1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
use std::fmt::{self, Debug, Display, Formatter};
use rustc_hir::def_id::DefId;
use rustc_session::RemapFileNameExt;
use rustc_span::Span;
use rustc_target::abi::{HasDataLayout, Size};
use crate::mir::interpret::{alloc_range, AllocId, ConstAllocation, ErrorHandled, Scalar};
use crate::mir::{pretty_print_const_value, Promoted};
use crate::ty::print::with_no_trimmed_paths;
use crate::ty::GenericArgsRef;
use crate::ty::ScalarInt;
use crate::ty::{self, print::pretty_print_const, Ty, TyCtxt};
///////////////////////////////////////////////////////////////////////////
/// Evaluated Constants
/// Represents the result of const evaluation via the `eval_to_allocation` query.
/// Not to be confused with `ConstAllocation`, which directly refers to the underlying data!
/// Here we indirect via an `AllocId`.
#[derive(Copy, Clone, HashStable, TyEncodable, TyDecodable, Debug, Hash, Eq, PartialEq)]
pub struct ConstAlloc<'tcx> {
/// The value lives here, at offset 0, and that allocation definitely is an `AllocKind::Memory`
/// (so you can use `AllocMap::unwrap_memory`).
pub alloc_id: AllocId,
pub ty: Ty<'tcx>,
}
/// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for
/// array length computations, enum discriminants and the pattern matching logic.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash)]
#[derive(HashStable, Lift)]
pub enum ConstValue<'tcx> {
/// Used for types with `layout::abi::Scalar` ABI.
///
/// Not using the enum `Value` to encode that this must not be `Uninit`.
Scalar(Scalar),
/// Only for ZSTs.
ZeroSized,
/// Used for references to unsized types with slice tail.
///
/// This is worth an optimized representation since Rust has literals of type `&str` and
/// `&[u8]`. Not having to indirect those through an `AllocId` (or two, if we used `Indirect`)
/// has shown measurable performance improvements on stress tests. We then reuse this
/// optimization for slice-tail types more generally during valtree-to-constval conversion.
Slice {
/// The allocation storing the slice contents.
/// This always points to the beginning of the allocation.
data: ConstAllocation<'tcx>,
/// The metadata field of the reference.
/// This is a "target usize", so we use `u64` as in the interpreter.
meta: u64,
},
/// A value not representable by the other variants; needs to be stored in-memory.
///
/// Must *not* be used for scalars or ZST, but having `&str` or other slices in this variant is fine.
Indirect {
/// The backing memory of the value. May contain more memory than needed for just the value
/// if this points into some other larger ConstValue.
///
/// We use an `AllocId` here instead of a `ConstAllocation<'tcx>` to make sure that when a
/// raw constant (which is basically just an `AllocId`) is turned into a `ConstValue` and
/// back, we can preserve the original `AllocId`.
alloc_id: AllocId,
/// Offset into `alloc`
offset: Size,
},
}
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(ConstValue<'_>, 24);
impl<'tcx> ConstValue<'tcx> {
#[inline]
pub fn try_to_scalar(&self) -> Option<Scalar> {
match *self {
ConstValue::Indirect { .. } | ConstValue::Slice { .. } | ConstValue::ZeroSized => None,
ConstValue::Scalar(val) => Some(val),
}
}
pub fn try_to_scalar_int(&self) -> Option<ScalarInt> {
self.try_to_scalar()?.try_to_int().ok()
}
pub fn try_to_bits(&self, size: Size) -> Option<u128> {
self.try_to_scalar_int()?.to_bits(size).ok()
}
pub fn try_to_bool(&self) -> Option<bool> {
self.try_to_scalar_int()?.try_into().ok()
}
pub fn try_to_target_usize(&self, tcx: TyCtxt<'tcx>) -> Option<u64> {
self.try_to_scalar_int()?.try_to_target_usize(tcx).ok()
}
pub fn try_to_bits_for_ty(
&self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
) -> Option<u128> {
let size = tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
self.try_to_bits(size)
}
pub fn from_bool(b: bool) -> Self {
ConstValue::Scalar(Scalar::from_bool(b))
}
pub fn from_u64(i: u64) -> Self {
ConstValue::Scalar(Scalar::from_u64(i))
}
pub fn from_u128(i: u128) -> Self {
ConstValue::Scalar(Scalar::from_u128(i))
}
pub fn from_target_usize(i: u64, cx: &impl HasDataLayout) -> Self {
ConstValue::Scalar(Scalar::from_target_usize(i, cx))
}
/// Must only be called on constants of type `&str` or `&[u8]`!
