1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
//! Resolution of mixing rlibs and dylibs
//!
//! When producing a final artifact, such as a dynamic library, the compiler has
//! a choice between linking an rlib or linking a dylib of all upstream
//! dependencies. The linking phase must guarantee, however, that a library only
//! show up once in the object file. For example, it is illegal for library A to
//! be statically linked to B and C in separate dylibs, and then link B and C
//! into a crate D (because library A appears twice).
//!
//! The job of this module is to calculate what format each upstream crate
//! should be used when linking each output type requested in this session. This
//! generally follows this set of rules:
//!
//! 1. Each library must appear exactly once in the output.
//! 2. Each rlib contains only one library (it's just an object file)
//! 3. Each dylib can contain more than one library (due to static linking),
//! and can also bring in many dynamic dependencies.
//!
//! With these constraints in mind, it's generally a very difficult problem to
//! find a solution that's not "all rlibs" or "all dylibs". I have suspicions
//! that NP-ness may come into the picture here...
//!
//! The current selection algorithm below looks mostly similar to:
//!
//! 1. If static linking is required, then require all upstream dependencies
//! to be available as rlibs. If not, generate an error.
//! 2. If static linking is requested (generating an executable), then
//! attempt to use all upstream dependencies as rlibs. If any are not
//! found, bail out and continue to step 3.
//! 3. Static linking has failed, at least one library must be dynamically
//! linked. Apply a heuristic by greedily maximizing the number of
//! dynamically linked libraries.
//! 4. Each upstream dependency available as a dynamic library is
//! registered. The dependencies all propagate, adding to a map. It is
//! possible for a dylib to add a static library as a dependency, but it
//! is illegal for two dylibs to add the same static library as a
//! dependency. The same dylib can be added twice. Additionally, it is
//! illegal to add a static dependency when it was previously found as a
//! dylib (and vice versa)
//! 5. After all dynamic dependencies have been traversed, re-traverse the
//! remaining dependencies and add them statically (if they haven't been
//! added already).
//!
//! While not perfect, this algorithm should help support use-cases such as leaf
//! dependencies being static while the larger tree of inner dependencies are
//! all dynamic. This isn't currently very well battle tested, so it will likely
//! fall short in some use cases.
//!
//! Currently, there is no way to specify the preference of linkage with a
//! particular library (other than a global dynamic/static switch).
//! Additionally, the algorithm is geared towards finding *any* solution rather
//! than finding a number of solutions (there are normally quite a few).
use crate::creader::CStore;
use crate::errors::{
BadPanicStrategy, CrateDepMultiple, IncompatiblePanicInDropStrategy, LibRequired,
RequiredPanicStrategy, RlibRequired, RustcLibRequired, TwoPanicRuntimes,
};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::CrateNum;
use rustc_middle::middle::dependency_format::{Dependencies, DependencyList, Linkage};
use rustc_middle::ty::TyCtxt;
use rustc_session::config::CrateType;
use rustc_session::cstore::CrateDepKind;
use rustc_session::cstore::LinkagePreference::{self, RequireDynamic, RequireStatic};
pub(crate) fn calculate(tcx: TyCtxt<'_>) -> Dependencies {
tcx.crate_types()
.iter()
.map(|&ty| {
let linkage = calculate_type(tcx, ty);
verify_ok(tcx, &linkage);
(ty, linkage)
})
.collect::<Vec<_>>()
}
fn calculate_type(tcx: TyCtxt<'_>, ty: CrateType) -> DependencyList {
let sess = &tcx.sess;
if !sess.opts.output_types.should_codegen() {
return Vec::new();
}
let preferred_linkage = match ty {
// Generating a dylib without `-C prefer-dynamic` means that we're going
// to try to eagerly statically link all dependencies. This is normally
// done for end-product dylibs, not intermediate products.
//
// Treat cdylibs and staticlibs similarly. If `-C prefer-dynamic` is set,
// the caller may be code-size conscious, but without it, it makes sense
// to statically link a cdylib or staticlib. For staticlibs we use
// `-Z staticlib-prefer-dynamic` for now. This may be merged into
// `-C prefer-dynamic` in the future.
