1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use crate::traits::specialization_graph;
use crate::ty::fast_reject::{self, SimplifiedType, TreatParams, TreatProjections};
use crate::ty::{Ident, Ty, TyCtxt};
use hir::def_id::LOCAL_CRATE;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use std::iter;
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_macros::HashStable;
/// A trait's definition with type information.
#[derive(HashStable, Encodable, Decodable)]
pub struct TraitDef {
pub def_id: DefId,
pub unsafety: hir::Unsafety,
/// If `true`, then this trait had the `#[rustc_paren_sugar]`
/// attribute, indicating that it should be used with `Foo()`
/// sugar. This is a temporary thing -- eventually any trait will
/// be usable with the sugar (or without it).
pub paren_sugar: bool,
pub has_auto_impl: bool,
/// If `true`, then this trait has the `#[marker]` attribute, indicating
/// that all its associated items have defaults that cannot be overridden,
/// and thus `impl`s of it are allowed to overlap.
pub is_marker: bool,
/// If `true`, then this trait has to `#[rustc_coinductive]` attribute or
/// is an auto trait. This indicates that trait solver cycles involving an
/// `X: ThisTrait` goal are accepted.
///
/// In the future all traits should be coinductive, but we need a better
/// formal understanding of what exactly that means and should probably
/// also have already switched to the new trait solver.
pub is_coinductive: bool,
/// If `true`, then this trait has the `#[rustc_skip_array_during_method_dispatch]`
/// attribute, indicating that editions before 2021 should not consider this trait
/// during method dispatch if the receiver is an array.
pub skip_array_during_method_dispatch: bool,
/// Used to determine whether the standard library is allowed to specialize
/// on this trait.
pub specialization_kind: TraitSpecializationKind,
/// List of functions from `#[rustc_must_implement_one_of]` attribute one of which
/// must be implemented.
pub must_implement_one_of: Option<Box<[Ident]>>,
/// Whether to add a builtin `dyn Trait: Trait` implementation.
/// This is enabled for all traits except ones marked with
/// `#[rustc_deny_explicit_impl(implement_via_object = false)]`.
pub implement_via_object: bool,
/// Whether a trait is fully built-in, and any implementation is disallowed.
/// This only applies to built-in traits, and is marked via
/// `#[rustc_deny_explicit_impl(implement_via_object = ...)]`.
pub deny_explicit_impl: bool,
}
/// Whether this trait is treated specially by the standard library
/// specialization lint.
#[derive(HashStable, PartialEq, Clone, Copy, Encodable, Decodable)]
pub enum TraitSpecializationKind {
/// The default. Specializing on this trait is not allowed.
None,
/// Specializing on this trait is allowed because it doesn't have any
/// methods. For example `Sized` or `FusedIterator`.
/// Applies to traits with the `rustc_unsafe_specialization_marker`
/// attribute.
Marker,
/// Specializing on this trait is allowed because all of the impls of this
/// trait are "always applicable". Always applicable means that if
/// `X<'x>: T<'y>` for any lifetimes, then `for<'a, 'b> X<'a>: T<'b>`.
/// Applies to traits with the `rustc_specialization_trait` attribute.
AlwaysApplicable,
}
#[derive(Default, Debug, HashStable)]
pub struct TraitImpls {
blanket_impls: Vec<DefId>,
/// Impls indexed by their simplified self type, for fast lookup.
non_blanket_impls: FxIndexMap<SimplifiedType, Vec<DefId>>,
}
impl TraitImpls {
pub fn is_empty(&self) -> bool {
self.blanket_impls.is_empty() && self.non_blanket_impls.is_empty()
}
pub fn blanket_impls(&self) -> &[DefId] {
self.blanket_impls.as_slice()
}
pub fn non_blanket_impls(&self) -> &FxIndexMap<SimplifiedType, Vec<DefId>> {
&self.non_blanket_impls
}
}
impl<'tcx> TraitDef {
pub fn ancestors(
&self,
tcx: TyCtxt<'tcx>,
of_impl: DefId,
) -> Result<specialization_graph::Ancestors<'tcx>, ErrorGuaranteed> {
specialization_graph::ancestors(tcx, self.def_id, of_impl)
}
}
impl<'tcx> TyCtxt<'tcx> {
/// `trait_def_id` MUST BE the `DefId` of a trait.
pub fn for_each_impl<F: FnMut(DefId)>(self, trait_def_id: DefId, mut f: F) {
let impls = self.trait_impls_of(trait_def_id);
for &impl_def_id in impls.blanket_impls.iter() {
f(impl_def_id);
}
for v in impls.non_blanket_impls.values() {
for &impl_def_id in v {
f(impl_def_id);
}
}
}
/// Iterate over every impl that could possibly match the self type `self_ty`.
