1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
//! This module contains `TyKind` and its major components.
#![allow(rustc::usage_of_ty_tykind)]
use crate::infer::canonical::Canonical;
use crate::ty::visit::ValidateBoundVars;
use crate::ty::InferTy::*;
use crate::ty::{
self, AdtDef, BoundRegionKind, Discr, Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use crate::ty::{GenericArg, GenericArgs, GenericArgsRef};
use crate::ty::{List, ParamEnv};
use hir::def::DefKind;
use rustc_data_structures::captures::Captures;
use rustc_errors::{DiagArgValue, ErrorGuaranteed, IntoDiagArg, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::LangItem;
use rustc_macros::HashStable;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, VariantIdx, FIRST_VARIANT};
use rustc_target::spec::abi::{self, Abi};
use std::assert_matches::debug_assert_matches;
use std::borrow::Cow;
use std::ops::{ControlFlow, Deref, Range};
use ty::util::IntTypeExt;
use rustc_type_ir::BoundVar;
use rustc_type_ir::CollectAndApply;
use rustc_type_ir::DynKind;
use rustc_type_ir::TyKind as IrTyKind;
use rustc_type_ir::TyKind::*;
use rustc_type_ir::TypeAndMut as IrTypeAndMut;
use super::fold::FnMutDelegate;
use super::GenericParamDefKind;
// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
#[rustc_diagnostic_item = "TyKind"]
pub type TyKind<'tcx> = IrTyKind<TyCtxt<'tcx>>;
pub type TypeAndMut<'tcx> = IrTypeAndMut<TyCtxt<'tcx>>;
pub trait Article {
fn article(&self) -> &'static str;
}
impl<'tcx> Article for TyKind<'tcx> {
/// Get the article ("a" or "an") to use with this type.
fn article(&self) -> &'static str {
match self {
Int(_) | Float(_) | Array(_, _) => "an",
Adt(def, _) if def.is_enum() => "an",
// This should never happen, but ICEing and causing the user's code
// to not compile felt too harsh.
Error(_) => "a",
_ => "a",
}
}
}
/// A closure can be modeled as a struct that looks like:
/// ```ignore (illustrative)
/// struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
/// ```
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
/// in scope on the function that defined the closure,
/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
/// is rather hackily encoded via a scalar type. See
/// `Ty::to_opt_closure_kind` for details.
/// - CS represents the *closure signature*, representing as a `fn()`
/// type. For example, `fn(u32, u32) -> u32` would mean that the closure
/// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
/// specified above.
/// - U is a type parameter representing the types of its upvars, tupled up
/// (borrowed, if appropriate; that is, if a U field represents a by-ref upvar,
/// and the up-var has the type `Foo`, then that field of U will be `&Foo`).
///
/// So, for example, given this function:
/// ```ignore (illustrative)
/// fn foo<'a, T>(data: &'a mut T) {
/// do(|| data.count += 1)
/// }
/// ```
/// the type of the closure would be something like:
/// ```ignore (illustrative)
/// struct Closure<'a, T, U>(...U);
/// ```
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
/// ```ignore (illustrative)
/// impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
/// ...
/// }
/// ```
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// in an extra type parameter? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the scope of the closure itself; this is some
/// subset of `foo`, probably just the scope of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that codegen may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
///
/// ## Coroutines
///
/// Coroutines are handled similarly in `CoroutineArgs`. The set of
/// type parameters is similar, but `CK` and `CS` are replaced by the
/// following type parameters:
///
/// * `GS`: The coroutine's "resume type", which is the type of the
/// argument passed to `resume`, and the type of `yield` expressions
/// inside the coroutine.
/// * `GY`: The "yield type", which is the type of values passed to
/// `yield` inside the coroutine.
/// * `GR`: The "return type", which is the type of value returned upon
/// completion of the coroutine.
/// * `GW`: The "coroutine witness".
#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable, Lift)]
pub struct ClosureArgs<'tcx> {
/// Lifetime and type parameters from the enclosing function,
/// concatenated with a tuple containing the types of the upvars.
///
/// These are separated out because codegen wants to pass them around
/// when monomorphizing.
pub args: GenericArgsRef<'tcx>,
}
/// Struct returned by `split()`.
pub struct ClosureArgsParts<'tcx> {
/// This is the args of the typeck root.
pub parent_args: &'tcx [GenericArg<'tcx>],
/// Represents the maximum calling capability of the closure.
pub closure_kind_ty: Ty<'tcx>,
/// Captures the closure's signature. This closure signature is "tupled", and
/// thus has a peculiar signature of `extern "rust-call" fn((Args, ...)) -> Ty`.
pub closure_sig_as_fn_ptr_ty: Ty<'tcx>,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: Ty<'tcx>,
}
impl<'tcx> ClosureArgs<'tcx> {
/// Construct `ClosureArgs` from `ClosureArgsParts`, containing `Args`
/// for the closure parent, alongside additional closure-specific components.
pub fn new(tcx: TyCtxt<'tcx>, parts: ClosureArgsParts<'tcx>) -> ClosureArgs<'tcx> {
ClosureArgs {
args: tcx.mk_args_from_iter(parts.parent_args.iter().copied().chain([
parts.closure_kind_ty.into(),
parts.closure_sig_as_fn_ptr_ty.into(),
parts.tupled_upvars_ty.into(),
])),
}
}
/// Divides the closure args into their respective components.
/// The ordering assumed here must match that used by `ClosureArgs::new` above.
fn split(self) -> ClosureArgsParts<'tcx> {
match self.args[..] {
[ref parent_args @ .., closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty] => {
ClosureArgsParts {
parent_args,
closure_kind_ty: closure_kind_ty.expect_ty(),
closure_sig_as_fn_ptr_ty: closure_sig_as_fn_ptr_ty.expect_ty(),
tupled_upvars_ty: tupled_upvars_ty.expect_ty(),
}
}
_ => bug!("closure args missing synthetics"),
}
}
/// Returns the generic parameters of the closure's parent.
pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_args
}
/// Returns an iterator over the list of types of captured paths by the closure.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
match *self.tupled_upvars_ty().kind() {
TyKind::Error(_) => ty::List::empty(),
TyKind::Tuple(tys) => tys,
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
/// Returns the tuple type representing the upvars for this closure.
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
self.split().tupled_upvars_ty
}
/// Returns the closure kind for this closure; may return a type
/// variable during inference. To get the closure kind during
/// inference, use `infcx.closure_kind(args)`.
pub fn kind_ty(self) -> Ty<'tcx> {
self.split().closure_kind_ty
}
/// Returns the `fn` pointer type representing the closure signature for this
/// closure.
// FIXME(eddyb) this should be unnecessary, as the shallowly resolved
// type is known at the time of the creation of `ClosureArgs`,
// see `rustc_hir_analysis::check::closure`.
pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
self.split().closure_sig_as_fn_ptr_ty
}
/// Returns the closure kind for this closure; only usable outside
/// of an inference context, because in that context we know that
/// there are no type variables.
///
/// If you have an inference context, use `infcx.closure_kind()`.
pub fn kind(self) -> ty::ClosureKind {
self.kind_ty().to_opt_closure_kind().unwrap()
}
/// Extracts the signature from the closure.
pub fn sig(self) -> ty::PolyFnSig<'tcx> {
match *self.sig_as_fn_ptr_ty().kind() {
ty::FnPtr(sig) => sig,
ty => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {ty:?}"),
}
}
pub fn print_as_impl_trait(self) -> ty::print::PrintClosureAsImpl<'tcx> {
ty::print::PrintClosureAsImpl { closure: self }
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable, Lift)]
pub struct CoroutineClosureArgs<'tcx> {
pub args: GenericArgsRef<'tcx>,
}
/// See docs for explanation of how each argument is used.
///
/// See [`CoroutineClosureSignature`] for how these arguments are put together
/// to make a callable [`FnSig`] suitable for typeck and borrowck.
pub struct CoroutineClosureArgsParts<'tcx> {
/// This is the args of the typeck root.
pub parent_args: &'tcx [GenericArg<'tcx>],
/// Represents the maximum calling capability of the closure.
pub closure_kind_ty: Ty<'tcx>,
/// Represents all of the relevant parts of the coroutine returned by this
/// coroutine-closure. This signature parts type will have the general
/// shape of `fn(tupled_inputs, resume_ty) -> (return_ty, yield_ty)`, where
/// `resume_ty`, `return_ty`, and `yield_ty` are the respective types for the
/// coroutine returned by the coroutine-closure.
///
/// Use `coroutine_closure_sig` to break up this type rather than using it
/// yourself.
pub signature_parts_ty: Ty<'tcx>,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: Ty<'tcx>,
/// a function pointer that has the shape `for<'env> fn() -> (&'env T, ...)`.
