1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
//! This module provides a framework on top of the normal MIR dataflow framework to simplify the
//! implementation of analyses that track information about the values stored in certain places.
//! We are using the term "place" here to refer to a `mir::Place` (a place expression) instead of
//! an `interpret::Place` (a memory location).
//!
//! The default methods of [`ValueAnalysis`] (prefixed with `super_` instead of `handle_`)
//! provide some behavior that should be valid for all abstract domains that are based only on the
//! value stored in a certain place. On top of these default rules, an implementation should
//! override some of the `handle_` methods. For an example, see `ConstAnalysis`.
//!
//! An implementation must also provide a [`Map`]. Before the analysis begins, all places that
//! should be tracked during the analysis must be registered. During the analysis, no new places
//! can be registered. The [`State`] can be queried to retrieve the abstract value stored for a
//! certain place by passing the map.
//!
//! This framework is currently experimental. Originally, it supported shared references and enum
//! variants. However, it was discovered that both of these were unsound, and especially references
//! had subtle but serious issues. In the future, they could be added back in, but we should clarify
//! the rules for optimizations that rely on the aliasing model first.
//!
//!
//! # Notes
//!
//! - The bottom state denotes uninitialized memory. Because we are only doing a sound approximation
//! of the actual execution, we can also use this state for places where access would be UB.
//!
//! - The assignment logic in `State::insert_place_idx` assumes that the places are non-overlapping,
//! or identical. Note that this refers to place expressions, not memory locations.
//!
//! - Currently, places that have their reference taken cannot be tracked. Although this would be
//! possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
//! Because of that, we can assume that the only way to change the value behind a tracked place is
//! by direct assignment.
use std::collections::VecDeque;
use std::fmt::{Debug, Formatter};
use std::ops::Range;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::mir::visit::{MutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::{FieldIdx, VariantIdx};
use crate::lattice::{HasBottom, HasTop};
use crate::{
fmt::DebugWithContext, Analysis, AnalysisDomain, JoinSemiLattice, SwitchIntEdgeEffects,
};
pub trait ValueAnalysis<'tcx> {
/// For each place of interest, the analysis tracks a value of the given type.
type Value: Clone + JoinSemiLattice + HasBottom + HasTop;
const NAME: &'static str;
fn map(&self) -> ⤅
fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
self.super_statement(statement, state)
}
fn super_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
match &statement.kind {
StatementKind::Assign(box (place, rvalue)) => {
self.handle_assign(*place, rvalue, state);
}
StatementKind::SetDiscriminant { box place, variant_index } => {
self.handle_set_discriminant(*place, *variant_index, state);
}
StatementKind::Intrinsic(box intrinsic) => {
self.handle_intrinsic(intrinsic, state);
}
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
// StorageLive leaves the local in an uninitialized state.
// StorageDead makes it UB to access the local afterwards.
state.flood_with(Place::from(*local).as_ref(), self.map(), Self::Value::BOTTOM);
}
StatementKind::Deinit(box place) => {
// Deinit makes the place uninitialized.
state.flood_with(place.as_ref(), self.map(), Self::Value::BOTTOM);
}
StatementKind::Retag(..) => {
// We don't track references.
}
StatementKind::ConstEvalCounter
| StatementKind::Nop
| StatementKind::FakeRead(..)
| StatementKind::PlaceMention(..)
| StatementKind::Coverage(..)
| StatementKind::AscribeUserType(..) => (),
}
}
fn handle_set_discriminant(
&self,
place: Place<'tcx>,
variant_index: VariantIdx,
state: &mut State<Self::Value>,
) {
self.super_set_discriminant(place, variant_index, state)
}
fn super_set_discriminant(
&self,
place: Place<'tcx>,
_variant_index: VariantIdx,
state: &mut State<Self::Value>,
) {
state.flood_discr(place.as_ref(), self.map());
}
fn handle_intrinsic(
&self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
state: &mut State<Self::Value>,
) {
self.super_intrinsic(intrinsic, state);
}
fn super_intrinsic(
&self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
_state: &mut State<Self::Value>,
) {
match intrinsic {
NonDivergingIntrinsic::Assume(..) => {
// Could use this, but ignoring it is sound.
}
NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping {
dst: _,
src: _,
count: _,
}) => {
// This statement represents `*dst = *src`, `count` times.
}
}
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
self.super_assign(target, rvalue, state)
}
fn super_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
let result = self.handle_rvalue(rvalue, state);
state.assign(target.as_ref(), result, self.map());
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
self.super_rvalue(rvalue, state)
}
fn super_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match rvalue {
Rvalue::Use(operand) => self.handle_operand(operand, state),
Rvalue::CopyForDeref(place) => self.handle_operand(&Operand::Copy(*place), state),
Rvalue::Ref(..) | Rvalue::AddressOf(..) => {
// We don't track such places.
