1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
// Generic arguments.

use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::ty::sty::{ClosureArgs, CoroutineArgs, CoroutineClosureArgs, InlineConstArgs};
use crate::ty::visit::{TypeVisitable, TypeVisitableExt, TypeVisitor};
use crate::ty::{self, Lift, List, ParamConst, Ty, TyCtxt};

use rustc_ast_ir::visit::VisitorResult;
use rustc_ast_ir::walk_visitable_list;
use rustc_data_structures::intern::Interned;
use rustc_errors::{DiagArgValue, IntoDiagArg};
use rustc_hir::def_id::DefId;
use rustc_macros::HashStable;
use rustc_serialize::{Decodable, Encodable};
use rustc_type_ir::WithCachedTypeInfo;
use smallvec::SmallVec;

use core::intrinsics;
use std::cmp::Ordering;
use std::marker::PhantomData;
use std::mem;
use std::num::NonZero;
use std::ops::Deref;
use std::ptr::NonNull;

/// An entity in the Rust type system, which can be one of
/// several kinds (types, lifetimes, and consts).
/// To reduce memory usage, a `GenericArg` is an interned pointer,
/// with the lowest 2 bits being reserved for a tag to
/// indicate the type (`Ty`, `Region`, or `Const`) it points to.
///
/// Note: the `PartialEq`, `Eq` and `Hash` derives are only valid because `Ty`,
/// `Region` and `Const` are all interned.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct GenericArg<'tcx> {
    ptr: NonNull<()>,
    marker: PhantomData<(Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>)>,
}

#[cfg(parallel_compiler)]
unsafe impl<'tcx> rustc_data_structures::sync::DynSend for GenericArg<'tcx> where
    &'tcx (Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>): rustc_data_structures::sync::DynSend
{
}
#[cfg(parallel_compiler)]
unsafe impl<'tcx> rustc_data_structures::sync::DynSync for GenericArg<'tcx> where
    &'tcx (Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>): rustc_data_structures::sync::DynSync
{
}
unsafe impl<'tcx> Send for GenericArg<'tcx> where
    &'tcx (Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>): Send
{
}
unsafe impl<'tcx> Sync for GenericArg<'tcx> where
    &'tcx (Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>): Sync
{
}

impl<'tcx> IntoDiagArg for GenericArg<'tcx> {
    fn into_diag_arg(self) -> DiagArgValue {
        self.to_string().into_diag_arg()
    }
}

const TAG_MASK: usize = 0b11;
const TYPE_TAG: usize = 0b00;
const REGION_TAG: usize = 0b01;
const CONST_TAG: usize = 0b10;

#[derive(Debug, TyEncodable, TyDecodable, PartialEq, Eq, PartialOrd, Ord, HashStable)]
pub enum GenericArgKind<'tcx> {
    Lifetime(ty::Region<'tcx>),
    Type(Ty<'tcx>),
    Const(ty::Const<'tcx>),
}

impl<'tcx> GenericArgKind<'tcx> {
    #[inline]
    fn pack(self) -> GenericArg<'tcx> {
        let (tag, ptr) = match self {
            GenericArgKind::Lifetime(lt) => {
                // Ensure we can use the tag bits.
                assert_eq!(mem::align_of_val(&*lt.0.0) & TAG_MASK, 0);
                (REGION_TAG, NonNull::from(lt.0.0).cast())
            }
            GenericArgKind::Type(ty) => {
                // Ensure we can use the tag bits.
                assert_eq!(mem::align_of_val(&*ty.0.0) & TAG_MASK, 0);
                (TYPE_TAG, NonNull::from(ty.0.0).cast())
            }
            GenericArgKind::Const(ct) => {
                // Ensure we can use the tag bits.
                assert_eq!(mem::align_of_val(&*ct.0.0) & TAG_MASK, 0);
                (CONST_TAG, NonNull::from(ct.0.0).cast())
            }
        };

        GenericArg { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData }
    }
}

impl<'tcx> Ord for GenericArg<'tcx> {
    fn cmp(&self, other: &GenericArg<'tcx>) -> Ordering {
        self.unpack().cmp(&other.unpack())
    }
}

impl<'tcx> PartialOrd for GenericArg<'tcx> {
    fn partial_cmp(&self, other: &GenericArg<'tcx>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<'tcx> From<ty::Region<'tcx>> for GenericArg<'tcx> {
    #[inline]
    fn from(r: ty::Region<'tcx>) -> GenericArg<'tcx> {
        GenericArgKind::Lifetime(r).pack()
    }
}

impl<'tcx> From<Ty<'tcx>> for GenericArg<'tcx> {
    #[inline]
    fn from(ty: Ty<'tcx>) -> GenericArg<'tcx> {
        GenericArgKind::Type(ty).pack()
    }
}