/// This allows us to represent the binder of the self-captures of the closure.
///
/// For example, if the coroutine returned by the closure borrows `String`
/// from the closure's upvars, this will be `for<'env> fn() -> (&'env String,)`,
/// while the `tupled_upvars_ty`, representing the by-move version of the same
/// captures, will be `(String,)`.
pub coroutine_captures_by_ref_ty: Ty<'tcx>,
/// Witness type returned by the generator produced by this coroutine-closure.
pub coroutine_witness_ty: Ty<'tcx>,
}
impl<'tcx> CoroutineClosureArgs<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
parts: CoroutineClosureArgsParts<'tcx>,
) -> CoroutineClosureArgs<'tcx> {
CoroutineClosureArgs {
args: tcx.mk_args_from_iter(parts.parent_args.iter().copied().chain([
parts.closure_kind_ty.into(),
parts.signature_parts_ty.into(),
parts.tupled_upvars_ty.into(),
parts.coroutine_captures_by_ref_ty.into(),
parts.coroutine_witness_ty.into(),
])),
}
}
fn split(self) -> CoroutineClosureArgsParts<'tcx> {
match self.args[..] {
[
ref parent_args @ ..,
closure_kind_ty,
signature_parts_ty,
tupled_upvars_ty,
coroutine_captures_by_ref_ty,
coroutine_witness_ty,
] => CoroutineClosureArgsParts {
parent_args,
closure_kind_ty: closure_kind_ty.expect_ty(),
signature_parts_ty: signature_parts_ty.expect_ty(),
tupled_upvars_ty: tupled_upvars_ty.expect_ty(),
coroutine_captures_by_ref_ty: coroutine_captures_by_ref_ty.expect_ty(),
coroutine_witness_ty: coroutine_witness_ty.expect_ty(),
},
_ => bug!("closure args missing synthetics"),
}
}
pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_args
}
#[inline]
pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
match self.tupled_upvars_ty().kind() {
TyKind::Error(_) => ty::List::empty(),
TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
self.split().tupled_upvars_ty
}
pub fn kind_ty(self) -> Ty<'tcx> {
self.split().closure_kind_ty
}
pub fn kind(self) -> ty::ClosureKind {
self.kind_ty().to_opt_closure_kind().unwrap()
}
pub fn signature_parts_ty(self) -> Ty<'tcx> {
self.split().signature_parts_ty
}
pub fn coroutine_closure_sig(self) -> ty::Binder<'tcx, CoroutineClosureSignature<'tcx>> {
let interior = self.coroutine_witness_ty();
let ty::FnPtr(sig) = self.signature_parts_ty().kind() else { bug!() };
sig.map_bound(|sig| {
let [resume_ty, tupled_inputs_ty] = *sig.inputs() else {
bug!();
};
let [yield_ty, return_ty] = **sig.output().tuple_fields() else { bug!() };
CoroutineClosureSignature {
interior,
tupled_inputs_ty,
resume_ty,
yield_ty,
return_ty,
c_variadic: sig.c_variadic,
unsafety: sig.unsafety,
abi: sig.abi,
}
})
}
pub fn coroutine_captures_by_ref_ty(self) -> Ty<'tcx> {
self.split().coroutine_captures_by_ref_ty
}
pub fn coroutine_witness_ty(self) -> Ty<'tcx> {
self.split().coroutine_witness_ty
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)]
pub struct CoroutineClosureSignature<'tcx> {
pub interior: Ty<'tcx>,
pub tupled_inputs_ty: Ty<'tcx>,
pub resume_ty: Ty<'tcx>,
pub yield_ty: Ty<'tcx>,
pub return_ty: Ty<'tcx>,
// Like the `fn_sig_as_fn_ptr_ty` of a regular closure, these types
// never actually differ. But we save them rather than recreating them
// from scratch just for good measure.
/// Always false
pub c_variadic: bool,
/// Always [`hir::Unsafety::Normal`]
pub unsafety: hir::Unsafety,
/// Always [`abi::Abi::RustCall`]
pub abi: abi::Abi,
}
impl<'tcx> CoroutineClosureSignature<'tcx> {
/// Construct a coroutine from the closure signature. Since a coroutine signature
/// is agnostic to the type of generator that is returned (by-ref/by-move),
/// the caller must specify what "flavor" of generator that they'd like to
/// create. Additionally, they must manually compute the upvars of the closure.
///
/// This helper is not really meant to be used directly except for early on
/// during typeck, when we want to put inference vars into the kind and upvars tys.
/// When the kind and upvars are known, use the other helper functions.
pub fn to_coroutine(
self,
tcx: TyCtxt<'tcx>,
parent_args: &'tcx [GenericArg<'tcx>],
coroutine_kind_ty: Ty<'tcx>,
coroutine_def_id: DefId,
tupled_upvars_ty: Ty<'tcx>,
) -> Ty<'tcx> {
let coroutine_args = ty::CoroutineArgs::new(
tcx,
ty::CoroutineArgsParts {
parent_args,
kind_ty: coroutine_kind_ty,
resume_ty: self.resume_ty,
yield_ty: self.yield_ty,
return_ty: self.return_ty,
witness: self.interior,
tupled_upvars_ty,
},
);
Ty::new_coroutine(tcx, coroutine_def_id, coroutine_args.args)
}
/// Given known upvars and a [`ClosureKind`](ty::ClosureKind), compute the coroutine
/// returned by that corresponding async fn trait.
///
/// This function expects the upvars to have been computed already, and doesn't check
/// that the `ClosureKind` is actually supported by the coroutine-closure.
pub fn to_coroutine_given_kind_and_upvars(
self,
tcx: TyCtxt<'tcx>,
parent_args: &'tcx [GenericArg<'tcx>],
coroutine_def_id: DefId,
goal_kind: ty::ClosureKind,
env_region: ty::Region<'tcx>,
closure_tupled_upvars_ty: Ty<'tcx>,
coroutine_captures_by_ref_ty: Ty<'tcx>,
) -> Ty<'tcx> {
let tupled_upvars_ty = Self::tupled_upvars_by_closure_kind(
tcx,
goal_kind,
self.tupled_inputs_ty,
closure_tupled_upvars_ty,
coroutine_captures_by_ref_ty,
env_region,
);
self.to_coroutine(
tcx,
parent_args,
Ty::from_closure_kind(tcx, goal_kind),
coroutine_def_id,
tupled_upvars_ty,
)
}
/// Compute the tupled upvars that a coroutine-closure's output coroutine
/// would return for the given `ClosureKind`.
///
/// When `ClosureKind` is `FnMut`/`Fn`, then this will use the "captures by ref"
/// to return a set of upvars which are borrowed with the given `env_region`.
///
/// This ensures that the `AsyncFn::call` will return a coroutine whose upvars'
/// lifetimes are related to the lifetime of the borrow on the closure made for
/// the call. This allows borrowck to enforce the self-borrows correctly.
pub fn tupled_upvars_by_closure_kind(
tcx: TyCtxt<'tcx>,
kind: ty::ClosureKind,
tupled_inputs_ty: Ty<'tcx>,
closure_tupled_upvars_ty: Ty<'tcx>,
coroutine_captures_by_ref_ty: Ty<'tcx>,
env_region: ty::Region<'tcx>,
) -> Ty<'tcx> {
match kind {
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
let ty::FnPtr(sig) = *coroutine_captures_by_ref_ty.kind() else {
bug!();
};
let coroutine_captures_by_ref_ty = tcx.replace_escaping_bound_vars_uncached(
sig.output().skip_binder(),
FnMutDelegate {
consts: &mut |c, t| ty::Const::new_bound(tcx, ty::INNERMOST, c, t),
types: &mut |t| Ty::new_bound(tcx, ty::INNERMOST, t),
regions: &mut |_| env_region,
},
);
Ty::new_tup_from_iter(
tcx,
tupled_inputs_ty
.tuple_fields()
.iter()
.chain(coroutine_captures_by_ref_ty.tuple_fields()),
)
}
ty::ClosureKind::FnOnce => Ty::new_tup_from_iter(
tcx,
tupled_inputs_ty
.tuple_fields()
.iter()
.chain(closure_tupled_upvars_ty.tuple_fields()),
),
}
}
}
/// Similar to `ClosureArgs`; see the above documentation for more.
#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)]
pub struct CoroutineArgs<'tcx> {
pub args: GenericArgsRef<'tcx>,
}
pub struct CoroutineArgsParts<'tcx> {
/// This is the args of the typeck root.
pub parent_args: &'tcx [GenericArg<'tcx>],
/// The coroutines returned by a coroutine-closure's `AsyncFnOnce`/`AsyncFnMut`
/// implementations must be distinguished since the former takes the closure's
/// upvars by move, and the latter takes the closure's upvars by ref.