ValueOrPlace::TOP
}
Rvalue::Repeat(..)
| Rvalue::ThreadLocalRef(..)
| Rvalue::Len(..)
| Rvalue::Cast(..)
| Rvalue::BinaryOp(..)
| Rvalue::CheckedBinaryOp(..)
| Rvalue::NullaryOp(..)
| Rvalue::UnaryOp(..)
| Rvalue::Discriminant(..)
| Rvalue::Aggregate(..)
| Rvalue::ShallowInitBox(..) => {
// No modification is possible through these r-values.
ValueOrPlace::TOP
}
}
}
fn handle_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
self.super_operand(operand, state)
}
fn super_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match operand {
Operand::Constant(box constant) => {
ValueOrPlace::Value(self.handle_constant(constant, state))
}
Operand::Copy(place) | Operand::Move(place) => {
// On move, we would ideally flood the place with bottom. But with the current
// framework this is not possible (similar to `InterpCx::eval_operand`).
self.map()
.find(place.as_ref())
.map(ValueOrPlace::Place)
.unwrap_or(ValueOrPlace::TOP)
}
}
}
fn handle_constant(
&self,
constant: &ConstOperand<'tcx>,
state: &mut State<Self::Value>,
) -> Self::Value {
self.super_constant(constant, state)
}
fn super_constant(
&self,
_constant: &ConstOperand<'tcx>,
_state: &mut State<Self::Value>,
) -> Self::Value {
Self::Value::TOP
}
/// The effect of a successful function call return should not be
/// applied here, see [`Analysis::apply_terminator_effect`].
fn handle_terminator<'mir>(
&self,
terminator: &'mir Terminator<'tcx>,
state: &mut State<Self::Value>,
) -> TerminatorEdges<'mir, 'tcx> {
self.super_terminator(terminator, state)
}
fn super_terminator<'mir>(
&self,
terminator: &'mir Terminator<'tcx>,
state: &mut State<Self::Value>,
) -> TerminatorEdges<'mir, 'tcx> {
match &terminator.kind {
TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
// Effect is applied by `handle_call_return`.
}
TerminatorKind::Drop { place, .. } => {
state.flood_with(place.as_ref(), self.map(), Self::Value::BOTTOM);
}
TerminatorKind::Yield { .. } => {
// They would have an effect, but are not allowed in this phase.
bug!("encountered disallowed terminator");
}
TerminatorKind::SwitchInt { discr, targets } => {
return self.handle_switch_int(discr, targets, state);
}
TerminatorKind::Goto { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Assert { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {
// These terminators have no effect on the analysis.
}
}
terminator.edges()
}
fn handle_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<Self::Value>,
) {
self.super_call_return(return_places, state)
}
fn super_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<Self::Value>,
) {
return_places.for_each(|place| {
state.flood(place.as_ref(), self.map());
})
}
fn handle_switch_int<'mir>(
&self,
discr: &'mir Operand<'tcx>,
targets: &'mir SwitchTargets,
state: &mut State<Self::Value>,
) -> TerminatorEdges<'mir, 'tcx> {
self.super_switch_int(discr, targets, state)
}
fn super_switch_int<'mir>(
&self,
discr: &'mir Operand<'tcx>,
targets: &'mir SwitchTargets,
_state: &mut State<Self::Value>,
) -> TerminatorEdges<'mir, 'tcx> {
TerminatorEdges::SwitchInt { discr, targets }
}
fn wrap(self) -> ValueAnalysisWrapper<Self>
where
Self: Sized,
{
ValueAnalysisWrapper(self)
}
}
pub struct ValueAnalysisWrapper<T>(pub T);
impl<'tcx, T: ValueAnalysis<'tcx>> AnalysisDomain<'tcx> for ValueAnalysisWrapper<T> {
type Domain = State<T::Value>;
const NAME: &'static str = T::NAME;
fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
State(StateData::Unreachable)
}
fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
// The initial state maps all tracked places of argument projections to ⊤ and the rest to ⊥.
assert!(matches!(state.0, StateData::Unreachable));
let values = IndexVec::from_elem_n(T::Value::BOTTOM, self.0.map().value_count);
*state = State(StateData::Reachable(values));
for arg in body.args_iter() {
state.flood(PlaceRef { local: arg, projection: &[] }, self.0.map());
}
}
}
impl<'tcx, T> Analysis<'tcx> for ValueAnalysisWrapper<T>
where
T: ValueAnalysis<'tcx>,
{
fn apply_statement_effect(
&mut self,
state: &mut Self::Domain,
statement: &Statement<'tcx>,
_location: Location,
) {
if state.is_reachable() {
self.0.handle_statement(statement, state);
}
}
fn apply_terminator_effect<'mir>(
&mut self,
state: &mut Self::Domain,
terminator: &'mir Terminator<'tcx>,
_location: Location,
) -> TerminatorEdges<'mir, 'tcx> {
if state.is_reachable() {
self.0.handle_terminator(terminator, state)
} else {
TerminatorEdges::None
}
}
fn apply_call_return_effect(
&mut self,
state: &mut Self::Domain,
_block: BasicBlock,
return_places: CallReturnPlaces<'_, 'tcx>,
) {
if state.is_reachable() {
self.0.handle_call_return(return_places, state)
}
}
fn apply_switch_int_edge_effects(
&mut self,
_block: BasicBlock,
_discr: &Operand<'tcx>,
_apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
) {
}
}
rustc_index::newtype_index!(
/// This index uniquely identifies a place.