impl<'tcx> From<ty::Const<'tcx>> for GenericArg<'tcx> {
    #[inline]
    fn from(c: ty::Const<'tcx>) -> GenericArg<'tcx> {
        GenericArgKind::Const(c).pack()
    }
}

impl<'tcx> From<ty::Term<'tcx>> for GenericArg<'tcx> {
    fn from(value: ty::Term<'tcx>) -> Self {
        match value.unpack() {
            ty::TermKind::Ty(t) => t.into(),
            ty::TermKind::Const(c) => c.into(),
        }
    }
}

impl<'tcx> GenericArg<'tcx> {
    #[inline]
    pub fn unpack(self) -> GenericArgKind<'tcx> {
        let ptr =
            unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
        // SAFETY: use of `Interned::new_unchecked` here is ok because these
        // pointers were originally created from `Interned` types in `pack()`,
        // and this is just going in the other direction.
        unsafe {
            match self.ptr.addr().get() & TAG_MASK {
                REGION_TAG => GenericArgKind::Lifetime(ty::Region(Interned::new_unchecked(
                    ptr.cast::<ty::RegionKind<'tcx>>().as_ref(),
                ))),
                TYPE_TAG => GenericArgKind::Type(Ty(Interned::new_unchecked(
                    ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
                ))),
                CONST_TAG => GenericArgKind::Const(ty::Const(Interned::new_unchecked(
                    ptr.cast::<WithCachedTypeInfo<ty::ConstData<'tcx>>>().as_ref(),
                ))),
                _ => intrinsics::unreachable(),
            }
        }
    }

    #[inline]
    pub fn as_type(self) -> Option<Ty<'tcx>> {
        match self.unpack() {
            GenericArgKind::Type(ty) => Some(ty),
            _ => None,
        }
    }

    #[inline]
    pub fn as_region(self) -> Option<ty::Region<'tcx>> {
        match self.unpack() {
            GenericArgKind::Lifetime(re) => Some(re),
            _ => None,
        }
    }

    #[inline]
    pub fn as_const(self) -> Option<ty::Const<'tcx>> {
        match self.unpack() {
            GenericArgKind::Const(ct) => Some(ct),
            _ => None,
        }
    }

    /// Unpack the `GenericArg` as a region when it is known certainly to be a region.
    pub fn expect_region(self) -> ty::Region<'tcx> {
        self.as_region().unwrap_or_else(|| bug!("expected a region, but found another kind"))
    }

    /// Unpack the `GenericArg` as a type when it is known certainly to be a type.
    /// This is true in cases where `GenericArgs` is used in places where the kinds are known
    /// to be limited (e.g. in tuples, where the only parameters are type parameters).
    pub fn expect_ty(self) -> Ty<'tcx> {
        self.as_type().unwrap_or_else(|| bug!("expected a type, but found another kind"))
    }

    /// Unpack the `GenericArg` as a const when it is known certainly to be a const.
    pub fn expect_const(self) -> ty::Const<'tcx> {
        self.as_const().unwrap_or_else(|| bug!("expected a const, but found another kind"))
    }

    pub fn is_non_region_infer(self) -> bool {
        match self.unpack() {
            GenericArgKind::Lifetime(_) => false,
            GenericArgKind::Type(ty) => ty.is_ty_or_numeric_infer(),
            GenericArgKind::Const(ct) => ct.is_ct_infer(),
        }
    }
}

impl<'a, 'tcx> Lift<'tcx> for GenericArg<'a> {
    type Lifted = GenericArg<'tcx>;

    fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
        match self.unpack() {
            GenericArgKind::Lifetime(lt) => tcx.lift(lt).map(|lt| lt.into()),
            GenericArgKind::Type(ty) => tcx.lift(ty).map(|ty| ty.into()),
            GenericArgKind::Const(ct) => tcx.lift(ct).map(|ct| ct.into()),
        }
    }
}

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for GenericArg<'tcx> {
    fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error> {
        match self.unpack() {
            GenericArgKind::Lifetime(lt) => lt.try_fold_with(folder).map(Into::into),
            GenericArgKind::Type(ty) => ty.try_fold_with(folder).map(Into::into),
            GenericArgKind::Const(ct) => ct.try_fold_with(folder).map(Into::into),
        }
    }
}

impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for GenericArg<'tcx> {
    fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
        match self.unpack() {
            GenericArgKind::Lifetime(lt) => lt.visit_with(visitor),
            GenericArgKind::Type(ty) => ty.visit_with(visitor),
            GenericArgKind::Const(ct) => ct.visit_with(visitor),
        }
    }
}

impl<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<E> for GenericArg<'tcx> {
    fn encode(&self, e: &mut E) {
        self.unpack().encode(e)
    }
}

impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<D> for GenericArg<'tcx> {
    fn decode(d: &mut D) -> GenericArg<'tcx> {
        GenericArgKind::decode(d).pack()
    }
}

