1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
use rustc_data_structures::graph::WithNumNodes;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir;
use rustc_span::{BytePos, Span};
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::from_mir::SpanFromMir;
use crate::coverage::ExtractedHirInfo;
mod from_mir;
#[derive(Clone, Copy, Debug)]
pub(super) enum BcbMappingKind {
/// Associates an ordinary executable code span with its corresponding BCB.
Code(BasicCoverageBlock),
/// Associates a branch span with BCBs for its true and false arms.
Branch { true_bcb: BasicCoverageBlock, false_bcb: BasicCoverageBlock },
}
#[derive(Debug)]
pub(super) struct BcbMapping {
pub(super) kind: BcbMappingKind,
pub(super) span: Span,
}
pub(super) struct CoverageSpans {
bcb_has_mappings: BitSet<BasicCoverageBlock>,
mappings: Vec<BcbMapping>,
}
impl CoverageSpans {
pub(super) fn bcb_has_coverage_spans(&self, bcb: BasicCoverageBlock) -> bool {
self.bcb_has_mappings.contains(bcb)
}
pub(super) fn all_bcb_mappings(&self) -> impl Iterator<Item = &BcbMapping> {
self.mappings.iter()
}
}
/// Extracts coverage-relevant spans from MIR, and associates them with
/// their corresponding BCBs.
///
/// Returns `None` if no coverage-relevant spans could be extracted.
pub(super) fn generate_coverage_spans(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
basic_coverage_blocks: &CoverageGraph,
) -> Option<CoverageSpans> {
let mut mappings = vec![];
if hir_info.is_async_fn {
// An async function desugars into a function that returns a future,
// with the user code wrapped in a closure. Any spans in the desugared
// outer function will be unhelpful, so just keep the signature span
// and ignore all of the spans in the MIR body.
if let Some(span) = hir_info.fn_sig_span_extended {
mappings.push(BcbMapping { kind: BcbMappingKind::Code(START_BCB), span });
}
} else {
let sorted_spans = from_mir::mir_to_initial_sorted_coverage_spans(
mir_body,
hir_info,
basic_coverage_blocks,
);
let coverage_spans = SpansRefiner::refine_sorted_spans(sorted_spans);
mappings.extend(coverage_spans.into_iter().map(|RefinedCovspan { bcb, span, .. }| {
// Each span produced by the generator represents an ordinary code region.
BcbMapping { kind: BcbMappingKind::Code(bcb), span }
}));
mappings.extend(from_mir::extract_branch_mappings(
mir_body,
hir_info.body_span,
basic_coverage_blocks,
));
}
if mappings.is_empty() {
return None;
}
// Identify which BCBs have one or more mappings.
let mut bcb_has_mappings = BitSet::new_empty(basic_coverage_blocks.num_nodes());
let mut insert = |bcb| {
bcb_has_mappings.insert(bcb);
};
for &BcbMapping { kind, span: _ } in &mappings {
match kind {
BcbMappingKind::Code(bcb) => insert(bcb),
BcbMappingKind::Branch { true_bcb, false_bcb } => {
insert(true_bcb);
insert(false_bcb);
}
}
}
Some(CoverageSpans { bcb_has_mappings, mappings })
}
#[derive(Debug)]
struct CurrCovspan {
span: Span,
bcb: BasicCoverageBlock,
is_hole: bool,
}
impl CurrCovspan {
fn new(span: Span, bcb: BasicCoverageBlock, is_hole: bool) -> Self {
Self { span, bcb, is_hole }
}
fn into_prev(self) -> PrevCovspan {
let Self { span, bcb, is_hole } = self;
PrevCovspan { span, bcb, merged_spans: vec![span], is_hole }
}
fn into_refined(self) -> RefinedCovspan {
// This is only called in cases where `curr` is a hole span that has
// been carved out of `prev`.
debug_assert!(self.is_hole);
self.into_prev().into_refined()
}
}
#[derive(Debug)]
struct PrevCovspan {
span: Span,
bcb: BasicCoverageBlock,
/// List of all the original spans from MIR that have been merged into this
/// span. Mainly used to precisely skip over gaps when truncating a span.