///
/// Not every place has a `PlaceIndex`, and not every `PlaceIndex` corresponds to a tracked
/// place. However, every tracked place and all places along its projection have a `PlaceIndex`.
pub struct PlaceIndex {}
);
rustc_index::newtype_index!(
/// This index uniquely identifies a tracked place and therefore a slot in [`State`].
///
/// It is an implementation detail of this module.
struct ValueIndex {}
);
/// See [`State`].
#[derive(PartialEq, Eq, Debug)]
enum StateData<V> {
Reachable(IndexVec<ValueIndex, V>),
Unreachable,
}
impl<V: Clone> Clone for StateData<V> {
fn clone(&self) -> Self {
match self {
Self::Reachable(x) => Self::Reachable(x.clone()),
Self::Unreachable => Self::Unreachable,
}
}
fn clone_from(&mut self, source: &Self) {
match (&mut *self, source) {
(Self::Reachable(x), Self::Reachable(y)) => {
// We go through `raw` here, because `IndexVec` currently has a naive `clone_from`.
x.raw.clone_from(&y.raw);
}
_ => *self = source.clone(),
}
}
}
/// The dataflow state for an instance of [`ValueAnalysis`].
///
/// Every instance specifies a lattice that represents the possible values of a single tracked
/// place. If we call this lattice `V` and set of tracked places `P`, then a [`State`] is an
/// element of `{unreachable} ∪ (P -> V)`. This again forms a lattice, where the bottom element is
/// `unreachable` and the top element is the mapping `p ↦ ⊤`. Note that the mapping `p ↦ ⊥` is not
/// the bottom element (because joining an unreachable and any other reachable state yields a
/// reachable state). All operations on unreachable states are ignored.
///
/// Flooding means assigning a value (by default `⊤`) to all tracked projections of a given place.
#[derive(PartialEq, Eq, Debug)]
pub struct State<V>(StateData<V>);
impl<V: Clone> Clone for State<V> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
fn clone_from(&mut self, source: &Self) {
self.0.clone_from(&source.0);
}
}
impl<V: Clone> State<V> {
pub fn new(init: V, map: &Map) -> State<V> {
let values = IndexVec::from_elem_n(init, map.value_count);
State(StateData::Reachable(values))
}
pub fn all(&self, f: impl Fn(&V) -> bool) -> bool {
match self.0 {
StateData::Unreachable => true,
StateData::Reachable(ref values) => values.iter().all(f),
}
}
fn is_reachable(&self) -> bool {
matches!(&self.0, StateData::Reachable(_))
}
/// Assign `value` to all places that are contained in `place` or may alias one.
pub fn flood_with(&mut self, place: PlaceRef<'_>, map: &Map, value: V) {
self.flood_with_tail_elem(place, None, map, value)
}
/// Assign `TOP` to all places that are contained in `place` or may alias one.
pub fn flood(&mut self, place: PlaceRef<'_>, map: &Map)
where
V: HasTop,
{
self.flood_with(place, map, V::TOP)
}
/// Assign `value` to the discriminant of `place` and all places that may alias it.
fn flood_discr_with(&mut self, place: PlaceRef<'_>, map: &Map, value: V) {
self.flood_with_tail_elem(place, Some(TrackElem::Discriminant), map, value)
}
/// Assign `TOP` to the discriminant of `place` and all places that may alias it.
pub fn flood_discr(&mut self, place: PlaceRef<'_>, map: &Map)
where
V: HasTop,
{
self.flood_discr_with(place, map, V::TOP)
}
/// This method is the most general version of the `flood_*` method.
///
/// Assign `value` on the given place and all places that may alias it. In particular, when
/// the given place has a variant downcast, we invoke the function on all the other variants.
///
/// `tail_elem` allows to support discriminants that are not a place in MIR, but that we track
/// as such.
pub fn flood_with_tail_elem(
&mut self,
place: PlaceRef<'_>,
tail_elem: Option<TrackElem>,
map: &Map,
value: V,
) {
let StateData::Reachable(values) = &mut self.0 else { return };
map.for_each_aliasing_place(place, tail_elem, &mut |vi| {
values[vi] = value.clone();
});
}
/// Low-level method that assigns to a place.
