKind::Code(START_BCB), span });
        }
    } else {
        let sorted_spans = from_mir::mir_to_initial_sorted_coverage_spans(
            mir_body,
            hir_info,
            basic_coverage_blocks,
        );
        let coverage_spans = SpansRefiner::refine_sorted_spans(sorted_spans);
        mappings.extend(coverage_spans.into_iter().map(|RefinedCovspan { bcb, span, .. }| {
            // Each span produced by the generator represents an ordinary code region.
            BcbMapping { kind: BcbMappingKind::Code(bcb), span }
        }));

        mappings.extend(from_mir::extract_branch_mappings(
            mir_body,
            hir_info.body_span,
            basic_coverage_blocks,
        ));
    }

    if mappings.is_empty() {
        return None;
    }

    // Identify which BCBs have one or more mappings.
    let mut bcb_has_mappings = BitSet::new_empty(basic_coverage_blocks.num_nodes());
    let mut insert = |bcb| {
        bcb_has_mappings.insert(bcb);
    };
    for &BcbMapping { kind, span: _ } in &mappings {
        match kind {
            BcbMappingKind::Code(bcb) => insert(bcb),
            BcbMappingKind::Branch { true_bcb, false_bcb } => {
                insert(true_bcb);
                insert(false_bcb);
            }
        }
    }

    Some(CoverageSpans { bcb_has_mappings, mappings })
}

#[derive(Debug)]
struct CurrCovspan {
    span: Span,
    bcb: BasicCoverageBlock,
    is_hole: bool,
}

impl CurrCovspan {
    fn new(span: Span, bcb: BasicCoverageBlock, is_hole: bool) -> Self {
        Self { span, bcb, is_hole }
    }

    fn into_prev(self) -> PrevCovspan {
        let Self { span, bcb, is_hole } = self;
        PrevCovspan { span, bcb, merged_spans: vec![span], is_hole }
    }

    fn into_refined(self) -> RefinedCovspan {
        // This is only called in cases where `curr` is a hole span that has
        // been carved out of `prev`.
        debug_assert!(self.is_hole);
        self.into_prev().into_refined()
    }
}

#[derive(Debug)]
struct PrevCovspan {
    span: Span,
    bcb: BasicCoverageBlock,
    /// List of all the original spans from MIR that have been merged into this
    /// span. Mainly used to precisely skip over gaps when truncating a span.
    merged_spans: Vec<Span>,
    is_hole: bool,
}

impl PrevCovspan {
    fn is_mergeable(&self, other: &CurrCovspan) -> bool {
        self.bcb == other.bcb && !self.is_hole && !other.is_hole
    }

    fn merge_from(&mut self, other: &CurrCovspan) {
        debug_assert!(self.is_mergeable(other));
        self.span = self.span.to(other.span);
        self.merged_spans.push(other.span);
    }

    fn cutoff_statements_at(mut self, cutoff_pos: BytePos) -> Option<RefinedCovspan> {
        self.merged_spans.retain(|span| span.hi() <= cutoff_pos);
        if let Some(max_hi) = self.merged_spans.iter().map(|span| span.hi()).max() {
            self.span = self.span.with_hi(max_hi);
        }

        if self.merged_spans.is_empty() { None } else { Some(self.into_refined()) }
    }

    fn refined_copy(&self) -> RefinedCovspan {
        let &Self { span, bcb, merged_spans: _, is_hole } = self;
        RefinedCovspan { span, bcb, is_hole }
    }

    fn into_refined(self) -> RefinedCovspan {
        // Even though we consume self, we can just reuse the copying impl.
        self.refined_copy()
    }
}

#[derive(Debug)]
struct RefinedCovspan {
    span: Span,
    bcb: BasicCoverageBlock,
    is_hole: bool,
}

impl RefinedCovspan {
    fn is_mergeable(&self, other: &Self) -> bool {
        self.bcb == other.bcb && !self.is_hole && !other.is_hole
    }

    fn merge_from(&mut self, other: &Self) {
        debug_assert!(self.is_mergeable(other));
        self.span = self.span.to(other.span);
    }
}

