1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
//! Traits used to represent [lattices] for use as the domain of a dataflow analysis.
//!
//! # Overview
//!
//! The most common lattice is a powerset of some set `S`, ordered by [set inclusion]. The [Hasse
//! diagram] for the powerset of a set with two elements (`X` and `Y`) is shown below. Note that
//! distinct elements at the same height in a Hasse diagram (e.g. `{X}` and `{Y}`) are
//! *incomparable*, not equal.
//!
//! ```text
//! {X, Y} <- top
//! / \
//! {X} {Y}
//! \ /
//! {} <- bottom
//!
//! ```
//!
//! The defining characteristic of a lattice—the one that differentiates it from a [partially
//! ordered set][poset]—is the existence of a *unique* least upper and greatest lower bound for
//! every pair of elements. The lattice join operator (`∨`) returns the least upper bound, and the
//! lattice meet operator (`∧`) returns the greatest lower bound. Types that implement one operator
//! but not the other are known as semilattices. Dataflow analysis only uses the join operator and
//! will work with any join-semilattice, but both should be specified when possible.
//!
//! ## `PartialOrd`
//!
//! Given that they represent partially ordered sets, you may be surprised that [`JoinSemiLattice`]
//! and [`MeetSemiLattice`] do not have [`PartialOrd`] as a supertrait. This
//! is because most standard library types use lexicographic ordering instead of set inclusion for
//! their `PartialOrd` impl. Since we do not actually need to compare lattice elements to run a
//! dataflow analysis, there's no need for a newtype wrapper with a custom `PartialOrd` impl. The
//! only benefit would be the ability to check that the least upper (or greatest lower) bound
//! returned by the lattice join (or meet) operator was in fact greater (or lower) than the inputs.
//!
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
//! [set inclusion]: https://en.wikipedia.org/wiki/Subset
//! [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
//! [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
use crate::framework::BitSetExt;
use rustc_index::bit_set::{BitSet, ChunkedBitSet, HybridBitSet};
use rustc_index::{Idx, IndexVec};
use std::iter;
/// A [partially ordered set][poset] that has a [least upper bound][lub] for any pair of elements
/// in the set.
///
/// [lub]: https://en.wikipedia.org/wiki/Infimum_and_supremum
/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
pub trait JoinSemiLattice: Eq {
/// Computes the least upper bound of two elements, storing the result in `self` and returning
/// `true` if `self` has changed.
///
/// The lattice join operator is abbreviated as `∨`.
fn join(&mut self, other: &Self) -> bool;
}
/// A [partially ordered set][poset] that has a [greatest lower bound][glb] for any pair of
/// elements in the set.
///
/// Dataflow analyses only require that their domains implement [`JoinSemiLattice`], not
/// `MeetSemiLattice`. However, types that will be used as dataflow domains should implement both
/// so that they can be used with [`Dual`].
///
/// [glb]: https://en.wikipedia.org/wiki/Infimum_and_supremum
/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
pub trait MeetSemiLattice: Eq {
/// Computes the greatest lower bound of two elements, storing the result in `self` and
/// returning `true` if `self` has changed.
///
/// The lattice meet operator is abbreviated as `∧`.
fn meet(&mut self, other: &Self) -> bool;
}
/// A set that has a "bottom" element, which is less than or equal to any other element.
pub trait HasBottom {
const BOTTOM: Self;
}
/// A set that has a "top" element, which is greater than or equal to any other element.
pub trait HasTop {
const TOP: Self;
}
/// A `bool` is a "two-point" lattice with `true` as the top element and `false` as the bottom:
///
/// ```text
/// true
/// |
/// false
/// ```
impl JoinSemiLattice for bool {
fn join(&mut self, other: &Self) -> bool {
if let (false, true) = (*self, *other) {
*self = true;
return true;
}
false
}
}
impl MeetSemiLattice for bool {
fn meet(&mut self, other: &Self) -> bool {
if let (true, false) = (*self, *other) {
*self = false;
return true;
}
false
}
}
impl HasBottom for bool {
const BOTTOM: Self = false;
}
impl HasTop for bool {
const TOP: Self = true;
}
/// A tuple (or list) of lattices is itself a lattice whose least upper bound is the concatenation
/// of the least upper bounds of each element of the tuple (or list).
///
/// In other words:
/// (A₀, A₁, ..., Aₙ) ∨ (B₀, B₁, ..., Bₙ) = (A₀∨B₀, A₁∨B₁, ..., Aₙ∨Bₙ)
impl<I: Idx, T: JoinSemiLattice> JoinSemiLattice for IndexVec<I, T> {
fn join(&mut self, other: &Self) -> bool {
assert_eq!(self.len(), other.len());
let mut changed = false;
for (a, b) in iter::zip(self, other) {
changed |= a.join(b);
}
changed
}
}
impl<I: Idx, T: MeetSemiLattice> MeetSemiLattice for IndexVec<I, T> {
fn meet(&mut self, other: &Self) -> bool {
assert_eq!(self.len(), other.len());
let mut changed = false;
for (a, b) in iter::zip(self, other) {
changed |= a.meet(b);
}
changed
}
}
/// A `BitSet` represents the lattice formed by the powerset of all possible values of
/// the index type `T` ordered by inclusion. Equivalently, it is a tuple of "two-point" lattices,
/// one for each possible value of `T`.
impl<T: Idx> JoinSemiLattice for BitSet<T> {
fn join(&mut self, other: &Self) -> bool {
self.union(other)
}
}
impl<T: Idx> MeetSemiLattice for BitSet<T> {
fn meet(&mut self, other: &Self) -> bool {
self.intersect(other)
}
}
impl<T: Idx> JoinSemiLattice for ChunkedBitSet<T> {
fn join(&mut self, other: &Self) -> bool {
self.union(other)
}
}
impl<T: Idx> MeetSemiLattice for ChunkedBitSet<T> {
fn meet(&mut self, other: &Self) -> bool {
self.intersect(other)
}
}
/// The counterpart of a given semilattice `T` using the [inverse order].