/// This does nothing if the place is not tracked.
///
/// The target place must have been flooded before calling this method.
fn insert_idx(&mut self, target: PlaceIndex, result: ValueOrPlace<V>, map: &Map) {
match result {
ValueOrPlace::Value(value) => self.insert_value_idx(target, value, map),
ValueOrPlace::Place(source) => self.insert_place_idx(target, source, map),
}
}
/// Low-level method that assigns a value to a place.
/// This does nothing if the place is not tracked.
///
/// The target place must have been flooded before calling this method.
pub fn insert_value_idx(&mut self, target: PlaceIndex, value: V, map: &Map) {
let StateData::Reachable(values) = &mut self.0 else { return };
if let Some(value_index) = map.places[target].value_index {
values[value_index] = value;
}
}
/// Copies `source` to `target`, including all tracked places beneath.
///
/// If `target` contains a place that is not contained in `source`, it will be overwritten with
/// Top. Also, because this will copy all entries one after another, it may only be used for
/// places that are non-overlapping or identical.
///
/// The target place must have been flooded before calling this method.
pub fn insert_place_idx(&mut self, target: PlaceIndex, source: PlaceIndex, map: &Map) {
let StateData::Reachable(values) = &mut self.0 else { return };
// If both places are tracked, we copy the value to the target.
// If the target is tracked, but the source is not, we do nothing, as invalidation has
// already been performed.
if let Some(target_value) = map.places[target].value_index {
if let Some(source_value) = map.places[source].value_index {
values[target_value] = values[source_value].clone();
}
}
for target_child in map.children(target) {
// Try to find corresponding child and recurse. Reasoning is similar as above.
let projection = map.places[target_child].proj_elem.unwrap();
if let Some(source_child) = map.projections.get(&(source, projection)) {
self.insert_place_idx(target_child, *source_child, map);
}
}
}
/// Helper method to interpret `target = result`.
pub fn assign(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map)
where
V: HasTop,
{
self.flood(target, map);
if let Some(target) = map.find(target) {
self.insert_idx(target, result, map);
}
}
/// Helper method for assignments to a discriminant.
pub fn assign_discr(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map)
where
V: HasTop,
{
self.flood_discr(target, map);
if let Some(target) = map.find_discr(target) {
self.insert_idx(target, result, map);
}
}
/// Retrieve the value stored for a place, or `None` if it is not tracked.
pub fn try_get(&self, place: PlaceRef<'_>, map: &Map) -> Option<V> {
let place = map.find(place)?;
self.try_get_idx(place, map)
}
/// Retrieve the discriminant stored for a place, or `None` if it is not tracked.
pub fn try_get_discr(&self, place: PlaceRef<'_>, map: &Map) -> Option<V> {
let place = map.find_discr(place)?;
self.try_get_idx(place, map)
}
/// Retrieve the slice length stored for a place, or `None` if it is not tracked.
pub fn try_get_len(&self, place: PlaceRef<'_>, map: &Map) -> Option<V> {
let place = map.find_len(place)?;
self.try_get_idx(place, map)
}
/// Retrieve the value stored for a place index, or `None` if it is not tracked.
pub fn try_get_idx(&self, place: PlaceIndex, map: &Map) -> Option<V> {
match &self.0 {
StateData::Reachable(values) => {
map.places[place].value_index.map(|v| values[v].clone())
}
StateData::Unreachable => None,
}
}
/// Retrieve the value stored for a place, or ⊤ if it is not tracked.
///
/// This method returns ⊥ if the place is tracked and the state is unreachable.
pub fn get(&self, place: PlaceRef<'_>, map: &Map) -> V
where
V: HasBottom + HasTop,
{
match &self.0 {
StateData::Reachable(_) => self.try_get(place, map).unwrap_or(V::TOP),
// Because this is unreachable, we can return any value we want.
StateData::Unreachable => V::BOTTOM,
}
}
/// Retrieve the value stored for a place, or ⊤ if it is not tracked.
///
/// This method returns ⊥ the current state is unreachable.
pub fn get_discr(&self, place: PlaceRef<'_>, map: &Map) -> V
where
V: HasBottom + HasTop,
{
match &self.0 {
StateData::Reachable(_) => self.try_get_discr(place, map).unwrap_or(V::TOP),
// Because this is unreachable, we can return any value we want.
StateData::Unreachable => V::BOTTOM,
}
}
/// Retrieve the value stored for a place, or ⊤ if it is not tracked.
///
/// This method returns ⊥ the current state is unreachable.
pub fn get_len(&self, place: PlaceRef<'_>, map: &Map) -> V
where
V: HasBottom + HasTop,
{
match &self.0 {
StateData::Reachable(_) => self.try_get_len(place, map).unwrap_or(V::TOP),
// Because this is unreachable, we can return any value we want.