pub fn try_get_slice_bytes_for_diagnostics(&self, tcx: TyCtxt<'tcx>) -> Option<&'tcx [u8]> {
let (data, start, end) = match self {
ConstValue::Scalar(_) | ConstValue::ZeroSized => {
bug!("`try_get_slice_bytes` on non-slice constant")
}
&ConstValue::Slice { data, meta } => (data, 0, meta),
&ConstValue::Indirect { alloc_id, offset } => {
// The reference itself is stored behind an indirection.
// Load the reference, and then load the actual slice contents.
let a = tcx.global_alloc(alloc_id).unwrap_memory().inner();
let ptr_size = tcx.data_layout.pointer_size;
if a.size() < offset + 2 * ptr_size {
// (partially) dangling reference
return None;
}
// Read the wide pointer components.
let ptr = a
.read_scalar(
&tcx,
alloc_range(offset, ptr_size),
/* read_provenance */ true,
)
.ok()?;
let ptr = ptr.to_pointer(&tcx).ok()?;
let len = a
.read_scalar(
&tcx,
alloc_range(offset + ptr_size, ptr_size),
/* read_provenance */ false,
)
.ok()?;
let len = len.to_target_usize(&tcx).ok()?;
if len == 0 {
return Some(&[]);
}
// Non-empty slice, must have memory. We know this is a relative pointer.
let (inner_prov, offset) = ptr.into_parts();
let data = tcx.global_alloc(inner_prov?.alloc_id()).unwrap_memory();
(data, offset.bytes(), offset.bytes() + len)
}
};
// This is for diagnostics only, so we are okay to use `inspect_with_uninit_and_ptr_outside_interpreter`.
let start = start.try_into().unwrap();
let end = end.try_into().unwrap();
Some(data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end))
}
/// Check if a constant may contain provenance information. This is used by MIR opts.
/// Can return `true` even if there is no provenance.
pub fn may_have_provenance(&self, tcx: TyCtxt<'tcx>, size: Size) -> bool {
match *self {
ConstValue::ZeroSized | ConstValue::Scalar(Scalar::Int(_)) => return false,
ConstValue::Scalar(Scalar::Ptr(..)) => return true,
// It's hard to find out the part of the allocation we point to;
// just conservatively check everything.
ConstValue::Slice { data, meta: _ } => !data.inner().provenance().ptrs().is_empty(),
ConstValue::Indirect { alloc_id, offset } => !tcx
.global_alloc(alloc_id)
.unwrap_memory()
.inner()
.provenance()
.range_empty(super::AllocRange::from(offset..offset + size), &tcx),
}
}
}
///////////////////////////////////////////////////////////////////////////
/// Constants
#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
#[derive(TypeFoldable, TypeVisitable, Lift)]
pub enum Const<'tcx> {
/// This constant came from the type system.
///
/// Any way of turning `ty::Const` into `ConstValue` should go through `valtree_to_const_val`;
/// this ensures that we consistently produce "clean" values without data in the padding or
/// anything like that.
Ty(ty::Const<'tcx>),
/// An unevaluated mir constant which is not part of the type system.
///
/// Note that `Ty(ty::ConstKind::Unevaluated)` and this variant are *not* identical! `Ty` will
/// always flow through a valtree, so all data not captured in the valtree is lost. This variant
/// directly uses the evaluated result of the given constant, including e.g. data stored in
/// padding.
Unevaluated(UnevaluatedConst<'tcx>, Ty<'tcx>),
/// This constant cannot go back into the type system, as it represents
/// something the type system cannot handle (e.g. pointers).
Val(ConstValue<'tcx>, Ty<'tcx>),
}
impl<'tcx> Const<'tcx> {
pub fn identity_unevaluated(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::EarlyBinder<Const<'tcx>> {
ty::EarlyBinder::bind(Const::Unevaluated(
UnevaluatedConst {
def: def_id,
args: ty::GenericArgs::identity_for_item(tcx, def_id),
promoted: None,
},
tcx.type_of(def_id).skip_binder(),
))
}
#[inline(always)]
pub fn ty(&self) -> Ty<'tcx> {
match self {
Const::Ty(c) => c.ty(),
Const::Val(_, ty) | Const::Unevaluated(_, ty) => *ty,
}
}
#[inline]
pub fn try_to_scalar(self) -> Option<Scalar> {
match self {
Const::Ty(c) => match c.kind() {
ty::ConstKind::Value(valtree) if c.ty().is_primitive() => {
// A valtree of a type where leaves directly represent the scalar const value.