///
/// The dual of a join-semilattice is a meet-semilattice and vice versa. For example, the dual of a
/// powerset has the empty set as its top element and the full set as its bottom element and uses
/// set *intersection* as its join operator.
///
/// [inverse order]: https://en.wikipedia.org/wiki/Duality_(order_theory)
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Dual<T>(pub T);
impl<T: Idx> BitSetExt<T> for Dual<BitSet<T>> {
fn contains(&self, elem: T) -> bool {
self.0.contains(elem)
}
fn union(&mut self, other: &HybridBitSet<T>) {
self.0.union(other);
}
fn subtract(&mut self, other: &HybridBitSet<T>) {
self.0.subtract(other);
}
}
impl<T: MeetSemiLattice> JoinSemiLattice for Dual<T> {
fn join(&mut self, other: &Self) -> bool {
self.0.meet(&other.0)
}
}
impl<T: JoinSemiLattice> MeetSemiLattice for Dual<T> {
fn meet(&mut self, other: &Self) -> bool {
self.0.join(&other.0)
}
}
/// Extends a type `T` with top and bottom elements to make it a partially ordered set in which no
/// value of `T` is comparable with any other.
///
/// A flat set has the following [Hasse diagram]:
///
/// ```text
/// top
/// / ... / / \ \ ... \
/// all possible values of `T`
/// \ ... \ \ / / ... /
/// bottom
/// ```
///
/// [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FlatSet<T> {
Bottom,
Elem(T),
Top,
}
impl<T: Clone + Eq> JoinSemiLattice for FlatSet<T> {
fn join(&mut self, other: &Self) -> bool {
let result = match (&*self, other) {
(Self::Top, _) | (_, Self::Bottom) => return false,
(Self::Elem(a), Self::Elem(b)) if a == b => return false,
(Self::Bottom, Self::Elem(x)) => Self::Elem(x.clone()),
_ => Self::Top,
};
*self = result;
true
}
}
impl<T: Clone + Eq> MeetSemiLattice for FlatSet<T> {
fn meet(&mut self, other: &Self) -> bool {
let result = match (&*self, other) {
(Self::Bottom, _) | (_, Self::Top) => return false,
(Self::Elem(ref a), Self::Elem(ref b)) if a == b => return false,
(Self::Top, Self::Elem(ref x)) => Self::Elem(x.clone()),
_ => Self::Bottom,
};
*self = result;
true
}
}
impl<T> HasBottom for FlatSet<T> {
const BOTTOM: Self = Self::Bottom;
}
impl<T> HasTop for FlatSet<T> {
const TOP: Self = Self::Top;
}
/// Extend a lattice with a bottom value to represent an unreachable execution.
///
/// The only useful action on an unreachable state is joining it with a reachable one to make it
/// reachable. All other actions, gen/kill for instance, are no-ops.
#[derive(PartialEq, Eq, Debug)]
pub enum MaybeReachable<T> {
Unreachable,
Reachable(T),
}
impl<T> MaybeReachable<T> {
pub fn is_reachable(&self) -> bool {
matches!(self, MaybeReachable::Reachable(_))
}
}
impl<T> HasBottom for MaybeReachable<T> {
const BOTTOM: Self = MaybeReachable::Unreachable;
}
impl<T: HasTop> HasTop for MaybeReachable<T> {
const TOP: Self = MaybeReachable::Reachable(T::TOP);
}
impl<S> MaybeReachable<S> {
/// Return whether the current state contains the given element. If the state is unreachable,
/// it does no contain anything.
pub fn contains<T>(&self, elem: T) -> bool
where
S: BitSetExt<T>,
{
match self {
MaybeReachable::Unreachable => false,
MaybeReachable::Reachable(set) => set.contains(elem),
}
}
}
impl<T, S: BitSetExt<T>> BitSetExt<T> for MaybeReachable<S> {
fn contains(&self, elem: T) -> bool {
self.contains(elem)
}
fn union(&mut self, other: &HybridBitSet<T>) {
match self {
MaybeReachable::Unreachable => {}
MaybeReachable::Reachable(set) => set.union(other),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) {
match self {
MaybeReachable::Unreachable => {}
MaybeReachable::Reachable(set) => set.subtract(other),
}
}
}
impl<V: Clone> Clone for MaybeReachable<V> {
fn clone(&self) -> Self {
match self {
MaybeReachable::Reachable(x) => MaybeReachable::Reachable(x.clone()),
MaybeReachable::Unreachable => MaybeReachable::Unreachable,
}
}
fn clone_from(&mut self, source: &Self) {
match (&mut *self, source) {
(MaybeReachable::Reachable(x), MaybeReachable::Reachable(y)) => {
x.clone_from(y);
}
_ => *self = source.clone(),
}
}
}
impl<T: JoinSemiLattice + Clone> JoinSemiLattice for MaybeReachable<T> {
fn join(&mut self, other: &Self) -> bool {
// Unreachable acts as a bottom.
match (&mut *self, &other) {
(_, MaybeReachable::Unreachable) => false,
(MaybeReachable::Unreachable, _) => {
*self = other.clone();
true
}
(MaybeReachable::Reachable(this), MaybeReachable::Reachable(other)) => this.join(other),
}
}
}