StateData::Unreachable => V::BOTTOM,
}
}
/// Retrieve the value stored for a place index, or ⊤ if it is not tracked.
///
/// This method returns ⊥ the current state is unreachable.
pub fn get_idx(&self, place: PlaceIndex, map: &Map) -> V
where
V: HasBottom + HasTop,
{
match &self.0 {
StateData::Reachable(values) => {
map.places[place].value_index.map(|v| values[v].clone()).unwrap_or(V::TOP)
}
StateData::Unreachable => {
// Because this is unreachable, we can return any value we want.
V::BOTTOM
}
}
}
}
impl<V: JoinSemiLattice + Clone> JoinSemiLattice for State<V> {
fn join(&mut self, other: &Self) -> bool {
match (&mut self.0, &other.0) {
(_, StateData::Unreachable) => false,
(StateData::Unreachable, _) => {
*self = other.clone();
true
}
(StateData::Reachable(this), StateData::Reachable(other)) => this.join(other),
}
}
}
/// Partial mapping from [`Place`] to [`PlaceIndex`], where some places also have a [`ValueIndex`].
///
/// This data structure essentially maintains a tree of places and their projections. Some
/// additional bookkeeping is done, to speed up traversal over this tree:
/// - For iteration, every [`PlaceInfo`] contains an intrusive linked list of its children.
/// - To directly get the child for a specific projection, there is a `projections` map.
#[derive(Debug)]
pub struct Map {
locals: IndexVec<Local, Option<PlaceIndex>>,
projections: FxHashMap<(PlaceIndex, TrackElem), PlaceIndex>,
places: IndexVec<PlaceIndex, PlaceInfo>,
value_count: usize,
// The Range corresponds to a slice into `inner_values_buffer`.
inner_values: IndexVec<PlaceIndex, Range<usize>>,
inner_values_buffer: Vec<ValueIndex>,
}
impl Map {
/// Returns a map that only tracks places whose type has scalar layout.
///
/// This is currently the only way to create a [`Map`]. The way in which the tracked places are
/// chosen is an implementation detail and may not be relied upon (other than that their type
/// are scalars).
pub fn new<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, value_limit: Option<usize>) -> Self {
let mut map = Self {
locals: IndexVec::new(),
projections: FxHashMap::default(),
places: IndexVec::new(),
value_count: 0,
inner_values: IndexVec::new(),
inner_values_buffer: Vec::new(),
};
let exclude = excluded_locals(body);
map.register(tcx, body, exclude, value_limit);
debug!("registered {} places ({} nodes in total)", map.value_count, map.places.len());
map
}
/// Register all non-excluded places that have scalar layout.
fn register<'tcx>(
&mut self,
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
exclude: BitSet<Local>,
value_limit: Option<usize>,
) {
let mut worklist = VecDeque::with_capacity(value_limit.unwrap_or(body.local_decls.len()));
let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
// Start by constructing the places for each bare local.
self.locals = IndexVec::from_elem(None, &body.local_decls);
for (local, decl) in body.local_decls.iter_enumerated() {
if exclude.contains(local) {
continue;
}
// Create a place for the local.
debug_assert!(self.locals[local].is_none());
let place = self.places.push(PlaceInfo::new(None));
self.locals[local] = Some(place);
// And push the eventual children places to the worklist.
self.register_children(tcx, param_env, place, decl.ty, &mut worklist);
}
// `place.elem1.elem2` with type `ty`.
// `elem1` is either `Some(Variant(i))` or `None`.
while let Some((mut place, elem1, elem2, ty)) = worklist.pop_front() {
// The user requires a bound on the number of created values.
if let Some(value_limit) = value_limit
&& self.value_count >= value_limit
{
break;
}
// Create a place for this projection.
for elem in [elem1, Some(elem2)].into_iter().flatten() {
place = *self.projections.entry((place, elem)).or_insert_with(|| {
// Prepend new child to the linked list.
let next = self.places.push(PlaceInfo::new(Some(elem)));
self.places[next].next_sibling = self.places[place].first_child;
self.places[place].first_child = Some(next);
next
});
}
// And push the eventual children places to the worklist.
self.register_children(tcx, param_env, place, ty, &mut worklist);
}
// Pre-compute the tree of ValueIndex nested in each PlaceIndex.
// `inner_values_buffer[inner_values[place]]` is the set of all the values
// reachable by projecting `place`.
self.inner_values_buffer = Vec::with_capacity(self.value_count);
self.inner_values = IndexVec::from_elem(0..0, &self.places);
for local in body.local_decls.indices() {
if let Some(place) = self.locals[local] {
self.cache_preorder_invoke(place);
}
}
// Trim useless places.
for opt_place in self.locals.iter_mut() {
if let Some(place) = *opt_place
&& self.inner_values[place].is_empty()
{
*opt_place = None;
}
}
#[allow(rustc::potential_query_instability)]
self.projections.retain(|_, child| !self.inner_values[*child].is_empty());
}
/// Potentially register the (local, projection) place and its fields, recursively.