///
/// This field distinguishes these fields so that codegen can select the right
/// body for the coroutine. This has the same type representation as the closure
/// kind: `i8`/`i16`/`i32`.
///
/// For regular coroutines, this field will always just be `()`.
pub kind_ty: Ty<'tcx>,
pub resume_ty: Ty<'tcx>,
pub yield_ty: Ty<'tcx>,
pub return_ty: Ty<'tcx>,
/// The interior type of the coroutine.
/// Represents all types that are stored in locals
/// in the coroutine's body.
pub witness: Ty<'tcx>,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: Ty<'tcx>,
}
impl<'tcx> CoroutineArgs<'tcx> {
/// Construct `CoroutineArgs` from `CoroutineArgsParts`, containing `Args`
/// for the coroutine parent, alongside additional coroutine-specific components.
pub fn new(tcx: TyCtxt<'tcx>, parts: CoroutineArgsParts<'tcx>) -> CoroutineArgs<'tcx> {
CoroutineArgs {
args: tcx.mk_args_from_iter(parts.parent_args.iter().copied().chain([
parts.kind_ty.into(),
parts.resume_ty.into(),
parts.yield_ty.into(),
parts.return_ty.into(),
parts.witness.into(),
parts.tupled_upvars_ty.into(),
])),
}
}
/// Divides the coroutine args into their respective components.
/// The ordering assumed here must match that used by `CoroutineArgs::new` above.
fn split(self) -> CoroutineArgsParts<'tcx> {
match self.args[..] {
[
ref parent_args @ ..,
kind_ty,
resume_ty,
yield_ty,
return_ty,
witness,
tupled_upvars_ty,
] => CoroutineArgsParts {
parent_args,
kind_ty: kind_ty.expect_ty(),
resume_ty: resume_ty.expect_ty(),
yield_ty: yield_ty.expect_ty(),
return_ty: return_ty.expect_ty(),
witness: witness.expect_ty(),
tupled_upvars_ty: tupled_upvars_ty.expect_ty(),
},
_ => bug!("coroutine args missing synthetics"),
}
}
/// Returns the generic parameters of the coroutine's parent.
pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_args
}
// Returns the kind of the coroutine. See docs on the `kind_ty` field.
pub fn kind_ty(self) -> Ty<'tcx> {
self.split().kind_ty
}
/// This describes the types that can be contained in a coroutine.
/// It will be a type variable initially and unified in the last stages of typeck of a body.
/// It contains a tuple of all the types that could end up on a coroutine frame.
/// The state transformation MIR pass may only produce layouts which mention types
/// in this tuple. Upvars are not counted here.
pub fn witness(self) -> Ty<'tcx> {
self.split().witness
}
/// Returns an iterator over the list of types of captured paths by the coroutine.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
match *self.tupled_upvars_ty().kind() {
TyKind::Error(_) => ty::List::empty(),
TyKind::Tuple(tys) => tys,
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
/// Returns the tuple type representing the upvars for this coroutine.
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
self.split().tupled_upvars_ty
}
/// Returns the type representing the resume type of the coroutine.
pub fn resume_ty(self) -> Ty<'tcx> {
self.split().resume_ty
}
/// Returns the type representing the yield type of the coroutine.
pub fn yield_ty(self) -> Ty<'tcx> {
self.split().yield_ty
}
/// Returns the type representing the return type of the coroutine.
pub fn return_ty(self) -> Ty<'tcx> {
self.split().return_ty
}
/// Returns the "coroutine signature", which consists of its resume, yield
/// and return types.
pub fn sig(self) -> GenSig<'tcx> {
let parts = self.split();
ty::GenSig {
resume_ty: parts.resume_ty,
yield_ty: parts.yield_ty,
return_ty: parts.return_ty,
}
}
}
impl<'tcx> CoroutineArgs<'tcx> {
/// Coroutine has not been resumed yet.
pub const UNRESUMED: usize = 0;
/// Coroutine has returned or is completed.
pub const RETURNED: usize = 1;
/// Coroutine has been poisoned.
pub const POISONED: usize = 2;
const UNRESUMED_NAME: &'static str = "Unresumed";
const RETURNED_NAME: &'static str = "Returned";
const POISONED_NAME: &'static str = "Panicked";
/// The valid variant indices of this coroutine.
#[inline]
pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
// FIXME requires optimized MIR
FIRST_VARIANT..tcx.coroutine_layout(def_id).unwrap().variant_fields.next_index()
}
/// The discriminant for the given variant. Panics if the `variant_index` is
/// out of range.
#[inline]
pub fn discriminant_for_variant(
&self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Discr<'tcx> {
// Coroutines don't support explicit discriminant values, so they are
// the same as the variant index.
assert!(self.variant_range(def_id, tcx).contains(&variant_index));
Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
}
/// The set of all discriminants for the coroutine, enumerated with their
/// variant indices.
#[inline]
pub fn discriminants(
self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
self.variant_range(def_id, tcx).map(move |index| {
(index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
})
}
/// Calls `f` with a reference to the name of the enumerator for the given
/// variant `v`.
pub fn variant_name(v: VariantIdx) -> Cow<'static, str> {
match v.as_usize() {
Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
Self::RETURNED => Cow::from(Self::RETURNED_NAME),
Self::POISONED => Cow::from(Self::POISONED_NAME),
_ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
}
}
/// The type of the state discriminant used in the coroutine type.
#[inline]
pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.types.u32
}
/// This returns the types of the MIR locals which had to be stored across suspension points.
/// It is calculated in rustc_mir_transform::coroutine::StateTransform.
/// All the types here must be in the tuple in CoroutineInterior.
///
/// The locals are grouped by their variant number. Note that some locals may
/// be repeated in multiple variants.
#[inline]
pub fn state_tys(
self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
let layout = tcx.coroutine_layout(def_id).unwrap();
layout.variant_fields.iter().map(move |variant| {
variant.iter().map(move |field| {
ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
})
})
}
/// This is the types of the fields of a coroutine which are not stored in a
/// variant.
#[inline]
pub fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
self.upvar_tys()
}
}
#[derive(Debug, Copy, Clone, HashStable)]
pub enum UpvarArgs<'tcx> {
Closure(GenericArgsRef<'tcx>),
Coroutine(GenericArgsRef<'tcx>),
CoroutineClosure(GenericArgsRef<'tcx>),
}
impl<'tcx> UpvarArgs<'tcx> {
/// Returns an iterator over the list of types of captured paths by the closure/coroutine.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
let tupled_tys = match self {
UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
};
match tupled_tys.kind() {
TyKind::Error(_) => ty::List::empty(),
TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
match self {
UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
}
}
}
/// An inline const is modeled like
/// ```ignore (illustrative)
/// const InlineConst<'l0...'li, T0...Tj, R>: R;
/// ```
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
/// inherited from the item that defined the inline const,
/// - R represents the type of the constant.
///
/// When the inline const is instantiated, `R` is instantiated as the actual inferred
/// type of the constant. The reason that `R` is represented as an extra type parameter
/// is the same reason that [`ClosureArgs`] have `CS` and `U` as type parameters:
/// inline const can reference lifetimes that are internal to the creating function.
#[derive(Copy, Clone, Debug)]
pub struct InlineConstArgs<'tcx> {
/// Generic parameters from the enclosing item,
/// concatenated with the inferred type of the constant.
pub args: GenericArgsRef<'tcx>,
}
/// Struct returned by `split()`.
pub struct InlineConstArgsParts<'tcx, T> {
pub parent_args: &'tcx [GenericArg<'tcx>],
pub ty: T,
}
impl<'tcx> InlineConstArgs<'tcx> {
/// Construct `InlineConstArgs` from `InlineConstArgsParts`.
pub fn new(
tcx: TyCtxt<'tcx>,
parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
) -> InlineConstArgs<'tcx> {
InlineConstArgs {
args: tcx.mk_args_from_iter(
parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
),
}
}
/// Divides the inline const args into their respective components.
/// The ordering assumed here must match that used by `InlineConstArgs::new` above.
fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
match self.args[..] {
[ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
_ => bug!("inline const args missing synthetics"),
}
}
/// Returns the generic parameters of the inline const's parent.
pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_args
}
/// Returns the type of this inline const.
pub fn ty(self) -> Ty<'tcx> {
self.split().ty.expect_ty()
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum BoundVariableKind {
Ty(BoundTyKind),
Region(BoundRegionKind),
Const,
}
impl BoundVariableKind {
pub fn expect_region(self) -> BoundRegionKind {
match self {
BoundVariableKind::Region(lt) => lt,
_ => bug!("expected a region, but found another kind"),
}
}
pub fn expect_ty(self) -> BoundTyKind {
match self {
BoundVariableKind::Ty(ty) => ty,
_ => bug!("expected a type, but found another kind"),
}
}
pub fn expect_const(self) {
match self {
BoundVariableKind::Const => (),
_ => bug!("expected a const, but found another kind"),
}
}
}
/// Binder is a binder for higher-ranked lifetimes or types. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<'tcx, TraitRef>`). Note that when we instantiate,
/// erase, or otherwise "discharge" these bound vars, we change the
/// type from `Binder<'tcx, T>` to just `T` (see
/// e.g., `liberate_late_bound_regions`).