/// List of generic arguments that are gonna be used to replace generic parameters.
pub type GenericArgs<'tcx> = List<GenericArg<'tcx>>;

pub type GenericArgsRef<'tcx> = &'tcx GenericArgs<'tcx>;

impl<'tcx> GenericArgs<'tcx> {
    /// Converts generic args to a type list.
    ///
    /// # Panics
    ///
    /// If any of the generic arguments are not types.
    pub fn into_type_list(&self, tcx: TyCtxt<'tcx>) -> &'tcx List<Ty<'tcx>> {
        tcx.mk_type_list_from_iter(self.iter().map(|arg| match arg.unpack() {
            GenericArgKind::Type(ty) => ty,
            _ => bug!("`into_type_list` called on generic arg with non-types"),
        }))
    }

    /// Interpret these generic args as the args of a closure type.
    /// Closure args have a particular structure controlled by the
    /// compiler that encodes information like the signature and closure kind;
    /// see `ty::ClosureArgs` struct for more comments.
    pub fn as_closure(&'tcx self) -> ClosureArgs<'tcx> {
        ClosureArgs { args: self }
    }

    /// Interpret these generic args as the args of a coroutine-closure type.
    /// Coroutine-closure args have a particular structure controlled by the
    /// compiler that encodes information like the signature and closure kind;
    /// see `ty::CoroutineClosureArgs` struct for more comments.
    pub fn as_coroutine_closure(&'tcx self) -> CoroutineClosureArgs<'tcx> {
        CoroutineClosureArgs { args: self }
    }

    /// Interpret these generic args as the args of a coroutine type.
    /// Coroutine args have a particular structure controlled by the
    /// compiler that encodes information like the signature and coroutine kind;
    /// see `ty::CoroutineArgs` struct for more comments.
    pub fn as_coroutine(&'tcx self) -> CoroutineArgs<'tcx> {
        CoroutineArgs { args: self }
    }

    /// Interpret these generic args as the args of an inline const.
    /// Inline const args have a particular structure controlled by the
    /// compiler that encodes information like the inferred type;
    /// see `ty::InlineConstArgs` struct for more comments.
    pub fn as_inline_const(&'tcx self) -> InlineConstArgs<'tcx> {
        InlineConstArgs { args: self }
    }

    /// Creates an `GenericArgs` that maps each generic parameter to itself.
    pub fn identity_for_item(tcx: TyCtxt<'tcx>, def_id: impl Into<DefId>) -> GenericArgsRef<'tcx> {
        Self::for_item(tcx, def_id.into(), |param, _| tcx.mk_param_from_def(param))
    }

    /// Creates an `GenericArgs` for generic parameter definitions,
    /// by calling closures to obtain each kind.
    /// The closures get to observe the `GenericArgs` as they're
    /// being built, which can be used to correctly
    /// replace defaults of generic parameters.
    pub fn for_item<F>(tcx: TyCtxt<'tcx>, def_id: DefId, mut mk_kind: F) -> GenericArgsRef<'tcx>
    where
        F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
    {
        let defs = tcx.generics_of(def_id);
        let count = defs.count();
        let mut args = SmallVec::with_capacity(count);
        Self::fill_item(&mut args, tcx, defs, &mut mk_kind);
        tcx.mk_args(&args)
    }

    pub fn extend_to<F>(
        &self,
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        mut mk_kind: F,
    ) -> GenericArgsRef<'tcx>
    where
        F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
    {
        Self::for_item(tcx, def_id, |param, args| {
            self.get(param.index as usize).cloned().unwrap_or_else(|| mk_kind(param, args))
        })
    }

    pub fn fill_item<F>(
        args: &mut SmallVec<[GenericArg<'tcx>; 8]>,
        tcx: TyCtxt<'tcx>,
        defs: &ty::Generics,
        mk_kind: &mut F,
    ) where
        F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
    {
        if let Some(def_id) = defs.parent {
            let parent_defs = tcx.generics_of(def_id);
            Self::fill_item(args, tcx, parent_defs, mk_kind);
        }
        Self::fill_single(args, defs, mk_kind)
    }

    pub fn fill_single<F>(
        args: &mut SmallVec<[GenericArg<'tcx>; 8]>,
        defs: &ty::Generics,
        mk_kind: &mut F,
    ) where
        F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
    {
        args.reserve(defs.params.len());
        for param in &defs.params {
            let kind = mk_kind(param, args);
            assert_eq!(param.index as usize, args.len(), "{args:#?}, {defs:#?}");
            args.push(kind);
        }
    }