///
/// Invariant: The projection must only contain trackable elements.
fn register_children<'tcx>(
&mut self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
place: PlaceIndex,
ty: Ty<'tcx>,
worklist: &mut VecDeque<(PlaceIndex, Option<TrackElem>, TrackElem, Ty<'tcx>)>,
) {
// Allocate a value slot if it doesn't have one, and the user requested one.
assert!(self.places[place].value_index.is_none());
if tcx.layout_of(param_env.and(ty)).is_ok_and(|layout| layout.abi.is_scalar()) {
self.places[place].value_index = Some(self.value_count.into());
self.value_count += 1;
}
// For enums, directly create the `Discriminant`, as that's their main use.
if ty.is_enum() {
// Prepend new child to the linked list.
let discr = self.places.push(PlaceInfo::new(Some(TrackElem::Discriminant)));
self.places[discr].next_sibling = self.places[place].first_child;
self.places[place].first_child = Some(discr);
let old = self.projections.insert((place, TrackElem::Discriminant), discr);
assert!(old.is_none());
// Allocate a value slot since it doesn't have one.
assert!(self.places[discr].value_index.is_none());
self.places[discr].value_index = Some(self.value_count.into());
self.value_count += 1;
}
if let ty::Ref(_, ref_ty, _) | ty::RawPtr(ty::TypeAndMut { ty: ref_ty, .. }) = ty.kind()
&& let ty::Slice(..) = ref_ty.kind()
{
assert!(self.places[place].value_index.is_none(), "slices are not scalars");
// Prepend new child to the linked list.
let len = self.places.push(PlaceInfo::new(Some(TrackElem::DerefLen)));
self.places[len].next_sibling = self.places[place].first_child;
self.places[place].first_child = Some(len);
let old = self.projections.insert((place, TrackElem::DerefLen), len);
assert!(old.is_none());
// Allocate a value slot since it doesn't have one.
assert!(self.places[len].value_index.is_none());
self.places[len].value_index = Some(self.value_count.into());
self.value_count += 1;
}
// Recurse with all fields of this place.
iter_fields(ty, tcx, param_env, |variant, field, ty| {
worklist.push_back((
place,
variant.map(TrackElem::Variant),
TrackElem::Field(field),
ty,
))
});
}
/// Precompute the list of values inside `root` and store it inside
/// as a slice within `inner_values_buffer`.
fn cache_preorder_invoke(&mut self, root: PlaceIndex) {
let start = self.inner_values_buffer.len();
if let Some(vi) = self.places[root].value_index {
self.inner_values_buffer.push(vi);
}
// We manually iterate instead of using `children` as we need to mutate `self`.
let mut next_child = self.places[root].first_child;
while let Some(child) = next_child {
ensure_sufficient_stack(|| self.cache_preorder_invoke(child));
next_child = self.places[child].next_sibling;
}
let end = self.inner_values_buffer.len();
self.inner_values[root] = start..end;
}
/// Applies a single projection element, yielding the corresponding child.
pub fn apply(&self, place: PlaceIndex, elem: TrackElem) -> Option<PlaceIndex> {
self.projections.get(&(place, elem)).copied()
}
/// Locates the given place, if it exists in the tree.
fn find_extra(
&self,
place: PlaceRef<'_>,
extra: impl IntoIterator<Item = TrackElem>,
) -> Option<PlaceIndex> {
let mut index = *self.locals[place.local].as_ref()?;
for &elem in place.projection {
index = self.apply(index, elem.try_into().ok()?)?;
}
for elem in extra {
index = self.apply(index, elem)?;
}
Some(index)
}
/// Locates the given place, if it exists in the tree.
pub fn find(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
self.find_extra(place, [])
}
/// Locates the given place and applies `Discriminant`, if it exists in the tree.
pub fn find_discr(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
self.find_extra(place, [TrackElem::Discriminant])
}
/// Locates the given place and applies `DerefLen`, if it exists in the tree.
pub fn find_len(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
self.find_extra(place, [TrackElem::DerefLen])
}
/// Iterate over all direct children.
fn children(&self, parent: PlaceIndex) -> impl Iterator<Item = PlaceIndex> + '_ {
Children::new(self, parent)
}
/// Invoke a function on the given place and all places that may alias it.
///
/// In particular, when the given place has a variant downcast, we invoke the function on all
/// the other variants.