/// Converts the initial set of coverage spans (one per MIR `Statement` or `Terminator`) into a
/// minimal set of coverage spans, using the BCB CFG to determine where it is safe and useful to:
///
///  * Remove duplicate source code coverage regions
///  * Merge spans that represent continuous (both in source code and control flow), non-branching
///    execution
///  * Carve out (leave uncovered) any "hole" spans that need to be left blank
///    (e.g. closures that will be counted by their own MIR body)
struct SpansRefiner {
    /// The initial set of coverage spans, sorted by `Span` (`lo` and `hi`) and by relative
    /// dominance between the `BasicCoverageBlock`s of equal `Span`s.
    sorted_spans_iter: std::vec::IntoIter<SpanFromMir>,

    /// The current coverage span to compare to its `prev`, to possibly merge, discard,
    /// or cause `prev` to be modified or discarded.
    /// If `curr` is not discarded or merged, it becomes `prev` for the next iteration.
    some_curr: Option<CurrCovspan>,

    /// The coverage span from a prior iteration; typically assigned from that iteration's `curr`.
    /// If that `curr` was discarded, `prev` retains its value from the previous iteration.
    some_prev: Option<PrevCovspan>,

    /// The final coverage spans to add to the coverage map. A `Counter` or `Expression`
    /// will also be injected into the MIR for each BCB that has associated spans.
    refined_spans: Vec<RefinedCovspan>,
}

impl SpansRefiner {
    /// Takes the initial list of (sorted) spans extracted from MIR, and "refines"
    /// them by merging compatible adjacent spans, removing redundant spans,
    /// and carving holes in spans when they overlap in unwanted ways.
    fn refine_sorted_spans(sorted_spans: Vec<SpanFromMir>) -> Vec<RefinedCovspan> {
        let sorted_spans_len = sorted_spans.len();
        let this = Self {
            sorted_spans_iter: sorted_spans.into_iter(),
            some_curr: None,
            some_prev: None,
            refined_spans: Vec::with_capacity(sorted_spans_len),
        };

        this.to_refined_spans()
    }

    /// Iterate through the sorted coverage spans, and return the refined list of merged and
    /// de-duplicated spans.
    fn to_refined_spans(mut self) -> Vec<RefinedCovspan> {
        while self.next_coverage_span() {
            // For the first span we don't have `prev` set, so most of the
            // span-processing steps don't make sense yet.
            if self.some_prev.is_none() {
                debug!("  initial span");
                continue;
            }

            // The remaining cases assume that `prev` and `curr` are set.
            let prev = self.prev();
            let curr = self.curr();

            if prev.is_mergeable(curr) {
                debug!(?prev, "curr will be merged into prev");
                let curr = self.take_curr();
                self.prev_mut().merge_from(&curr);
            } else if prev.span.hi() <= curr.span.lo() {
                debug!(
                    "  different bcbs and disjoint spans, so keep curr for next iter, and add prev={prev:?}",
                );
                let prev = self.take_prev().into_refined();
                self.refined_spans.push(prev);
            } else if prev.is_hole {
                // drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
                // next iter
                debug!(?prev, "prev (a hole) overlaps curr, so discarding curr");
                self.take_curr(); // Discards curr.
            } else if curr.is_hole {
                self.carve_out_span_for_hole();
            } else {
                self.cutoff_prev_at_overlapping_curr();
            }
        }

        // There is usually a final span remaining in `prev` after the loop ends,
        // so add it to the output as well.
        if let Some(prev) = self.some_prev.take() {
            debug!("    AT END, adding last prev={prev:?}");
            self.refined_spans.push(prev.into_refined());
        }

        // Do one last merge pass, to simplify the output.
        self.refined_spans.dedup_by(|b, a| {
            if a.is_mergeable(b) {
                debug!(?a, ?b, "merging list-adjacent refined spans");
                a.merge_from(b);
                true
            } else {
                false
            }
        });

        // Discard hole spans, since their purpose was to carve out chunks from
        // other spans, but we don't want the holes themselves in the final mappings.
        self.refined_spans.retain(|covspan| !covspan.is_hole);
        self.refined_spans
    }