Some(valtree.unwrap_leaf().into())
}
_ => None,
},
Const::Val(val, _) => val.try_to_scalar(),
Const::Unevaluated(..) => None,
}
}
#[inline]
pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
self.try_to_scalar()?.try_to_int().ok()
}
#[inline]
pub fn try_to_bits(self, size: Size) -> Option<u128> {
self.try_to_scalar_int()?.to_bits(size).ok()
}
#[inline]
pub fn try_to_bool(self) -> Option<bool> {
self.try_to_scalar_int()?.try_into().ok()
}
#[inline]
pub fn eval(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Option<Span>,
) -> Result<ConstValue<'tcx>, ErrorHandled> {
match self {
Const::Ty(c) => {
// We want to consistently have a "clean" value for type system constants (i.e., no
// data hidden in the padding), so we always go through a valtree here.
let val = c.eval(tcx, param_env, span)?;
Ok(tcx.valtree_to_const_val((self.ty(), val)))
}
Const::Unevaluated(uneval, _) => {
// FIXME: We might want to have a `try_eval`-like function on `Unevaluated`
tcx.const_eval_resolve(param_env, uneval, span)
}
Const::Val(val, _) => Ok(val),
}
}
/// Normalizes the constant to a value or an error if possible.
#[inline]
pub fn normalize(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Self {
match self.eval(tcx, param_env, None) {
Ok(val) => Self::Val(val, self.ty()),
Err(ErrorHandled::Reported(guar, _span)) => {
Self::Ty(ty::Const::new_error(tcx, guar.into(), self.ty()))
}
Err(ErrorHandled::TooGeneric(_span)) => self,
}
}
#[inline]
pub fn try_eval_scalar(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<Scalar> {
match self {
Const::Ty(c) if c.ty().is_primitive() => {
// Avoid the `valtree_to_const_val` query. Can only be done on primitive types that
// are valtree leaves, and *not* on references. (References should return the
// pointer here, which valtrees don't represent.)
let val = c.eval(tcx, param_env, None).ok()?;
Some(val.unwrap_leaf().into())
}
_ => self.eval(tcx, param_env, None).ok()?.try_to_scalar(),
}
}
#[inline]
pub fn try_eval_scalar_int(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<ScalarInt> {
self.try_eval_scalar(tcx, param_env)?.try_to_int().ok()
}
#[inline]
pub fn try_eval_bits(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u128> {
let int = self.try_eval_scalar_int(tcx, param_env)?;
let size =
tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(self.ty())).ok()?.size;
int.to_bits(size).ok()
}
/// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
#[inline]
pub fn eval_bits(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u128 {
self.try_eval_bits(tcx, param_env)
.unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", self.ty(), self))
}
#[inline]
pub fn try_eval_target_usize(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<u64> {
self.try_eval_scalar_int(tcx, param_env)?.try_to_target_usize(tcx).ok()
}
#[inline]
/// Panics if the value cannot be evaluated or doesn't contain a valid `usize`.
pub fn eval_target_usize(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u64 {
self.try_eval_target_usize(tcx, param_env)
.unwrap_or_else(|| bug!("expected usize, got {:#?}", self))
}
#[inline]
pub fn try_eval_bool(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
self.try_eval_scalar_int(tcx, param_env)?.try_into().ok()
}
#[inline]
pub fn from_value(val: ConstValue<'tcx>, ty: Ty<'tcx>) -> Self {
Self::Val(val, ty)
}
pub fn from_bits(
tcx: TyCtxt<'tcx>,
bits: u128,
param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Self {
let size = tcx
.layout_of(param_env_ty)
.unwrap_or_else(|e| {
bug!("could not compute layout for {:?}: {:?}", param_env_ty.value, e)
})
.size;
let cv = ConstValue::Scalar(Scalar::from_uint(bits, size));
Self::Val(cv, param_env_ty.value)
}
#[inline]
pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
let cv = ConstValue::from_bool(v);
Self::Val(cv, tcx.types.bool)
}
#[inline]
pub fn zero_sized(ty: Ty<'tcx>) -> Self {
let cv = ConstValue::ZeroSized;
Self::Val(cv, ty)
}
pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
let ty = tcx.types.usize;
Self::from_bits(tcx, n as u128, ty::ParamEnv::empty().and(ty))
}
#[inline]
pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self {
let val = ConstValue::Scalar(s);
Self::Val(val, ty)
}
pub fn from_ty_const(c: ty::Const<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
match c.kind() {
ty::ConstKind::Value(valtree) => {
// Make sure that if `c` is normalized, then the return value is normalized.