///
/// `tail_elem` allows to support discriminants that are not a place in MIR, but that we track
/// as such.
fn for_each_aliasing_place(
&self,
place: PlaceRef<'_>,
tail_elem: Option<TrackElem>,
f: &mut impl FnMut(ValueIndex),
) {
if place.is_indirect_first_projection() {
// We do not track indirect places.
return;
}
let Some(mut index) = self.locals[place.local] else {
// The local is not tracked at all, so it does not alias anything.
return;
};
let elems = place.projection.iter().map(|&elem| elem.try_into()).chain(tail_elem.map(Ok));
for elem in elems {
// A field aliases the parent place.
if let Some(vi) = self.places[index].value_index {
f(vi);
}
let Ok(elem) = elem else { return };
let sub = self.apply(index, elem);
if let TrackElem::Variant(..) | TrackElem::Discriminant = elem {
// Enum variant fields and enum discriminants alias each another.
self.for_each_variant_sibling(index, sub, f);
}
if let Some(sub) = sub {
index = sub
} else {
return;
}
}
self.for_each_value_inside(index, f);
}
/// Invoke the given function on all the descendants of the given place, except one branch.
fn for_each_variant_sibling(
&self,
parent: PlaceIndex,
preserved_child: Option<PlaceIndex>,
f: &mut impl FnMut(ValueIndex),
) {
for sibling in self.children(parent) {
let elem = self.places[sibling].proj_elem;
// Only invalidate variants and discriminant. Fields (for coroutines) are not
// invalidated by assignment to a variant.
if let Some(TrackElem::Variant(..) | TrackElem::Discriminant) = elem
// Only invalidate the other variants, the current one is fine.
&& Some(sibling) != preserved_child
{
self.for_each_value_inside(sibling, f);
}
}
}
/// Invoke a function on each value in the given place and all descendants.
fn for_each_value_inside(&self, root: PlaceIndex, f: &mut impl FnMut(ValueIndex)) {
let range = self.inner_values[root].clone();
let values = &self.inner_values_buffer[range];
for &v in values {
f(v)
}
}
/// Invoke a function on each value in the given place and all descendants.
pub fn for_each_projection_value<O>(
&self,
root: PlaceIndex,
value: O,
project: &mut impl FnMut(TrackElem, &O) -> Option<O>,
f: &mut impl FnMut(PlaceIndex, &O),
) {
// Fast path is there is nothing to do.
if self.inner_values[root].is_empty() {
return;
}
if self.places[root].value_index.is_some() {
f(root, &value)
}
for child in self.children(root) {
let elem = self.places[child].proj_elem.unwrap();
if let Some(value) = project(elem, &value) {
self.for_each_projection_value(child, value, project, f);
}
}
}
}
/// This is the information tracked for every [`PlaceIndex`] and is stored by [`Map`].
///
/// Together, `first_child` and `next_sibling` form an intrusive linked list, which is used to
/// model a tree structure (a replacement for a member like `children: Vec<PlaceIndex>`).
#[derive(Debug)]
struct PlaceInfo {
/// We store a [`ValueIndex`] if and only if the placed is tracked by the analysis.
value_index: Option<ValueIndex>,
/// The projection used to go from parent to this node (only None for root).
proj_elem: Option<TrackElem>,
/// The left-most child.
first_child: Option<PlaceIndex>,
/// Index of the sibling to the right of this node.
next_sibling: Option<PlaceIndex>,
}
impl PlaceInfo {
fn new(proj_elem: Option<TrackElem>) -> Self {
Self { next_sibling: None, first_child: None, proj_elem, value_index: None }
}
}
struct Children<'a> {
map: &'a Map,
next: Option<PlaceIndex>,
}
impl<'a> Children<'a> {
fn new(map: &'a Map, parent: PlaceIndex) -> Self {
Self { map, next: map.places[parent].first_child }
}
}
impl<'a> Iterator for Children<'a> {
type Item = PlaceIndex;
fn next(&mut self) -> Option<Self::Item> {
match self.next {
Some(child) => {
self.next = self.map.places[child].next_sibling;
Some(child)
}
None => None,
}
}
}
/// Used as the result of an operand or r-value.
#[derive(Debug)]
pub enum ValueOrPlace<V> {
Value(V),
Place(PlaceIndex),
}
impl<V: HasTop> ValueOrPlace<V> {
pub const TOP: Self = ValueOrPlace::Value(V::TOP);
}
/// The set of projection elements that can be used by a tracked place.
///
/// Although only field projections are currently allowed, this could change in the future.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum TrackElem {
Field(FieldIdx),
Variant(VariantIdx),
Discriminant,
// Length of a slice.