///
/// `Decodable` and `Encodable` are implemented for `Binder<T>` using the `impl_binder_encode_decode!` macro.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(HashStable, Lift)]
pub struct Binder<'tcx, T> {
value: T,
bound_vars: &'tcx List<BoundVariableKind>,
}
impl<'tcx, T> Binder<'tcx, T>
where
T: TypeVisitable<TyCtxt<'tcx>>,
{
/// Wraps `value` in a binder, asserting that `value` does not
/// contain any bound vars that would be bound by the
/// binder. This is commonly used to 'inject' a value T into a
/// different binding level.
#[track_caller]
pub fn dummy(value: T) -> Binder<'tcx, T> {
assert!(
!value.has_escaping_bound_vars(),
"`{value:?}` has escaping bound vars, so it cannot be wrapped in a dummy binder."
);
Binder { value, bound_vars: ty::List::empty() }
}
pub fn bind_with_vars(value: T, bound_vars: &'tcx List<BoundVariableKind>) -> Binder<'tcx, T> {
if cfg!(debug_assertions) {
let mut validator = ValidateBoundVars::new(bound_vars);
value.visit_with(&mut validator);
}
Binder { value, bound_vars }
}
}
impl<'tcx, T> rustc_type_ir::BoundVars<TyCtxt<'tcx>> for ty::Binder<'tcx, T> {
fn bound_vars(&self) -> &'tcx List<ty::BoundVariableKind> {
self.bound_vars
}
fn has_no_bound_vars(&self) -> bool {
self.bound_vars.is_empty()
}
}
impl<'tcx, T> Binder<'tcx, T> {
/// Skips the binder and returns the "bound" value. This is a
/// risky thing to do because it's easy to get confused about
/// De Bruijn indices and the like. It is usually better to
/// discharge the binder using `no_bound_vars` or
/// `instantiate_bound_regions` or something like
/// that. `skip_binder` is only valid when you are either
/// extracting data that has nothing to do with bound vars, you
/// are doing some sort of test that does not involve bound
/// regions, or you are being very careful about your depth
/// accounting.
///
/// Some examples where `skip_binder` is reasonable:
///
/// - extracting the `DefId` from a PolyTraitRef;
/// - comparing the self type of a PolyTraitRef to see if it is equal to
/// a type parameter `X`, since the type `X` does not reference any regions
pub fn skip_binder(self) -> T {
self.value
}
pub fn bound_vars(&self) -> &'tcx List<BoundVariableKind> {
self.bound_vars
}
pub fn as_ref(&self) -> Binder<'tcx, &T> {
Binder { value: &self.value, bound_vars: self.bound_vars }
}
pub fn as_deref(&self) -> Binder<'tcx, &T::Target>
where
T: Deref,
{
Binder { value: &self.value, bound_vars: self.bound_vars }
}
pub fn map_bound_ref_unchecked<F, U>(&self, f: F) -> Binder<'tcx, U>
where
F: FnOnce(&T) -> U,
{
let value = f(&self.value);
Binder { value, bound_vars: self.bound_vars }
}
pub fn map_bound_ref<F, U: TypeVisitable<TyCtxt<'tcx>>>(&self, f: F) -> Binder<'tcx, U>
where
F: FnOnce(&T) -> U,
{
self.as_ref().map_bound(f)
}
pub fn map_bound<F, U: TypeVisitable<TyCtxt<'tcx>>>(self, f: F) -> Binder<'tcx, U>
where
F: FnOnce(T) -> U,
{
let Binder { value, bound_vars } = self;
let value = f(value);
if cfg!(debug_assertions) {
let mut validator = ValidateBoundVars::new(bound_vars);
value.visit_with(&mut validator);
}
Binder { value, bound_vars }
}
pub fn try_map_bound<F, U: TypeVisitable<TyCtxt<'tcx>>, E>(
self,
f: F,
) -> Result<Binder<'tcx, U>, E>
where
F: FnOnce(T) -> Result<U, E>,
{
let Binder { value, bound_vars } = self;
let value = f(value)?;
if cfg!(debug_assertions) {
let mut validator = ValidateBoundVars::new(bound_vars);
value.visit_with(&mut validator);
}
Ok(Binder { value, bound_vars })
}
/// Wraps a `value` in a binder, using the same bound variables as the
/// current `Binder`. This should not be used if the new value *changes*
/// the bound variables. Note: the (old or new) value itself does not
/// necessarily need to *name* all the bound variables.
///
/// This currently doesn't do anything different than `bind`, because we
/// don't actually track bound vars. However, semantically, it is different
/// because bound vars aren't allowed to change here, whereas they are
/// in `bind`. This may be (debug) asserted in the future.
pub fn rebind<U>(&self, value: U) -> Binder<'tcx, U>
where
U: TypeVisitable<TyCtxt<'tcx>>,
{
Binder::bind_with_vars(value, self.bound_vars)
}
/// Unwraps and returns the value within, but only if it contains
/// no bound vars at all. (In other words, if this binder --
/// and indeed any enclosing binder -- doesn't bind anything at
/// all.) Otherwise, returns `None`.
///
/// (One could imagine having a method that just unwraps a single
/// binder, but permits late-bound vars bound by enclosing
/// binders, but that would require adjusting the debruijn
/// indices, and given the shallow binding structure we often use,
/// would not be that useful.)
pub fn no_bound_vars(self) -> Option<T>
where
T: TypeVisitable<TyCtxt<'tcx>>,
{
// `self.value` is equivalent to `self.skip_binder()`
if self.value.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
}
/// Splits the contents into two things that share the same binder
/// level as the original, returning two distinct binders.
///
/// `f` should consider bound regions at depth 1 to be free, and
/// anything it produces with bound regions at depth 1 will be
/// bound in the resulting return values.
pub fn split<U, V, F>(self, f: F) -> (Binder<'tcx, U>, Binder<'tcx, V>)
where
F: FnOnce(T) -> (U, V),
{
let Binder { value, bound_vars } = self;
let (u, v) = f(value);
(Binder { value: u, bound_vars }, Binder { value: v, bound_vars })
}
}
impl<'tcx, T> Binder<'tcx, Option<T>> {
pub fn transpose(self) -> Option<Binder<'tcx, T>> {
let Binder { value, bound_vars } = self;
value.map(|value| Binder { value, bound_vars })
}
}
impl<'tcx, T: IntoIterator> Binder<'tcx, T> {
pub fn iter(self) -> impl Iterator<Item = ty::Binder<'tcx, T::Item>> {
let Binder { value, bound_vars } = self;
value.into_iter().map(|value| Binder { value, bound_vars })
}
}
impl<'tcx, T> IntoDiagArg for Binder<'tcx, T>
where
T: IntoDiagArg,
{
fn into_diag_arg(self) -> DiagArgValue {
self.value.into_diag_arg()
}
}
/// Represents the projection of an associated type.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct AliasTy<'tcx> {
/// The parameters of the associated or opaque item.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: GenericArgsRef<'tcx>,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `tcx.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `tcx.associated_item(def_id).container`,
/// aka. `tcx.parent(def_id)`.
pub def_id: DefId,
/// This field exists to prevent the creation of `AliasTy` without using
/// [AliasTy::new].