///
/// `trait_def_id` MUST BE the `DefId` of a trait.
pub fn for_each_relevant_impl(
self,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
f: impl FnMut(DefId),
) {
self.for_each_relevant_impl_treating_projections(
trait_def_id,
self_ty,
TreatProjections::ForLookup,
f,
)
}
pub fn for_each_relevant_impl_treating_projections(
self,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
treat_projections: TreatProjections,
mut f: impl FnMut(DefId),
) {
// FIXME: This depends on the set of all impls for the trait. That is
// unfortunate wrt. incremental compilation.
//
// If we want to be faster, we could have separate queries for
// blanket and non-blanket impls, and compare them separately.
let impls = self.trait_impls_of(trait_def_id);
for &impl_def_id in impls.blanket_impls.iter() {
f(impl_def_id);
}
// Note that we're using `TreatParams::ForLookup` to query `non_blanket_impls` while using
// `TreatParams::AsCandidateKey` while actually adding them.
let treat_params = match treat_projections {
TreatProjections::NextSolverLookup => TreatParams::NextSolverLookup,
TreatProjections::ForLookup => TreatParams::ForLookup,
};
// This way, when searching for some impl for `T: Trait`, we do not look at any impls
// whose outer level is not a parameter or projection. Especially for things like
// `T: Clone` this is incredibly useful as we would otherwise look at all the impls
// of `Clone` for `Option<T>`, `Vec<T>`, `ConcreteType` and so on.
if let Some(simp) = fast_reject::simplify_type(self, self_ty, treat_params) {
if let Some(impls) = impls.non_blanket_impls.get(&simp) {
for &impl_def_id in impls {
f(impl_def_id);
}
}
} else {
for &impl_def_id in impls.non_blanket_impls.values().flatten() {
f(impl_def_id);
}
}
}
/// `trait_def_id` MUST BE the `DefId` of a trait.
pub fn non_blanket_impls_for_ty(
self,
trait_def_id: DefId,
self_ty: Ty<'tcx>,
) -> impl Iterator<Item = DefId> + 'tcx {
let impls = self.trait_impls_of(trait_def_id);
if let Some(simp) = fast_reject::simplify_type(self, self_ty, TreatParams::AsCandidateKey) {
if let Some(impls) = impls.non_blanket_impls.get(&simp) {
return impls.iter().copied();
}
}
[].iter().copied()
}
/// Returns an iterator containing all impls for `trait_def_id`.
///
/// `trait_def_id` MUST BE the `DefId` of a trait.
pub fn all_impls(self, trait_def_id: DefId) -> impl Iterator<Item = DefId> + 'tcx {
let TraitImpls { blanket_impls, non_blanket_impls } = self.trait_impls_of(trait_def_id);
blanket_impls.iter().chain(non_blanket_impls.iter().flat_map(|(_, v)| v)).cloned()
}
}
/// Query provider for `trait_impls_of`.
pub(super) fn trait_impls_of_provider(tcx: TyCtxt<'_>, trait_id: DefId) -> TraitImpls {
let mut impls = TraitImpls::default();
// Traits defined in the current crate can't have impls in upstream
// crates, so we don't bother querying the cstore.
if !trait_id.is_local() {
for &cnum in tcx.crates(()).iter() {
for &(impl_def_id, simplified_self_ty) in
tcx.implementations_of_trait((cnum, trait_id)).iter()
{
if let Some(simplified_self_ty) = simplified_self_ty {
impls
.non_blanket_impls
.entry(simplified_self_ty)
.or_default()
.push(impl_def_id);
} else {
impls.blanket_impls.push(impl_def_id);
}
}
}
}
for &impl_def_id in tcx.hir().trait_impls(trait_id) {
let impl_def_id = impl_def_id.to_def_id();
let impl_self_ty = tcx.type_of(impl_def_id).instantiate_identity();
if let Some(simplified_self_ty) =
fast_reject::simplify_type(tcx, impl_self_ty, TreatParams::AsCandidateKey)
{
impls.non_blanket_impls.entry(simplified_self_ty).or_default().push(impl_def_id);
} else {
impls.blanket_impls.push(impl_def_id);
}
}
impls
}
/// Query provider for `incoherent_impls`.
pub(super) fn incoherent_impls_provider(
tcx: TyCtxt<'_>,
simp: SimplifiedType,
) -> Result<&[DefId], ErrorGuaranteed> {
let mut impls = Vec::new();
let mut res = Ok(());
for cnum in iter::once(LOCAL_CRATE).chain(tcx.crates(()).iter().copied()) {
let incoherent_impls = match tcx.crate_incoherent_impls((cnum, simp)) {
Ok(impls) => impls,
Err(e) => {
res = Err(e);
continue;
}
};
for &impl_def_id in incoherent_impls {
impls.push(impl_def_id)
}
}
debug!(?impls);
res?;
Ok(tcx.arena.alloc_slice(&impls))
}