    // Extend an `original_args` list to the full number of args expected by `def_id`,
    // filling in the missing parameters with error ty/ct or 'static regions.
    pub fn extend_with_error(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        original_args: &[GenericArg<'tcx>],
    ) -> GenericArgsRef<'tcx> {
        ty::GenericArgs::for_item(tcx, def_id, |def, args| {
            if let Some(arg) = original_args.get(def.index as usize) {
                *arg
            } else {
                def.to_error(tcx, args)
            }
        })
    }

    #[inline]
    pub fn types(&'tcx self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> + 'tcx {
        self.iter().filter_map(|k| k.as_type())
    }

    #[inline]
    pub fn regions(&'tcx self) -> impl DoubleEndedIterator<Item = ty::Region<'tcx>> + 'tcx {
        self.iter().filter_map(|k| k.as_region())
    }

    #[inline]
    pub fn consts(&'tcx self) -> impl DoubleEndedIterator<Item = ty::Const<'tcx>> + 'tcx {
        self.iter().filter_map(|k| k.as_const())
    }

    /// Returns generic arguments that are not lifetimes or host effect params.
    #[inline]
    pub fn non_erasable_generics(
        &'tcx self,
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
    ) -> impl DoubleEndedIterator<Item = GenericArgKind<'tcx>> + 'tcx {
        let generics = tcx.generics_of(def_id);
        self.iter().enumerate().filter_map(|(i, k)| match k.unpack() {
            _ if Some(i) == generics.host_effect_index => None,
            ty::GenericArgKind::Lifetime(_) => None,
            generic => Some(generic),
        })
    }

    #[inline]
    #[track_caller]
    pub fn type_at(&self, i: usize) -> Ty<'tcx> {
        self[i].as_type().unwrap_or_else(|| bug!("expected type for param #{} in {:?}", i, self))
    }

    #[inline]
    #[track_caller]
    pub fn region_at(&self, i: usize) -> ty::Region<'tcx> {
        self[i]
            .as_region()
            .unwrap_or_else(|| bug!("expected region for param #{} in {:?}", i, self))
    }

    #[inline]
    #[track_caller]
    pub fn const_at(&self, i: usize) -> ty::Const<'tcx> {
        self[i].as_const().unwrap_or_else(|| bug!("expected const for param #{} in {:?}", i, self))
    }

    #[inline]
    #[track_caller]
    pub fn type_for_def(&self, def: &ty::GenericParamDef) -> GenericArg<'tcx> {
        self.type_at(def.index as usize).into()
    }

    /// Transform from generic args for a child of `source_ancestor`
    /// (e.g., a trait or impl) to args for the same child
    /// in a different item, with `target_args` as the base for
    /// the target impl/trait, with the source child-specific
    /// parameters (e.g., method parameters) on top of that base.
    ///
    /// For example given:
    ///
    /// ```no_run
    /// trait X<S> { fn f<T>(); }
    /// impl<U> X<U> for U { fn f<V>() {} }
    /// ```
    ///
    /// * If `self` is `[Self, S, T]`: the identity args of `f` in the trait.
    /// * If `source_ancestor` is the def_id of the trait.
    /// * If `target_args` is `[U]`, the args for the impl.
    /// * Then we will return `[U, T]`, the arg for `f` in the impl that
    ///   are needed for it to match the trait.
    pub fn rebase_onto(
        &self,
        tcx: TyCtxt<'tcx>,
        source_ancestor: DefId,
        target_args: GenericArgsRef<'tcx>,
    ) -> GenericArgsRef<'tcx> {
        let defs = tcx.generics_of(source_ancestor);
        tcx.mk_args_from_iter(target_args.iter().chain(self.iter().skip(defs.count())))
    }

    pub fn truncate_to(&self, tcx: TyCtxt<'tcx>, generics: &ty::Generics) -> GenericArgsRef<'tcx> {
        tcx.mk_args_from_iter(self.iter().take(generics.count()))
    }

    pub fn print_as_list(&self) -> String {
        let v = self.iter().map(|arg| arg.to_string()).collect::<Vec<_>>();
        format!("[{}]", v.join(", "))
    }
}

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for GenericArgsRef<'tcx> {
    fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error> {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // The match arms are in order of frequency. The 1, 2, and 0 cases are
        // typically hit in 90--99.99% of cases. When folding doesn't change
        // the args, it's faster to reuse the existing args rather than
        // calling `mk_args`.
        match self.len() {
            1 => {
                let param0 = self[0].try_fold_with(folder)?;
                if param0 == self[0] { Ok(self) } else { Ok(folder.interner().mk_args(&[param0])) }
            }
            2 => {
                let param0 = self[0].try_fold_with(folder)?;
                let param1 = self[1].try_fold_with(folder)?;
                if param0 == self[0] && param1 == self[1] {
                    Ok(self)
                } else {
                    Ok(folder.interner().mk_args(&[param0, param1]))
                }
            }
            0 => Ok(self),
            _ => ty::util::fold_list(self, folder, |tcx, v| tcx.mk_args(v)),
        }
    }
}