_use_alias_ty_new_instead: (),
}
impl<'tcx> AliasTy<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> ty::AliasTy<'tcx> {
let args = tcx.check_and_mk_args(def_id, args);
ty::AliasTy { def_id, args, _use_alias_ty_new_instead: () }
}
pub fn kind(self, tcx: TyCtxt<'tcx>) -> ty::AliasKind {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy
if let DefKind::Impl { of_trait: false } =
tcx.def_kind(tcx.parent(self.def_id)) =>
{
ty::Inherent
}
DefKind::AssocTy => ty::Projection,
DefKind::OpaqueTy => ty::Opaque,
DefKind::TyAlias => ty::Weak,
kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
}
}
/// Whether this alias type is an opaque.
pub fn is_opaque(self, tcx: TyCtxt<'tcx>) -> bool {
matches!(self.opt_kind(tcx), Some(ty::Opaque))
}
/// FIXME: rename `AliasTy` to `AliasTerm` and always handle
/// constants. This function can then be removed.
pub fn opt_kind(self, tcx: TyCtxt<'tcx>) -> Option<ty::AliasKind> {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy
if let DefKind::Impl { of_trait: false } =
tcx.def_kind(tcx.parent(self.def_id)) =>
{
Some(ty::Inherent)
}
DefKind::AssocTy => Some(ty::Projection),
DefKind::OpaqueTy => Some(ty::Opaque),
DefKind::TyAlias => Some(ty::Weak),
_ => None,
}
}
pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
Ty::new_alias(tcx, self.kind(tcx), self)
}
}
/// The following methods work only with associated type projections.
impl<'tcx> AliasTy<'tcx> {
pub fn self_ty(self) -> Ty<'tcx> {
self.args.type_at(0)
}
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
AliasTy::new(tcx, self.def_id, [self_ty.into()].into_iter().chain(self.args.iter().skip(1)))
}
}
/// The following methods work only with trait associated type projections.
impl<'tcx> AliasTy<'tcx> {
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy | DefKind::AssocConst => tcx.parent(self.def_id),
kind => bug!("expected a projection AliasTy; found {kind:?}"),
}
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and `['a]` as the own args
pub fn trait_ref_and_own_args(
self,
tcx: TyCtxt<'tcx>,
) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
debug_assert!(matches!(tcx.def_kind(self.def_id), DefKind::AssocTy | DefKind::AssocConst));
let trait_def_id = self.trait_def_id(tcx);
let trait_generics = tcx.generics_of(trait_def_id);
(
ty::TraitRef::new(tcx, trait_def_id, self.args.truncate_to(tcx, trait_generics)),
&self.args[trait_generics.count()..],
)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
let def_id = self.trait_def_id(tcx);
ty::TraitRef::new(tcx, def_id, self.args.truncate_to(tcx, tcx.generics_of(def_id)))
}
}
/// The following methods work only with inherent associated type projections.
impl<'tcx> AliasTy<'tcx> {
/// Transform the generic parameters to have the given `impl` args as the base and the GAT args on top of that.
///
/// Does the following transformation:
///
/// ```text
/// [Self, P_0...P_m] -> [I_0...I_n, P_0...P_m]
///
/// I_i impl args
/// P_j GAT args
/// ```
pub fn rebase_inherent_args_onto_impl(
self,
impl_args: ty::GenericArgsRef<'tcx>,
tcx: TyCtxt<'tcx>,
) -> ty::GenericArgsRef<'tcx> {
debug_assert_eq!(self.kind(tcx), ty::Inherent);
tcx.mk_args_from_iter(impl_args.into_iter().chain(self.args.into_iter().skip(1)))
}
}
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
pub struct GenSig<'tcx> {
pub resume_ty: Ty<'tcx>,
pub yield_ty: Ty<'tcx>,
pub return_ty: Ty<'tcx>,
}
/// Signature of a function type, which we have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs`: is the list of arguments and their modes.
/// - `output`: is the return type.
/// - `c_variadic`: indicates whether this is a C-variadic function.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct FnSig<'tcx> {
pub inputs_and_output: &'tcx List<Ty<'tcx>>,
pub c_variadic: bool,
pub unsafety: hir::Unsafety,
pub abi: abi::Abi,
}
impl<'tcx> FnSig<'tcx> {
pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
&self.inputs_and_output[..self.inputs_and_output.len() - 1]
}
pub fn output(&self) -> Ty<'tcx> {
self.inputs_and_output[self.inputs_and_output.len() - 1]
}
// Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
// method.
fn fake() -> FnSig<'tcx> {
FnSig {
inputs_and_output: List::empty(),
c_variadic: false,
unsafety: hir::Unsafety::Normal,
abi: abi::Abi::Rust,
}
}
}
impl<'tcx> IntoDiagArg for FnSig<'tcx> {
fn into_diag_arg(self) -> DiagArgValue {
self.to_string().into_diag_arg()
}
}
pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
impl<'tcx> PolyFnSig<'tcx> {
#[inline]
pub fn inputs(&self) -> Binder<'tcx, &'tcx [Ty<'tcx>]> {
self.map_bound_ref_unchecked(|fn_sig| fn_sig.inputs())
}
#[inline]
#[track_caller]
pub fn input(&self, index: usize) -> ty::Binder<'tcx, Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
}
pub fn inputs_and_output(&self) -> ty::Binder<'tcx, &'tcx List<Ty<'tcx>>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
}
#[inline]
pub fn output(&self) -> ty::Binder<'tcx, Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.output())
}
pub fn c_variadic(&self) -> bool {
self.skip_binder().c_variadic
}
pub fn unsafety(&self) -> hir::Unsafety {
self.skip_binder().unsafety
}
pub fn abi(&self) -> abi::Abi {
self.skip_binder().abi
}
pub fn is_fn_trait_compatible(&self) -> bool {
matches!(
self.skip_binder(),
ty::FnSig {
unsafety: rustc_hir::Unsafety::Normal,
abi: Abi::Rust,
c_variadic: false,
..
}
)
}
}
pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct ParamTy {
pub index: u32,
pub name: Symbol,
}
impl<'tcx> ParamTy {
pub fn new(index: u32, name: Symbol) -> ParamTy {
ParamTy { index, name }
}
pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
ParamTy::new(def.index, def.name)
}
#[inline]
pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
Ty::new_param(tcx, self.index, self.name)
}
pub fn span_from_generics(&self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
let generics = tcx.generics_of(item_with_generics);
let type_param = generics.type_param(self, tcx);
tcx.def_span(type_param.def_id)
}
}
#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
#[derive(HashStable)]
pub struct ParamConst {
pub index: u32,
pub name: Symbol,
}
impl ParamConst {
pub fn new(index: u32, name: Symbol) -> ParamConst {
ParamConst { index, name }
}
pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
ParamConst::new(def.index, def.name)
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct BoundTy {
pub var: BoundVar,
pub kind: BoundTyKind,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum BoundTyKind {
Anon,
Param(DefId, Symbol),
}
impl From<BoundVar> for BoundTy {
fn from(var: BoundVar) -> Self {
BoundTy { var, kind: BoundTyKind::Anon }
}
}
/// Constructors for `Ty`
impl<'tcx> Ty<'tcx> {
/// Avoid using this in favour of more specific `new_*` methods, where possible.
/// The more specific methods will often optimize their creation.
#[allow(rustc::usage_of_ty_tykind)]
#[inline]
pub fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
tcx.mk_ty_from_kind(st)
}
#[inline]
pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
Ty::new(tcx, TyKind::Infer(infer))
}
#[inline]
pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
// Use a pre-interned one when possible.
tcx.types
.ty_vars
.get(v.as_usize())
.copied()
.unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
}
#[inline]
pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
Ty::new_infer(tcx, IntVar(v))
}
#[inline]
pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
Ty::new_infer(tcx, FloatVar(v))
}
#[inline]
pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
// Use a pre-interned one when possible.
tcx.types
.fresh_tys
.get(n as usize)
.copied()
.unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
}
#[inline]
pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
// Use a pre-interned one when possible.
tcx.types
.fresh_int_tys
.get(n as usize)
.copied()
.unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
}
#[inline]
pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
// Use a pre-interned one when possible.
tcx.types
.fresh_float_tys
.get(n as usize)
.copied()
.unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
}
#[inline]
pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
tcx.mk_ty_from_kind(Param(ParamTy { index, name }))
}
#[inline]
pub fn new_bound(
tcx: TyCtxt<'tcx>,
index: ty::DebruijnIndex,
bound_ty: ty::BoundTy,
) -> Ty<'tcx> {
Ty::new(tcx, Bound(index, bound_ty))
}
#[inline]
pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> {
Ty::new(tcx, Placeholder(placeholder))
}
#[inline]
pub fn new_alias(
tcx: TyCtxt<'tcx>,
kind: ty::AliasKind,
alias_ty: ty::AliasTy<'tcx>,
) -> Ty<'tcx> {
debug_assert_matches!(
(kind, tcx.def_kind(alias_ty.def_id)),
(ty::Opaque, DefKind::OpaqueTy)
| (ty::Projection | ty::Inherent, DefKind::AssocTy)
| (ty::Weak, DefKind::TyAlias)
);
Ty::new(tcx, Alias(kind, alias_ty))
}
#[inline]
pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
Ty::new_alias(tcx, ty::Opaque, AliasTy::new(tcx, def_id, args))
}
/// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
Ty::new(tcx, Error(guar))
}
/// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
#[track_caller]
pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
}
/// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
/// ensure it gets used.