    #[track_caller]
    fn curr(&self) -> &CurrCovspan {
        self.some_curr.as_ref().unwrap_or_else(|| bug!("some_curr is None (curr)"))
    }

    /// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
    /// `curr` coverage span.
    #[track_caller]
    fn take_curr(&mut self) -> CurrCovspan {
        self.some_curr.take().unwrap_or_else(|| bug!("some_curr is None (take_curr)"))
    }

    #[track_caller]
    fn prev(&self) -> &PrevCovspan {
        self.some_prev.as_ref().unwrap_or_else(|| bug!("some_prev is None (prev)"))
    }

    #[track_caller]
    fn prev_mut(&mut self) -> &mut PrevCovspan {
        self.some_prev.as_mut().unwrap_or_else(|| bug!("some_prev is None (prev_mut)"))
    }

    #[track_caller]
    fn take_prev(&mut self) -> PrevCovspan {
        self.some_prev.take().unwrap_or_else(|| bug!("some_prev is None (take_prev)"))
    }

    /// Advance `prev` to `curr` (if any), and `curr` to the next coverage span in sorted order.
    fn next_coverage_span(&mut self) -> bool {
        if let Some(curr) = self.some_curr.take() {
            self.some_prev = Some(curr.into_prev());
        }
        while let Some(curr) = self.sorted_spans_iter.next() {
            debug!("FOR curr={:?}", curr);
            if let Some(prev) = &self.some_prev
                && prev.span.lo() > curr.span.lo()
            {
                // Skip curr because prev has already advanced beyond the end of curr.
                // This can only happen if a prior iteration updated `prev` to skip past
                // a region of code, such as skipping past a hole.
                debug!(?prev, "prev.span starts after curr.span, so curr will be dropped");
            } else {
                self.some_curr = Some(CurrCovspan::new(curr.span, curr.bcb, curr.is_hole));
                return true;
            }
        }
        false
    }

    /// If `prev`s span extends left of the hole (`curr`), carve out the hole's span from
    /// `prev`'s span. Add the portion of the span to the left of the hole; and if the span
    /// extends to the right of the hole, update `prev` to that portion of the span.
    fn carve_out_span_for_hole(&mut self) {
        let prev = self.prev();
        let curr = self.curr();

        let left_cutoff = curr.span.lo();
        let right_cutoff = curr.span.hi();
        let has_pre_hole_span = prev.span.lo() < right_cutoff;
        let has_post_hole_span = prev.span.hi() > right_cutoff;

        if has_pre_hole_span {
            let mut pre_hole = prev.refined_copy();
            pre_hole.span = pre_hole.span.with_hi(left_cutoff);
            debug!(?pre_hole, "prev overlaps a hole; adding pre-hole span");
            self.refined_spans.push(pre_hole);
        }

        if has_post_hole_span {
            // Mutate `prev.span` to start after the hole (and discard curr).
            self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
            debug!(prev=?self.prev(), "mutated prev to start after the hole");

            // Prevent this curr from becoming prev.
            let hole_covspan = self.take_curr().into_refined();
            self.refined_spans.push(hole_covspan); // since self.prev() was already updated
        }
    }

    /// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
    /// statements that end before `curr.lo()` (if any), and add the portion of the
    /// combined span for those statements. Any other statements have overlapping spans
    /// that can be ignored because `curr` and/or other upcoming statements/spans inside
    /// the overlap area will produce their own counters. This disambiguation process
    /// avoids injecting multiple counters for overlapping spans, and the potential for
    /// double-counting.
    fn cutoff_prev_at_overlapping_curr(&mut self) {
        debug!(
            "  different bcbs, overlapping spans, so ignore/drop pending and only add prev \
            if it has statements that end before curr; prev={:?}",
            self.prev()
        );

        let curr_span = self.curr().span;
        if let Some(prev) = self.take_prev().cutoff_statements_at(curr_span.lo()) {
            debug!("after cutoff, adding {prev:?}");
            self.refined_spans.push(prev);
        } else {
            debug!("prev was eliminated by cutoff");
        }
    }
}