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
    fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error> {
        // This code is fairly hot, though not as hot as `GenericArgsRef`.
        //
        // When compiling stage 2, I get the following results:
        //
        // len |   total   |   %
        // --- | --------- | -----
        //  2  |  15083590 |  48.1
        //  3  |   7540067 |  24.0
        //  1  |   5300377 |  16.9
        //  4  |   1351897 |   4.3
        //  0  |   1256849 |   4.0
        //
        // I've tried it with some private repositories and got
        // close to the same result, with 4 and 0 swapping places
        // sometimes.
        match self.len() {
            2 => {
                let param0 = self[0].try_fold_with(folder)?;
                let param1 = self[1].try_fold_with(folder)?;
                if param0 == self[0] && param1 == self[1] {
                    Ok(self)
                } else {
                    Ok(folder.interner().mk_type_list(&[param0, param1]))
                }
            }
            _ => ty::util::fold_list(self, folder, |tcx, v| tcx.mk_type_list(v)),
        }
    }
}

impl<'tcx, T: TypeVisitable<TyCtxt<'tcx>>> TypeVisitable<TyCtxt<'tcx>> for &'tcx ty::List<T> {
    #[inline]
    fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
        walk_visitable_list!(visitor, self.iter());
        V::Result::output()
    }
}

/// Similar to [`super::Binder`] except that it tracks early bound generics, i.e. `struct Foo<T>(T)`
/// needs `T` instantiated immediately. This type primarily exists to avoid forgetting to call
/// `instantiate`.
///
/// If you don't have anything to `instantiate`, you may be looking for
/// [`instantiate_identity`](EarlyBinder::instantiate_identity) or [`skip_binder`](EarlyBinder::skip_binder).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable)]
pub struct EarlyBinder<T> {
    value: T,
}

/// For early binders, you should first call `instantiate` before using any visitors.
impl<'tcx, T> !TypeFoldable<TyCtxt<'tcx>> for ty::EarlyBinder<T> {}
impl<'tcx, T> !TypeVisitable<TyCtxt<'tcx>> for ty::EarlyBinder<T> {}

impl<T> EarlyBinder<T> {
    pub fn bind(value: T) -> EarlyBinder<T> {
        EarlyBinder { value }
    }

    pub fn as_ref(&self) -> EarlyBinder<&T> {
        EarlyBinder { value: &self.value }
    }

    pub fn map_bound_ref<F, U>(&self, f: F) -> EarlyBinder<U>
    where
        F: FnOnce(&T) -> U,
    {
        self.as_ref().map_bound(f)
    }

    pub fn map_bound<F, U>(self, f: F) -> EarlyBinder<U>
    where
        F: FnOnce(T) -> U,
    {
        let value = f(self.value);
        EarlyBinder { value }
    }

    pub fn try_map_bound<F, U, E>(self, f: F) -> Result<EarlyBinder<U>, E>
    where
        F: FnOnce(T) -> Result<U, E>,
    {
        let value = f(self.value)?;
        Ok(EarlyBinder { value })
    }

    pub fn rebind<U>(&self, value: U) -> EarlyBinder<U> {
        EarlyBinder { value }
    }

    /// Skips the binder and returns the "bound" value.
    /// This can be used to extract data that does not depend on generic parameters
    /// (e.g., getting the `DefId` of the inner value or getting the number of
    /// arguments of an `FnSig`). Otherwise, consider using
    /// [`instantiate_identity`](EarlyBinder::instantiate_identity).
    ///
    /// To skip the binder on `x: &EarlyBinder<T>` to obtain `&T`, leverage
    /// [`EarlyBinder::as_ref`](EarlyBinder::as_ref): `x.as_ref().skip_binder()`.
    ///
    /// See also [`Binder::skip_binder`](super::Binder::skip_binder), which is
    /// the analogous operation on [`super::Binder`].
    pub fn skip_binder(self) -> T {
        self.value
    }
}

impl<T> EarlyBinder<Option<T>> {
    pub fn transpose(self) -> Option<EarlyBinder<T>> {
        self.value.map(|value| EarlyBinder { value })
    }
}

impl<'tcx, 's, I: IntoIterator> EarlyBinder<I>
where
    I::Item: TypeFoldable<TyCtxt<'tcx>>,
{
    pub fn iter_instantiated(
        self,
        tcx: TyCtxt<'tcx>,
        args: &'s [GenericArg<'tcx>],
    ) -> IterInstantiated<'s, 'tcx, I> {
        IterInstantiated { it: self.value.into_iter(), tcx, args }
    }