#[track_caller]
pub fn new_error_with_message<S: Into<MultiSpan>>(
tcx: TyCtxt<'tcx>,
span: S,
msg: impl Into<Cow<'static, str>>,
) -> Ty<'tcx> {
let reported = tcx.dcx().span_delayed_bug(span, msg);
Ty::new(tcx, Error(reported))
}
#[inline]
pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
use ty::IntTy::*;
match i {
Isize => tcx.types.isize,
I8 => tcx.types.i8,
I16 => tcx.types.i16,
I32 => tcx.types.i32,
I64 => tcx.types.i64,
I128 => tcx.types.i128,
}
}
#[inline]
pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
use ty::UintTy::*;
match ui {
Usize => tcx.types.usize,
U8 => tcx.types.u8,
U16 => tcx.types.u16,
U32 => tcx.types.u32,
U64 => tcx.types.u64,
U128 => tcx.types.u128,
}
}
#[inline]
pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
use ty::FloatTy::*;
match f {
F16 => tcx.types.f16,
F32 => tcx.types.f32,
F64 => tcx.types.f64,
F128 => tcx.types.f128,
}
}
#[inline]
pub fn new_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, tm: TypeAndMut<'tcx>) -> Ty<'tcx> {
Ty::new(tcx, Ref(r, tm.ty, tm.mutbl))
}
#[inline]
pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
Ty::new_ref(tcx, r, TypeAndMut { ty, mutbl: hir::Mutability::Mut })
}
#[inline]
pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
Ty::new_ref(tcx, r, TypeAndMut { ty, mutbl: hir::Mutability::Not })
}
#[inline]
pub fn new_ptr(tcx: TyCtxt<'tcx>, tm: TypeAndMut<'tcx>) -> Ty<'tcx> {
Ty::new(tcx, RawPtr(tm))
}
#[inline]
pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
Ty::new_ptr(tcx, TypeAndMut { ty, mutbl: hir::Mutability::Mut })
}
#[inline]
pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
Ty::new_ptr(tcx, TypeAndMut { ty, mutbl: hir::Mutability::Not })
}
#[inline]
pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
Ty::new(tcx, Adt(def, args))
}
#[inline]
pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
Ty::new(tcx, Foreign(def_id))
}
#[inline]
pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
}
#[inline]
pub fn new_array_with_const_len(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
ct: ty::Const<'tcx>,
) -> Ty<'tcx> {
Ty::new(tcx, Array(ty, ct))
}
#[inline]
pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
Ty::new(tcx, Slice(ty))
}
#[inline]
pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
}
pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
where
I: Iterator<Item = T>,
T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
{
T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
}
#[inline]
pub fn new_fn_def(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> Ty<'tcx> {
let args = tcx.check_and_mk_args(def_id, args);
Ty::new(tcx, FnDef(def_id, args))
}
#[inline]
pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
Ty::new(tcx, FnPtr(fty))
}
#[inline]
pub fn new_dynamic(
tcx: TyCtxt<'tcx>,
obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
reg: ty::Region<'tcx>,
repr: DynKind,
) -> Ty<'tcx> {
Ty::new(tcx, Dynamic(obj, reg, repr))
}
#[inline]
pub fn new_projection(
tcx: TyCtxt<'tcx>,
item_def_id: DefId,
args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> Ty<'tcx> {
Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
}
#[inline]
pub fn new_closure(
tcx: TyCtxt<'tcx>,
def_id: DefId,
closure_args: GenericArgsRef<'tcx>,
) -> Ty<'tcx> {
debug_assert_eq!(
closure_args.len(),
tcx.generics_of(tcx.typeck_root_def_id(def_id)).count() + 3,
"closure constructed with incorrect generic parameters"
);
Ty::new(tcx, Closure(def_id, closure_args))
}
#[inline]
pub fn new_coroutine_closure(
tcx: TyCtxt<'tcx>,
def_id: DefId,
closure_args: GenericArgsRef<'tcx>,
) -> Ty<'tcx> {
debug_assert_eq!(
closure_args.len(),
tcx.generics_of(tcx.typeck_root_def_id(def_id)).count() + 5,
"closure constructed with incorrect generic parameters"
);
Ty::new(tcx, CoroutineClosure(def_id, closure_args))
}
#[inline]
pub fn new_coroutine(
tcx: TyCtxt<'tcx>,
def_id: DefId,
coroutine_args: GenericArgsRef<'tcx>,
) -> Ty<'tcx> {
debug_assert_eq!(
coroutine_args.len(),
tcx.generics_of(tcx.typeck_root_def_id(def_id)).count() + 6,
"coroutine constructed with incorrect number of generic parameters"
);
Ty::new(tcx, Coroutine(def_id, coroutine_args))
}
#[inline]
pub fn new_coroutine_witness(
tcx: TyCtxt<'tcx>,
id: DefId,
args: GenericArgsRef<'tcx>,
) -> Ty<'tcx> {
Ty::new(tcx, CoroutineWitness(id, args))
}
// misc
#[inline]
pub fn new_unit(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.types.unit
}
#[inline]
pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
}
#[inline]
pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
if tcx.features().never_type_fallback { tcx.types.never } else { tcx.types.unit }
}
// lang and diagnostic tys
fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
let adt_def = tcx.adt_def(wrapper_def_id);
let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(),
GenericParamDefKind::Type { has_default, .. } => {
if param.index == 0 {
ty_param.into()
} else {
assert!(has_default);
tcx.type_of(param.def_id).instantiate(tcx, args).into()
}
}
});
Ty::new(tcx, Adt(adt_def, args))
}
#[inline]
pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
let def_id = tcx.lang_items().get(item)?;
Some(Ty::new_generic_adt(tcx, def_id, ty))
}
#[inline]
pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
let def_id = tcx.get_diagnostic_item(name)?;
Some(Ty::new_generic_adt(tcx, def_id, ty))
}
#[inline]
pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let def_id = tcx.require_lang_item(LangItem::OwnedBox, None);
Ty::new_generic_adt(tcx, def_id, ty)
}
#[inline]
pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let def_id = tcx.require_lang_item(LangItem::MaybeUninit, None);
Ty::new_generic_adt(tcx, def_id, ty)
}
/// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
let context_did = tcx.require_lang_item(LangItem::Context, None);
let context_adt_ref = tcx.adt_def(context_did);
let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
}
}
impl<'tcx> rustc_type_ir::new::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
}
}
/// Type utilities
impl<'tcx> Ty<'tcx> {
#[inline(always)]
pub fn kind(self) -> &'tcx TyKind<'tcx> {
self.0.0
}
// FIXME(compiler-errors): Think about removing this.
#[inline(always)]
pub fn flags(self) -> TypeFlags {
self.0.0.flags
}
#[inline]
pub fn is_unit(self) -> bool {
match self.kind() {
Tuple(tys) => tys.is_empty(),
_ => false,
}
}
#[inline]
pub fn is_never(self) -> bool {
matches!(self.kind(), Never)
}
#[inline]
pub fn is_primitive(self) -> bool {
self.kind().is_primitive()
}
#[inline]
pub fn is_adt(self) -> bool {
matches!(self.kind(), Adt(..))
}
#[inline]
pub fn is_ref(self) -> bool {
matches!(self.kind(), Ref(..))
}
#[inline]
pub fn is_ty_var(self) -> bool {
matches!(self.kind(), Infer(TyVar(_)))
}
#[inline]
pub fn ty_vid(self) -> Option<ty::TyVid> {
match self.kind() {
&Infer(TyVar(vid)) => Some(vid),
_ => None,
}
}
#[inline]
pub fn is_ty_or_numeric_infer(self) -> bool {
matches!(self.kind(), Infer(_))
}
#[inline]
pub fn is_phantom_data(self) -> bool {
if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
}
#[inline]
pub fn is_bool(self) -> bool {
*self.kind() == Bool
}
/// Returns `true` if this type is a `str`.
#[inline]
pub fn is_str(self) -> bool {
*self.kind() == Str
}
#[inline]
pub fn is_param(self, index: u32) -> bool {
match self.kind() {
ty::Param(ref data) => data.index == index,
_ => false,
}
}
#[inline]
pub fn is_slice(self) -> bool {
matches!(self.kind(), Slice(_))
}
#[inline]
pub fn is_array_slice(self) -> bool {
match self.kind() {
Slice(_) => true,
RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
_ => false,
}
}
#[inline]
pub fn is_array(self) -> bool {
matches!(self.kind(), Array(..))
}
#[inline]
pub fn is_simd(self) -> bool {
match self.kind() {
Adt(def, _) => def.repr().simd(),
_ => false,
}
}
pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
Array(ty, _) | Slice(ty) => *ty,
Str => tcx.types.u8,
_ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
}
}
pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
match self.kind() {
Adt(def, args) => {
assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
let variant = def.non_enum_variant();
let f0_ty = variant.fields[FieldIdx::from_u32(0)].ty(tcx, args);
match f0_ty.kind() {
// If the first field is an array, we assume it is the only field and its
// elements are the SIMD components.
Array(f0_elem_ty, f0_len) => {
// FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
// The way we evaluate the `N` in `[T; N]` here only works since we use
// `simd_size_and_type` post-monomorphization. It will probably start to ICE
// if we use it in generic code. See the `simd-array-trait` ui test.