merged_spans: Vec<Span>,
is_hole: bool,
}
impl PrevCovspan {
fn is_mergeable(&self, other: &CurrCovspan) -> bool {
self.bcb == other.bcb && !self.is_hole && !other.is_hole
}
fn merge_from(&mut self, other: &CurrCovspan) {
debug_assert!(self.is_mergeable(other));
self.span = self.span.to(other.span);
self.merged_spans.push(other.span);
}
fn cutoff_statements_at(mut self, cutoff_pos: BytePos) -> Option<RefinedCovspan> {
self.merged_spans.retain(|span| span.hi() <= cutoff_pos);
if let Some(max_hi) = self.merged_spans.iter().map(|span| span.hi()).max() {
self.span = self.span.with_hi(max_hi);
}
if self.merged_spans.is_empty() { None } else { Some(self.into_refined()) }
}
fn refined_copy(&self) -> RefinedCovspan {
let &Self { span, bcb, merged_spans: _, is_hole } = self;
RefinedCovspan { span, bcb, is_hole }
}
fn into_refined(self) -> RefinedCovspan {
// Even though we consume self, we can just reuse the copying impl.
self.refined_copy()
}
}
#[derive(Debug)]
struct RefinedCovspan {
span: Span,
bcb: BasicCoverageBlock,
is_hole: bool,
}
impl RefinedCovspan {
fn is_mergeable(&self, other: &Self) -> bool {
self.bcb == other.bcb && !self.is_hole && !other.is_hole
}
fn merge_from(&mut self, other: &Self) {
debug_assert!(self.is_mergeable(other));
self.span = self.span.to(other.span);
}
}
/// Converts the initial set of coverage spans (one per MIR `Statement` or `Terminator`) into a
/// minimal set of coverage spans, using the BCB CFG to determine where it is safe and useful to:
///
/// * Remove duplicate source code coverage regions
/// * Merge spans that represent continuous (both in source code and control flow), non-branching
/// execution
/// * Carve out (leave uncovered) any "hole" spans that need to be left blank
/// (e.g. closures that will be counted by their own MIR body)
struct SpansRefiner {
/// The initial set of coverage spans, sorted by `Span` (`lo` and `hi`) and by relative
/// dominance between the `BasicCoverageBlock`s of equal `Span`s.
sorted_spans_iter: std::vec::IntoIter<SpanFromMir>,
/// The current coverage span to compare to its `prev`, to possibly merge, discard,
/// or cause `prev` to be modified or discarded.
/// If `curr` is not discarded or merged, it becomes `prev` for the next iteration.
some_curr: Option<CurrCovspan>,
/// The coverage span from a prior iteration; typically assigned from that iteration's `curr`.
/// If that `curr` was discarded, `prev` retains its value from the previous iteration.
some_prev: Option<PrevCovspan>,
/// The final coverage spans to add to the coverage map. A `Counter` or `Expression`
/// will also be injected into the MIR for each BCB that has associated spans.
refined_spans: Vec<RefinedCovspan>,
}
impl SpansRefiner {
/// Takes the initial list of (sorted) spans extracted from MIR, and "refines"
/// them by merging compatible adjacent spans, removing redundant spans,
/// and carving holes in spans when they overlap in unwanted ways.
fn refine_sorted_spans(sorted_spans: Vec<SpanFromMir>) -> Vec<RefinedCovspan> {
let sorted_spans_len = sorted_spans.len();
let this = Self {
sorted_spans_iter: sorted_spans.into_iter(),
some_curr: None,
some_prev: None,
refined_spans: Vec::with_capacity(sorted_spans_len),
};
this.to_refined_spans()
}
/// Iterate through the sorted coverage spans, and return the refined list of merged and
/// de-duplicated spans.
fn to_refined_spans(mut self) -> Vec<RefinedCovspan> {
while self.next_coverage_span() {
// For the first span we don't have `prev` set, so most of the
// span-processing steps don't make sense yet.
if self.some_prev.is_none() {
debug!(" initial span");
continue;
}
// The remaining cases assume that `prev` and `curr` are set.
let prev = self.prev();
let curr = self.curr();
if prev.is_mergeable(curr) {
debug!(?prev, "curr will be merged into prev");
let curr = self.take_curr();
self.prev_mut().merge_from(&curr);
} else if prev.span.hi() <= curr.span.lo() {
debug!(
" different bcbs and disjoint spans, so keep curr for next iter, and add prev={prev:?}",
);
let prev = self.take_prev().into_refined();
self.refined_spans.push(prev);
} else if prev.is_hole {
// drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
// next iter
debug!(?prev, "prev (a hole) overlaps curr, so discarding curr");
self.take_curr(); // Discards curr.