    /// Similar to [`instantiate_identity`](EarlyBinder::instantiate_identity),
    /// but on an iterator of `TypeFoldable` values.
    pub fn instantiate_identity_iter(self) -> I::IntoIter {
        self.value.into_iter()
    }
}

pub struct IterInstantiated<'s, 'tcx, I: IntoIterator> {
    it: I::IntoIter,
    tcx: TyCtxt<'tcx>,
    args: &'s [GenericArg<'tcx>],
}

impl<'tcx, I: IntoIterator> Iterator for IterInstantiated<'_, 'tcx, I>
where
    I::Item: TypeFoldable<TyCtxt<'tcx>>,
{
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        Some(EarlyBinder { value: self.it.next()? }.instantiate(self.tcx, self.args))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<'tcx, I: IntoIterator> DoubleEndedIterator for IterInstantiated<'_, 'tcx, I>
where
    I::IntoIter: DoubleEndedIterator,
    I::Item: TypeFoldable<TyCtxt<'tcx>>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        Some(EarlyBinder { value: self.it.next_back()? }.instantiate(self.tcx, self.args))
    }
}

impl<'tcx, I: IntoIterator> ExactSizeIterator for IterInstantiated<'_, 'tcx, I>
where
    I::IntoIter: ExactSizeIterator,
    I::Item: TypeFoldable<TyCtxt<'tcx>>,
{
}

impl<'tcx, 's, I: IntoIterator> EarlyBinder<I>
where
    I::Item: Deref,
    <I::Item as Deref>::Target: Copy + TypeFoldable<TyCtxt<'tcx>>,
{
    pub fn iter_instantiated_copied(
        self,
        tcx: TyCtxt<'tcx>,
        args: &'s [GenericArg<'tcx>],
    ) -> IterInstantiatedCopied<'s, 'tcx, I> {
        IterInstantiatedCopied { it: self.value.into_iter(), tcx, args }
    }

    /// Similar to [`instantiate_identity`](EarlyBinder::instantiate_identity),
    /// but on an iterator of values that deref to a `TypeFoldable`.
    pub fn instantiate_identity_iter_copied(
        self,
    ) -> impl Iterator<Item = <I::Item as Deref>::Target> {
        self.value.into_iter().map(|v| *v)
    }
}

pub struct IterInstantiatedCopied<'a, 'tcx, I: IntoIterator> {
    it: I::IntoIter,
    tcx: TyCtxt<'tcx>,
    args: &'a [GenericArg<'tcx>],
}

impl<'tcx, I: IntoIterator> Iterator for IterInstantiatedCopied<'_, 'tcx, I>
where
    I::Item: Deref,
    <I::Item as Deref>::Target: Copy + TypeFoldable<TyCtxt<'tcx>>,
{
    type Item = <I::Item as Deref>::Target;

    fn next(&mut self) -> Option<Self::Item> {
        self.it.next().map(|value| EarlyBinder { value: *value }.instantiate(self.tcx, self.args))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<'tcx, I: IntoIterator> DoubleEndedIterator for IterInstantiatedCopied<'_, 'tcx, I>
where
    I::IntoIter: DoubleEndedIterator,
    I::Item: Deref,
    <I::Item as Deref>::Target: Copy + TypeFoldable<TyCtxt<'tcx>>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.it
            .next_back()
            .map(|value| EarlyBinder { value: *value }.instantiate(self.tcx, self.args))
    }
}

impl<'tcx, I: IntoIterator> ExactSizeIterator for IterInstantiatedCopied<'_, 'tcx, I>
where
    I::IntoIter: ExactSizeIterator,
    I::Item: Deref,
    <I::Item as Deref>::Target: Copy + TypeFoldable<TyCtxt<'tcx>>,
{
}

pub struct EarlyBinderIter<T> {
    t: T,
}

impl<T: IntoIterator> EarlyBinder<T> {
    pub fn transpose_iter(self) -> EarlyBinderIter<T::IntoIter> {
        EarlyBinderIter { t: self.value.into_iter() }
    }
}

impl<T: Iterator> Iterator for EarlyBinderIter<T> {
    type Item = EarlyBinder<T::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        self.t.next().map(|value| EarlyBinder { value })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.t.size_hint()
    }
}

impl<'tcx, T: TypeFoldable<TyCtxt<'tcx>>> ty::EarlyBinder<T> {
    pub fn instantiate(self, tcx: TyCtxt<'tcx>, args: &[GenericArg<'tcx>]) -> T {
        let mut folder = ArgFolder { tcx, args, binders_passed: 0 };
        self.value.fold_with(&mut folder)
    }