let const_val = tcx.valtree_to_const_val((c.ty(), valtree));
Self::Val(const_val, c.ty())
}
_ => Self::Ty(c),
}
}
/// Return true if any evaluation of this constant always returns the same value,
/// taking into account even pointer identity tests.
pub fn is_deterministic(&self) -> bool {
// Some constants may generate fresh allocations for pointers they contain,
// so using the same constant twice can yield two different results:
// - valtrees purposefully generate new allocations
// - ConstValue::Slice also generate new allocations
match self {
Const::Ty(c) => match c.kind() {
ty::ConstKind::Param(..) => true,
// A valtree may be a reference. Valtree references correspond to a
// different allocation each time they are evaluated. Valtrees for primitive
// types are fine though.
ty::ConstKind::Value(_) => c.ty().is_primitive(),
ty::ConstKind::Unevaluated(..) | ty::ConstKind::Expr(..) => false,
// This can happen if evaluation of a constant failed. The result does not matter
// much since compilation is doomed.
ty::ConstKind::Error(..) => false,
// Should not appear in runtime MIR.
ty::ConstKind::Infer(..)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(..) => bug!(),
},
Const::Unevaluated(..) => false,
// If the same slice appears twice in the MIR, we cannot guarantee that we will
// give the same `AllocId` to the data.
Const::Val(ConstValue::Slice { .. }, _) => false,
Const::Val(
ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. },
_,
) => true,
}
}
}
/// An unevaluated (potentially generic) constant used in MIR.
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(Hash, HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct UnevaluatedConst<'tcx> {
pub def: DefId,
pub args: GenericArgsRef<'tcx>,
pub promoted: Option<Promoted>,
}
impl<'tcx> UnevaluatedConst<'tcx> {
#[inline]
pub fn shrink(self) -> ty::UnevaluatedConst<'tcx> {
assert_eq!(self.promoted, None);
ty::UnevaluatedConst { def: self.def, args: self.args }
}
}
impl<'tcx> UnevaluatedConst<'tcx> {
#[inline]
pub fn new(def: DefId, args: GenericArgsRef<'tcx>) -> UnevaluatedConst<'tcx> {
UnevaluatedConst { def, args, promoted: Default::default() }
}
#[inline]
pub fn from_instance(instance: ty::Instance<'tcx>) -> Self {
UnevaluatedConst::new(instance.def_id(), instance.args)
}
}
impl<'tcx> Display for Const<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
match *self {
Const::Ty(c) => pretty_print_const(c, fmt, true),
Const::Val(val, ty) => pretty_print_const_value(val, ty, fmt),
// FIXME(valtrees): Correctly print mir constants.
Const::Unevaluated(c, _ty) => {
ty::tls::with(move |tcx| {
let c = tcx.lift(c).unwrap();
// Matches `GlobalId` printing.
let instance =
with_no_trimmed_paths!(tcx.def_path_str_with_args(c.def, c.args));
write!(fmt, "{instance}")?;
if let Some(promoted) = c.promoted {
write!(fmt, "::{promoted:?}")?;
}
Ok(())
})
}
}
}
}
///////////////////////////////////////////////////////////////////////////
/// Const-related utilities
impl<'tcx> TyCtxt<'tcx> {
pub fn span_as_caller_location(self, span: Span) -> ConstValue<'tcx> {
let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
let caller = self.sess.source_map().lookup_char_pos(topmost.lo());
self.const_caller_location(
rustc_span::symbol::Symbol::intern(
&caller.file.name.for_codegen(self.sess).to_string_lossy(),
),
caller.line as u32,
caller.col_display as u32 + 1,
)
}
}