(f0_len.eval_target_usize(tcx, ParamEnv::empty()), *f0_elem_ty)
}
// Otherwise, the fields of this Adt are the SIMD components (and we assume they
// all have the same type).
_ => (variant.fields.len() as u64, f0_ty),
}
}
_ => bug!("`simd_size_and_type` called on invalid type"),
}
}
#[inline]
pub fn is_mutable_ptr(self) -> bool {
matches!(
self.kind(),
RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
| Ref(_, _, hir::Mutability::Mut)
)
}
/// Get the mutability of the reference or `None` when not a reference
#[inline]
pub fn ref_mutability(self) -> Option<hir::Mutability> {
match self.kind() {
Ref(_, _, mutability) => Some(*mutability),
_ => None,
}
}
#[inline]
pub fn is_unsafe_ptr(self) -> bool {
matches!(self.kind(), RawPtr(_))
}
/// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
#[inline]
pub fn is_any_ptr(self) -> bool {
self.is_ref() || self.is_unsafe_ptr() || self.is_fn_ptr()
}
#[inline]
pub fn is_box(self) -> bool {
match self.kind() {
Adt(def, _) => def.is_box(),
_ => false,
}
}
/// Tests whether this is a Box using the global allocator.
#[inline]
pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
match self.kind() {
Adt(def, args) if def.is_box() => {
let Some(alloc) = args.get(1) else {
// Single-argument Box is always global. (for "minicore" tests)
return true;
};
alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
let global_alloc = tcx.require_lang_item(LangItem::GlobalAlloc, None);
alloc_adt.did() == global_alloc
})
}
_ => false,
}
}
/// Panics if called on any type other than `Box<T>`.
pub fn boxed_ty(self) -> Ty<'tcx> {
match self.kind() {
Adt(def, args) if def.is_box() => args.type_at(0),
_ => bug!("`boxed_ty` is called on non-box type {:?}", self),
}
}
/// A scalar type is one that denotes an atomic datum, with no sub-components.
/// (A RawPtr is scalar because it represents a non-managed pointer, so its
/// contents are abstract to rustc.)
#[inline]
pub fn is_scalar(self) -> bool {
matches!(
self.kind(),
Bool | Char
| Int(_)
| Float(_)
| Uint(_)
| FnDef(..)
| FnPtr(_)
| RawPtr(_)
| Infer(IntVar(_) | FloatVar(_))
)
}
/// Returns `true` if this type is a floating point type.
#[inline]
pub fn is_floating_point(self) -> bool {
matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
}
#[inline]
pub fn is_trait(self) -> bool {
matches!(self.kind(), Dynamic(_, _, ty::Dyn))
}
#[inline]
pub fn is_dyn_star(self) -> bool {
matches!(self.kind(), Dynamic(_, _, ty::DynStar))
}
#[inline]
pub fn is_enum(self) -> bool {
matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
}
#[inline]
pub fn is_union(self) -> bool {
matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
}
#[inline]
pub fn is_closure(self) -> bool {
matches!(self.kind(), Closure(..))
}
#[inline]
pub fn is_coroutine(self) -> bool {
matches!(self.kind(), Coroutine(..))
}
#[inline]
pub fn is_coroutine_closure(self) -> bool {
matches!(self.kind(), CoroutineClosure(..))
}
#[inline]
pub fn is_integral(self) -> bool {
matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
}
#[inline]
pub fn is_fresh_ty(self) -> bool {
matches!(self.kind(), Infer(FreshTy(_)))
}
#[inline]
pub fn is_fresh(self) -> bool {
matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
}
#[inline]
pub fn is_char(self) -> bool {
matches!(self.kind(), Char)
}
#[inline]
pub fn is_numeric(self) -> bool {
self.is_integral() || self.is_floating_point()
}
#[inline]
pub fn is_signed(self) -> bool {
matches!(self.kind(), Int(_))
}
#[inline]
pub fn is_ptr_sized_integral(self) -> bool {
matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
}
#[inline]
pub fn has_concrete_skeleton(self) -> bool {
!matches!(self.kind(), Param(_) | Infer(_) | Error(_))
}
/// Checks whether a type recursively contains another type
///
/// Example: `Option<()>` contains `()`
pub fn contains(self, other: Ty<'tcx>) -> bool {
struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
}
}
let cf = self.visit_with(&mut ContainsTyVisitor(other));
cf.is_break()
}
/// Checks whether a type recursively contains any closure
///
/// Example: `Option<{closure@file.rs:4:20}>` returns true
pub fn contains_closure(self) -> bool {
struct ContainsClosureVisitor;
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if let ty::Closure(..) = t.kind() {
ControlFlow::Break(())
} else {
t.super_visit_with(self)
}
}
}
let cf = self.visit_with(&mut ContainsClosureVisitor);
cf.is_break()
}
/// Returns the type and mutability of `*ty`.
///
/// The parameter `explicit` indicates if this is an *explicit* dereference.
/// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
pub fn builtin_deref(self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
match self.kind() {
Adt(def, _) if def.is_box() => {
Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
}
Ref(_, ty, mutbl) => Some(TypeAndMut { ty: *ty, mutbl: *mutbl }),
RawPtr(mt) if explicit => Some(*mt),
_ => None,
}
}
/// Returns the type of `ty[i]`.
pub fn builtin_index(self) -> Option<Ty<'tcx>> {
match self.kind() {
Array(ty, _) | Slice(ty) => Some(*ty),
_ => None,
}
}
pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
match self.kind() {
FnDef(def_id, args) => tcx.fn_sig(*def_id).instantiate(tcx, args),
FnPtr(f) => *f,
Error(_) => {
// ignore errors (#54954)
ty::Binder::dummy(FnSig::fake())
}
Closure(..) => bug!(
"to get the signature of a closure, use `args.as_closure().sig()` not `fn_sig()`",
),
_ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
}
}
#[inline]
pub fn is_fn(self) -> bool {
matches!(self.kind(), FnDef(..) | FnPtr(_))
}
#[inline]
pub fn is_fn_ptr(self) -> bool {
matches!(self.kind(), FnPtr(_))
}
#[inline]
pub fn is_impl_trait(self) -> bool {
matches!(self.kind(), Alias(ty::Opaque, ..))
}
#[inline]
pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
match self.kind() {
Adt(adt, _) => Some(*adt),
_ => None,
}
}
/// Iterates over tuple fields.
/// Panics when called on anything but a tuple.
#[inline]
pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
match self.kind() {
Tuple(args) => args,
_ => bug!("tuple_fields called on non-tuple"),
}
}
/// If the type contains variants, returns the valid range of variant indices.
//
// FIXME: This requires the optimized MIR in the case of coroutines.
#[inline]
pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
match self.kind() {
TyKind::Adt(adt, _) => Some(adt.variant_range()),
TyKind::Coroutine(def_id, args) => {
Some(args.as_coroutine().variant_range(*def_id, tcx))
}
_ => None,
}
}
/// If the type contains variants, returns the variant for `variant_index`.
/// Panics if `variant_index` is out of range.
//
// FIXME: This requires the optimized MIR in the case of coroutines.
#[inline]
pub fn discriminant_for_variant(
self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Option<Discr<'tcx>> {
match self.kind() {
TyKind::Adt(adt, _) if adt.is_enum() => {
Some(adt.discriminant_for_variant(tcx, variant_index))
}
TyKind::Coroutine(def_id, args) => {
Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
}
_ => None,
}
}
/// Returns the type of the discriminant of this type.
pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
let assoc_items = tcx.associated_item_def_ids(
tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
);
Ty::new_projection(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(_)
| ty::Str
| ty::Array(..)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_)
| ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
ty::Bound(..)
| ty::Placeholder(_)
| ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
}
}
}
/// Returns the type of metadata for (potentially fat) pointers to this type,
/// or the struct tail if the metadata type cannot be determined.
pub fn ptr_metadata_ty_or_tail(
self,
tcx: TyCtxt<'tcx>,
normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
) -> Result<Ty<'tcx>, Ty<'tcx>> {
let tail = tcx.struct_tail_with_normalize(self, normalize, || {});
match tail.kind() {
// Sized types
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_)
// Extern types have metadata = ().
| ty::Foreign(..)
// `dyn*` has metadata = ().
| ty::Dynamic(_, _, ty::DynStar)
// If returned by `struct_tail_with_normalize` this is a unit struct
// without any fields, or not a struct, and therefore is Sized.
| ty::Adt(..)