} else if curr.is_hole {
self.carve_out_span_for_hole();
} else {
self.cutoff_prev_at_overlapping_curr();
}
}
// There is usually a final span remaining in `prev` after the loop ends,
// so add it to the output as well.
if let Some(prev) = self.some_prev.take() {
debug!(" AT END, adding last prev={prev:?}");
self.refined_spans.push(prev.into_refined());
}
// Do one last merge pass, to simplify the output.
self.refined_spans.dedup_by(|b, a| {
if a.is_mergeable(b) {
debug!(?a, ?b, "merging list-adjacent refined spans");
a.merge_from(b);
true
} else {
false
}
});
// Discard hole spans, since their purpose was to carve out chunks from
// other spans, but we don't want the holes themselves in the final mappings.
self.refined_spans.retain(|covspan| !covspan.is_hole);
self.refined_spans
}
#[track_caller]
fn curr(&self) -> &CurrCovspan {
self.some_curr.as_ref().unwrap_or_else(|| bug!("some_curr is None (curr)"))
}
/// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
/// `curr` coverage span.
#[track_caller]
fn take_curr(&mut self) -> CurrCovspan {
self.some_curr.take().unwrap_or_else(|| bug!("some_curr is None (take_curr)"))
}
#[track_caller]
fn prev(&self) -> &PrevCovspan {
self.some_prev.as_ref().unwrap_or_else(|| bug!("some_prev is None (prev)"))
}
#[track_caller]
fn prev_mut(&mut self) -> &mut PrevCovspan {
self.some_prev.as_mut().unwrap_or_else(|| bug!("some_prev is None (prev_mut)"))
}
#[track_caller]
fn take_prev(&mut self) -> PrevCovspan {
self.some_prev.take().unwrap_or_else(|| bug!("some_prev is None (take_prev)"))
}
/// Advance `prev` to `curr` (if any), and `curr` to the next coverage span in sorted order.
fn next_coverage_span(&mut self) -> bool {
if let Some(curr) = self.some_curr.take() {
self.some_prev = Some(curr.into_prev());
}
while let Some(curr) = self.sorted_spans_iter.next() {
debug!("FOR curr={:?}", curr);
if let Some(prev) = &self.some_prev
&& prev.span.lo() > curr.span.lo()
{
// Skip curr because prev has already advanced beyond the end of curr.
// This can only happen if a prior iteration updated `prev` to skip past
// a region of code, such as skipping past a hole.
debug!(?prev, "prev.span starts after curr.span, so curr will be dropped");
} else {
self.some_curr = Some(CurrCovspan::new(curr.span, curr.bcb, curr.is_hole));
return true;
}
}
false
}
/// If `prev`s span extends left of the hole (`curr`), carve out the hole's span from
/// `prev`'s span. Add the portion of the span to the left of the hole; and if the span
/// extends to the right of the hole, update `prev` to that portion of the span.
fn carve_out_span_for_hole(&mut self) {
let prev = self.prev();
let curr = self.curr();
let left_cutoff = curr.span.lo();
let right_cutoff = curr.span.hi();
let has_pre_hole_span = prev.span.lo() < right_cutoff;
let has_post_hole_span = prev.span.hi() > right_cutoff;
if has_pre_hole_span {
let mut pre_hole = prev.refined_copy();
pre_hole.span = pre_hole.span.with_hi(left_cutoff);
debug!(?pre_hole, "prev overlaps a hole; adding pre-hole span");
self.refined_spans.push(pre_hole);
}
if has_post_hole_span {
// Mutate `prev.span` to start after the hole (and discard curr).
self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
debug!(prev=?self.prev(), "mutated prev to start after the hole");
// Prevent this curr from becoming prev.
let hole_covspan = self.take_curr().into_refined();
self.refined_spans.push(hole_covspan); // since self.prev() was already updated
}
}
/// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
/// statements that end before `curr.lo()` (if any), and add the portion of the
/// combined span for those statements. Any other statements have overlapping spans
/// that can be ignored because `curr` and/or other upcoming statements/spans inside
/// the overlap area will produce their own counters. This disambiguation process
/// avoids injecting multiple counters for overlapping spans, and the potential for
/// double-counting.
fn cutoff_prev_at_overlapping_curr(&mut self) {
debug!(
" different bcbs, overlapping spans, so ignore/drop pending and only add prev \
if it has statements that end before curr; prev={:?}",
self.prev()
);
let curr_span = self.curr().span;
if let Some(prev) = self.take_prev().cutoff_statements_at(curr_span.lo()) {
debug!("after cutoff, adding {prev:?}");
self.refined_spans.push(prev);
} else {
debug!("prev was eliminated by cutoff");
}
}
}