    /// Makes the identity replacement `T0 => T0, ..., TN => TN`.
    /// Conceptually, this converts universally bound variables into placeholders
    /// when inside of a given item.
    ///
    /// For example, consider `for<T> fn foo<T>(){ .. }`:
    /// - Outside of `foo`, `T` is bound (represented by the presence of `EarlyBinder`).
    /// - Inside of the body of `foo`, we treat `T` as a placeholder by calling
    /// `instantiate_identity` to discharge the `EarlyBinder`.
    pub fn instantiate_identity(self) -> T {
        self.value
    }

    /// Returns the inner value, but only if it contains no bound vars.
    pub fn no_bound_vars(self) -> Option<T> {
        if !self.value.has_param() { Some(self.value) } else { None }
    }
}

///////////////////////////////////////////////////////////////////////////
// The actual instantiation engine itself is a type folder.

struct ArgFolder<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    args: &'a [GenericArg<'tcx>],

    /// Number of region binders we have passed through while doing the instantiation
    binders_passed: u32,
}

impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ArgFolder<'a, 'tcx> {
    #[inline]
    fn interner(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
        &mut self,
        t: ty::Binder<'tcx, T>,
    ) -> ty::Binder<'tcx, T> {
        self.binders_passed += 1;
        let t = t.super_fold_with(self);
        self.binders_passed -= 1;
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        #[cold]
        #[inline(never)]
        fn region_param_out_of_range(data: ty::EarlyParamRegion, args: &[GenericArg<'_>]) -> ! {
            bug!(
                "Region parameter out of range when instantiating in region {} (index={}, args = {:?})",
                data.name,
                data.index,
                args,
            )
        }

        #[cold]
        #[inline(never)]
        fn region_param_invalid(data: ty::EarlyParamRegion, other: GenericArgKind<'_>) -> ! {
            bug!(
                "Unexpected parameter {:?} when instantiating in region {} (index={})",
                other,
                data.name,
                data.index
            )
        }

        // Note: This routine only handles regions that are bound on
        // type declarations and other outer declarations, not those
        // bound in *fn types*. Region instantiation of the bound
        // regions that appear in a function signature is done using
        // the specialized routine `ty::replace_late_regions()`.
        match *r {
            ty::ReEarlyParam(data) => {
                let rk = self.args.get(data.index as usize).map(|k| k.unpack());
                match rk {
                    Some(GenericArgKind::Lifetime(lt)) => self.shift_region_through_binders(lt),
                    Some(other) => region_param_invalid(data, other),
                    None => region_param_out_of_range(data, self.args),
                }
            }
            ty::ReBound(..)
            | ty::ReLateParam(_)
            | ty::ReStatic
            | ty::RePlaceholder(_)
            | ty::ReErased
            | ty::ReError(_) => r,
            ty::ReVar(_) => bug!("unexpected region: {r:?}"),
        }
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        if !t.has_param() {
            return t;
        }

        match *t.kind() {
            ty::Param(p) => self.ty_for_param(p, t),
            _ => t.super_fold_with(self),
        }
    }

    fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
        if let ty::ConstKind::Param(p) = c.kind() {
            self.const_for_param(p, c)
        } else {
            c.super_fold_with(self)
        }
    }
}

impl<'a, 'tcx> ArgFolder<'a, 'tcx> {
    fn ty_for_param(&self, p: ty::ParamTy, source_ty: Ty<'tcx>) -> Ty<'tcx> {
        // Look up the type in the args. It really should be in there.
        let opt_ty = self.args.get(p.index as usize).map(|k| k.unpack());
        let ty = match opt_ty {
            Some(GenericArgKind::Type(ty)) => ty,
            Some(kind) => self.type_param_expected(p, source_ty, kind),
            None => self.type_param_out_of_range(p, source_ty),
        };

        self.shift_vars_through_binders(ty)
    }

    #[cold]
    #[inline(never)]
    fn type_param_expected(&self, p: ty::ParamTy, ty: Ty<'tcx>, kind: GenericArgKind<'tcx>) -> ! {
        bug!(
            "expected type for `{:?}` ({:?}/{}) but found {:?} when instantiating, args={:?}",
            p,
            ty,
            p.index,
            kind,
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn type_param_out_of_range(&self, p: ty::ParamTy, ty: Ty<'tcx>) -> ! {
        bug!(
            "type parameter `{:?}` ({:?}/{}) out of range when instantiating, args={:?}",
            p,
            ty,
            p.index,
            self.args,
        )
    }

    fn const_for_param(&self, p: ParamConst, source_ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        // Look up the const in the args. It really should be in there.
        let opt_ct = self.args.get(p.index as usize).map(|k| k.unpack());
        let ct = match opt_ct {
            Some(GenericArgKind::Const(ct)) => ct,
            Some(kind) => self.const_param_expected(p, source_ct, kind),
            None => self.const_param_out_of_range(p, source_ct),
        };