// If returned by `struct_tail_with_normalize` this is the empty tuple,
// a.k.a. unit type, which is Sized
| ty::Tuple(..) => Ok(tcx.types.unit),
ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
ty::Dynamic(_, _, ty::Dyn) => {
let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, None);
Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
}
// We don't know the metadata of `self`, but it must be equal to the
// metadata of `tail`.
ty::Param(_) | ty::Alias(..) => Err(tail),
ty::Infer(ty::TyVar(_))
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
"`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
),
}
}
/// Returns the type of metadata for (potentially fat) pointers to this type.
/// Causes an ICE if the metadata type cannot be determined.
pub fn ptr_metadata_ty(
self,
tcx: TyCtxt<'tcx>,
normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
) -> Ty<'tcx> {
match self.ptr_metadata_ty_or_tail(tcx, normalize) {
Ok(metadata) => metadata,
Err(tail) => bug!(
"`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
),
}
}
/// When we create a closure, we record its kind (i.e., what trait
/// it implements, constrained by how it uses its borrows) into its
/// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
/// parameter. This is kind of a phantom type, except that the
/// most convenient thing for us to are the integral types. This
/// function converts such a special type into the closure
/// kind. To go the other way, use [`Ty::from_closure_kind`].
///
/// Note that during type checking, we use an inference variable
/// to represent the closure kind, because it has not yet been
/// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
/// is complete, that type variable will be unified with one of
/// the integral types.
///
/// ```rust,ignore (snippet of compiler code)
/// if let TyKind::Closure(def_id, args) = closure_ty.kind()
/// && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
/// {
/// println!("{closure_kind:?}");
/// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
/// && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
/// {
/// println!("{closure_kind:?}");
/// }
/// ```
///
/// After upvar analysis, you should instead use [`ClosureArgs::kind()`]
/// or [`CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
/// has been constrained instead of manually calling this method.
///
/// ```rust,ignore (snippet of compiler code)
/// if let TyKind::Closure(def_id, args) = closure_ty.kind()
/// {
/// println!("{:?}", args.as_closure().kind());
/// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
/// {
/// println!("{:?}", args.as_coroutine_closure().kind());
/// }
/// ```
pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
match self.kind() {
Int(int_ty) => match int_ty {
ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
},
// "Bound" types appear in canonical queries when the
// closure type is not yet known, and `Placeholder` and `Param`
// may be encountered in generic `AsyncFnKindHelper` goals.
Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
Error(_) => Some(ty::ClosureKind::Fn),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
}
}
/// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
/// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
match kind {
ty::ClosureKind::Fn => tcx.types.i8,
ty::ClosureKind::FnMut => tcx.types.i16,
ty::ClosureKind::FnOnce => tcx.types.i32,
}
}
/// Fast path helper for testing if a type is `Sized`.
///
/// Returning true means the type is known to be sized. Returning
/// `false` means nothing -- could be sized, might not be.
///
/// Note that we could never rely on the fact that a type such as `[_]` is
/// trivially `!Sized` because we could be in a type environment with a
/// bound such as `[_]: Copy`. A function with such a bound obviously never
/// can be called, but that doesn't mean it shouldn't typecheck. This is why
/// this method doesn't return `Option<bool>`.
pub fn is_trivially_sized(self, tcx: TyCtxt<'tcx>) -> bool {
match self.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_) => true,
ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,
ty::Tuple(tys) => tys.iter().all(|ty| ty.is_trivially_sized(tcx)),
ty::Adt(def, _args) => def.sized_constraint(tcx).skip_binder().is_empty(),
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
ty::Infer(ty::TyVar(_)) => false,
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
}
}
}
/// Fast path helper for primitives which are always `Copy` and which
/// have a side-effect-free `Clone` impl.
///
/// Returning true means the type is known to be pure and `Copy+Clone`.
/// Returning `false` means nothing -- could be `Copy`, might not be.
///
/// This is mostly useful for optimizations, as these are the types
/// on which we can replace cloning with dereferencing.
pub fn is_trivially_pure_clone_copy(self) -> bool {
match self.kind() {
ty::Bool | ty::Char | ty::Never => true,
// These aren't even `Clone`
ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..) => true,
// ZST which can't be named are fine.
ty::FnDef(..) => true,
ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
// A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
ty::Tuple(field_tys) => {
field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
}
// Sometimes traits aren't implemented for every ABI or arity,
// because we can't be generic over everything yet.
ty::FnPtr(..) => false,
// Definitely absolutely not copy.
ty::Ref(_, _, hir::Mutability::Mut) => false,
// Thin pointers & thin shared references are pure-clone-copy, but for
// anything with custom metadata it might be more complicated.
ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => false,
ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
// Might be, but not "trivial" so just giving the safe answer.
ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
// Needs normalization or revealing to determine, so no is the safe answer.
ty::Alias(..) => false,
ty::Param(..) | ty::Infer(..) | ty::Error(..) => false,
ty::Bound(..) | ty::Placeholder(..) => {
bug!("`is_trivially_pure_clone_copy` applied to unexpected type: {:?}", self);
}
}
}
/// If `self` is a primitive, return its [`Symbol`].
pub fn primitive_symbol(self) -> Option<Symbol> {
match self.kind() {
ty::Bool => Some(sym::bool),
ty::Char => Some(sym::char),
ty::Float(f) => match f {
ty::FloatTy::F16 => Some(sym::f16),
ty::FloatTy::F32 => Some(sym::f32),
ty::FloatTy::F64 => Some(sym::f64),
ty::FloatTy::F128 => Some(sym::f128),
},
ty::Int(f) => match f {
ty::IntTy::Isize => Some(sym::isize),
ty::IntTy::I8 => Some(sym::i8),
ty::IntTy::I16 => Some(sym::i16),
ty::IntTy::I32 => Some(sym::i32),
ty::IntTy::I64 => Some(sym::i64),
ty::IntTy::I128 => Some(sym::i128),
},
ty::Uint(f) => match f {
ty::UintTy::Usize => Some(sym::usize),
ty::UintTy::U8 => Some(sym::u8),
ty::UintTy::U16 => Some(sym::u16),
ty::UintTy::U32 => Some(sym::u32),
ty::UintTy::U64 => Some(sym::u64),
ty::UintTy::U128 => Some(sym::u128),
},
_ => None,
}
}
pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
match self.kind() {
ty::Adt(adt, _) => tcx.lang_items().get(LangItem::CVoid) == Some(adt.did()),
_ => false,
}
}
/// Returns `true` when the outermost type cannot be further normalized,
/// resolved, or instantiated. This includes all primitive types, but also
/// things like ADTs and trait objects, sice even if their arguments or
/// nested types may be further simplified, the outermost [`TyKind`] or
/// type constructor remains the same.
pub fn is_known_rigid(self) -> bool {
match self.kind() {
Bool
| Char
| Int(_)
| Uint(_)
| Float(_)
| Adt(_, _)
| Foreign(_)
| Str
| Array(_, _)
| Slice(_)
| RawPtr(_)
| Ref(_, _, _)
| FnDef(_, _)
| FnPtr(_)
| Dynamic(_, _, _)
| Closure(_, _)
| CoroutineClosure(_, _)
| Coroutine(_, _)
| CoroutineWitness(..)
| Never
| Tuple(_) => true,
Error(_) | Infer(_) | Alias(_, _) | Param(_) | Bound(_, _) | Placeholder(_) => false,
}
}
}
/// Extra information about why we ended up with a particular variance.
/// This is only used to add more information to error messages, and
/// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`
/// may lead to confusing notes in error messages, it will never cause
/// a miscompilation or unsoundness.
///
/// When in doubt, use `VarianceDiagInfo::default()`
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
pub enum VarianceDiagInfo<'tcx> {
/// No additional information - this is the default.
/// We will not add any additional information to error messages.
#[default]
None,
/// We switched our variance because a generic argument occurs inside
/// the invariant generic argument of another type.
Invariant {
/// The generic type containing the generic parameter
/// that changes the variance (e.g. `*mut T`, `MyStruct<T>`)
ty: Ty<'tcx>,
/// The index of the generic parameter being used
/// (e.g. `0` for `*mut T`, `1` for `MyStruct<'CovariantParam, 'InvariantParam>`)
param_index: u32,
},
}
impl<'tcx> VarianceDiagInfo<'tcx> {
/// Mirrors `Variance::xform` - used to 'combine' the existing
/// and new `VarianceDiagInfo`s when our variance changes.
pub fn xform(self, other: VarianceDiagInfo<'tcx>) -> VarianceDiagInfo<'tcx> {
// For now, just use the first `VarianceDiagInfo::Invariant` that we see
match self {
VarianceDiagInfo::None => other,
VarianceDiagInfo::Invariant { .. } => self,
}
}
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
use super::*;
use rustc_data_structures::static_assert_size;
// tidy-alphabetical-start
static_assert_size!(ty::RegionKind<'_>, 24);
static_assert_size!(ty::TyKind<'_>, 32);
// tidy-alphabetical-end
}