DerefLen,
}
impl<V, T> TryFrom<ProjectionElem<V, T>> for TrackElem {
type Error = ();
fn try_from(value: ProjectionElem<V, T>) -> Result<Self, Self::Error> {
match value {
ProjectionElem::Field(field, _) => Ok(TrackElem::Field(field)),
ProjectionElem::Downcast(_, idx) => Ok(TrackElem::Variant(idx)),
_ => Err(()),
}
}
}
/// Invokes `f` on all direct fields of `ty`.
pub fn iter_fields<'tcx>(
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
mut f: impl FnMut(Option<VariantIdx>, FieldIdx, Ty<'tcx>),
) {
match ty.kind() {
ty::Tuple(list) => {
for (field, ty) in list.iter().enumerate() {
f(None, field.into(), ty);
}
}
ty::Adt(def, args) => {
if def.is_union() {
return;
}
for (v_index, v_def) in def.variants().iter_enumerated() {
let variant = if def.is_struct() { None } else { Some(v_index) };
for (f_index, f_def) in v_def.fields.iter().enumerate() {
let field_ty = f_def.ty(tcx, args);
let field_ty = tcx
.try_normalize_erasing_regions(param_env, field_ty)
.unwrap_or_else(|_| tcx.erase_regions(field_ty));
f(variant, f_index.into(), field_ty);
}
}
}
ty::Closure(_, args) => {
iter_fields(args.as_closure().tupled_upvars_ty(), tcx, param_env, f);
}
ty::Coroutine(_, args) => {
iter_fields(args.as_coroutine().tupled_upvars_ty(), tcx, param_env, f);
}
ty::CoroutineClosure(_, args) => {
iter_fields(args.as_coroutine_closure().tupled_upvars_ty(), tcx, param_env, f);
}
_ => (),
}
}
/// Returns all locals with projections that have their reference or address taken.
pub fn excluded_locals(body: &Body<'_>) -> BitSet<Local> {
struct Collector {
result: BitSet<Local>,
}
impl<'tcx> Visitor<'tcx> for Collector {
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, _location: Location) {
if (context.is_borrow()
|| context.is_address_of()
|| context.is_drop()
|| context == PlaceContext::MutatingUse(MutatingUseContext::AsmOutput))
&& !place.is_indirect()
{
// A pointer to a place could be used to access other places with the same local,
// hence we have to exclude the local completely.
self.result.insert(place.local);
}
}
}
let mut collector = Collector { result: BitSet::new_empty(body.local_decls.len()) };
collector.visit_body(body);
collector.result
}
/// This is used to visualize the dataflow analysis.
impl<'tcx, T> DebugWithContext<ValueAnalysisWrapper<T>> for State<T::Value>
where
T: ValueAnalysis<'tcx>,
T::Value: Debug,
{
fn fmt_with(&self, ctxt: &ValueAnalysisWrapper<T>, f: &mut Formatter<'_>) -> std::fmt::Result {
match &self.0 {
StateData::Reachable(values) => debug_with_context(values, None, ctxt.0.map(), f),
StateData::Unreachable => write!(f, "unreachable"),
}
}
fn fmt_diff_with(
&self,
old: &Self,
ctxt: &ValueAnalysisWrapper<T>,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
match (&self.0, &old.0) {
(StateData::Reachable(this), StateData::Reachable(old)) => {
debug_with_context(this, Some(old), ctxt.0.map(), f)
}
_ => Ok(()), // Consider printing something here.
}
}
}
fn debug_with_context_rec<V: Debug + Eq>(
place: PlaceIndex,
place_str: &str,
new: &IndexSlice<ValueIndex, V>,
old: Option<&IndexSlice<ValueIndex, V>>,
map: &Map,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
if let Some(value) = map.places[place].value_index {
match old {
None => writeln!(f, "{}: {:?}", place_str, new[value])?,
Some(old) => {
if new[value] != old[value] {
writeln!(f, "\u{001f}-{}: {:?}", place_str, old[value])?;
writeln!(f, "\u{001f}+{}: {:?}", place_str, new[value])?;
}
}
}
}
for child in map.children(place) {
let info_elem = map.places[child].proj_elem.unwrap();
let child_place_str = match info_elem {
TrackElem::Discriminant => {
format!("discriminant({place_str})")
}
TrackElem::Variant(idx) => {
format!("({place_str} as {idx:?})")
}
TrackElem::Field(field) => {
if place_str.starts_with('*') {
format!("({}).{}", place_str, field.index())
} else {
format!("{}.{}", place_str, field.index())
}
}
TrackElem::DerefLen => {
format!("Len(*{})", place_str)
}
};
debug_with_context_rec(child, &child_place_str, new, old, map, f)?;
}
Ok(())
}
fn debug_with_context<V: Debug + Eq>(
new: &IndexSlice<ValueIndex, V>,
old: Option<&IndexSlice<ValueIndex, V>>,
map: &Map,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
for (local, place) in map.locals.iter_enumerated() {
if let Some(place) = place {
debug_with_context_rec(*place, &format!("{local:?}"), new, old, map, f)?;
}
}
Ok(())
}