        self.shift_vars_through_binders(ct)
    }

    #[cold]
    #[inline(never)]
    fn const_param_expected(
        &self,
        p: ty::ParamConst,
        ct: ty::Const<'tcx>,
        kind: GenericArgKind<'tcx>,
    ) -> ! {
        bug!(
            "expected const for `{:?}` ({:?}/{}) but found {:?} when instantiating args={:?}",
            p,
            ct,
            p.index,
            kind,
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn const_param_out_of_range(&self, p: ty::ParamConst, ct: ty::Const<'tcx>) -> ! {
        bug!(
            "const parameter `{:?}` ({:?}/{}) out of range when instantiating args={:?}",
            p,
            ct,
            p.index,
            self.args,
        )
    }

    /// It is sometimes necessary to adjust the De Bruijn indices during instantiation. This occurs
    /// when we are instantating a type with escaping bound vars into a context where we have
    /// passed through binders. That's quite a mouthful. Let's see an example:
    ///
    /// ```
    /// type Func<A> = fn(A);
    /// type MetaFunc = for<'a> fn(Func<&'a i32>);
    /// ```
    ///
    /// The type `MetaFunc`, when fully expanded, will be
    /// ```ignore (illustrative)
    /// for<'a> fn(fn(&'a i32))
    /// //      ^~ ^~ ^~~
    /// //      |  |  |
    /// //      |  |  DebruijnIndex of 2
    /// //      Binders
    /// ```
    /// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the
    /// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip
    /// over the inner binder (remember that we count De Bruijn indices from 1). However, in the
    /// definition of `MetaFunc`, the binder is not visible, so the type `&'a i32` will have a
    /// De Bruijn index of 1. It's only during the instantiation that we can see we must increase the
    /// depth by 1 to account for the binder that we passed through.
    ///
    /// As a second example, consider this twist:
    ///
    /// ```
    /// type FuncTuple<A> = (A,fn(A));
    /// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a i32>);
    /// ```
    ///
    /// Here the final type will be:
    /// ```ignore (illustrative)
    /// for<'a> fn((&'a i32, fn(&'a i32)))
    /// //          ^~~         ^~~
    /// //          |           |
    /// //   DebruijnIndex of 1 |
    /// //               DebruijnIndex of 2
    /// ```
    /// As indicated in the diagram, here the same type `&'a i32` is instantiated once, but in the
    /// first case we do not increase the De Bruijn index and in the second case we do. The reason
    /// is that only in the second case have we passed through a fn binder.
    fn shift_vars_through_binders<T: TypeFoldable<TyCtxt<'tcx>>>(&self, val: T) -> T {
        debug!(
            "shift_vars(val={:?}, binders_passed={:?}, has_escaping_bound_vars={:?})",
            val,
            self.binders_passed,
            val.has_escaping_bound_vars()
        );

        if self.binders_passed == 0 || !val.has_escaping_bound_vars() {
            return val;
        }

        let result = ty::fold::shift_vars(TypeFolder::interner(self), val, self.binders_passed);
        debug!("shift_vars: shifted result = {:?}", result);

        result
    }

    fn shift_region_through_binders(&self, region: ty::Region<'tcx>) -> ty::Region<'tcx> {
        if self.binders_passed == 0 || !region.has_escaping_bound_vars() {
            return region;
        }
        ty::fold::shift_region(self.tcx, region, self.binders_passed)
    }
}

/// Stores the user-given args to reach some fully qualified path
/// (e.g., `<T>::Item` or `<T as Trait>::Item`).
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable)]
pub struct UserArgs<'tcx> {
    /// The args for the item as given by the user.
    pub args: GenericArgsRef<'tcx>,

    /// The self type, in the case of a `<T>::Item` path (when applied
    /// to an inherent impl). See `UserSelfTy` below.
    pub user_self_ty: Option<UserSelfTy<'tcx>>,
}

/// Specifies the user-given self type. In the case of a path that
/// refers to a member in an inherent impl, this self type is
/// sometimes needed to constrain the type parameters on the impl. For
/// example, in this code:
///
/// ```ignore (illustrative)
/// struct Foo<T> { }
/// impl<A> Foo<A> { fn method() { } }
/// ```
///
/// when you then have a path like `<Foo<&'static u32>>::method`,
/// this struct would carry the `DefId` of the impl along with the
/// self type `Foo<u32>`. Then we can instantiate the parameters of
/// the impl (with the args from `UserArgs`) and apply those to
/// the self type, giving `Foo<?A>`. Finally, we unify that with
/// the self type here, which contains `?A` to be `&'static u32`
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable)]
pub struct UserSelfTy<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
}