CrateType::Dylib | CrateType::Cdylib => {
if sess.opts.cg.prefer_dynamic {
Linkage::Dynamic
} else {
Linkage::Static
}
}
CrateType::Staticlib => {
if sess.opts.unstable_opts.staticlib_prefer_dynamic {
Linkage::Dynamic
} else {
Linkage::Static
}
}
// If the global prefer_dynamic switch is turned off, or the final
// executable will be statically linked, prefer static crate linkage.
CrateType::Executable if !sess.opts.cg.prefer_dynamic || sess.crt_static(Some(ty)) => {
Linkage::Static
}
CrateType::Executable => Linkage::Dynamic,
// proc-macro crates are mostly cdylibs, but we also need metadata.
CrateType::ProcMacro => Linkage::Static,
// No linkage happens with rlibs, we just needed the metadata (which we
// got long ago), so don't bother with anything.
CrateType::Rlib => Linkage::NotLinked,
};
match preferred_linkage {
// If the crate is not linked, there are no link-time dependencies.
Linkage::NotLinked => return Vec::new(),
Linkage::Static => {
// Attempt static linkage first. For dylibs and executables, we may be
// able to retry below with dynamic linkage.
if let Some(v) = attempt_static(tcx) {
return v;
}
// Static executables must have all static dependencies.
// If any are not found, generate some nice pretty errors.
if (ty == CrateType::Staticlib && !sess.opts.unstable_opts.staticlib_allow_rdylib_deps)
|| (ty == CrateType::Executable
&& sess.crt_static(Some(ty))
&& !sess.target.crt_static_allows_dylibs)
{
for &cnum in tcx.crates(()).iter() {
if tcx.dep_kind(cnum).macros_only() {
continue;
}
let src = tcx.used_crate_source(cnum);
if src.rlib.is_some() {
continue;
}
sess.dcx().emit_err(RlibRequired { crate_name: tcx.crate_name(cnum) });
}
return Vec::new();
}
}
Linkage::Dynamic | Linkage::IncludedFromDylib => {}
}
let mut formats = FxHashMap::default();
// Sweep all crates for found dylibs. Add all dylibs, as well as their
// dependencies, ensuring there are no conflicts. The only valid case for a
// dependency to be relied upon twice is for both cases to rely on a dylib.
for &cnum in tcx.crates(()).iter() {
if tcx.dep_kind(cnum).macros_only() {
continue;
}
let name = tcx.crate_name(cnum);
let src = tcx.used_crate_source(cnum);
if src.dylib.is_some() {
info!("adding dylib: {}", name);
add_library(tcx, cnum, RequireDynamic, &mut formats);
let deps = tcx.dylib_dependency_formats(cnum);
for &(depnum, style) in deps.iter() {
info!("adding {:?}: {}", style, tcx.crate_name(depnum));
add_library(tcx, depnum, style, &mut formats);
}
}
}
// Collect what we've got so far in the return vector.
let last_crate = tcx.crates(()).len();
let mut ret = (1..last_crate + 1)
.map(|cnum| match formats.get(&CrateNum::new(cnum)) {
Some(&RequireDynamic) => Linkage::Dynamic,
Some(&RequireStatic) => Linkage::IncludedFromDylib,
None => Linkage::NotLinked,
})
.collect::<Vec<_>>();
// Run through the dependency list again, and add any missing libraries as
// static libraries.
//
// If the crate hasn't been included yet and it's not actually required
// (e.g., it's an allocator) then we skip it here as well.
for &cnum in tcx.crates(()).iter() {
let src = tcx.used_crate_source(cnum);
if src.dylib.is_none()
&& !formats.contains_key(&cnum)
&& tcx.dep_kind(cnum) == CrateDepKind::Explicit
{
assert!(src.rlib.is_some() || src.rmeta.is_some());
info!("adding staticlib: {}", tcx.crate_name(cnum));
add_library(tcx, cnum, RequireStatic, &mut formats);
ret[cnum.as_usize() - 1] = Linkage::Static;
}
}
// We've gotten this far because we're emitting some form of a final
// artifact which means that we may need to inject dependencies of some
// form.
//
// Things like allocators and panic runtimes may not have been activated
// quite yet, so do so here.
activate_injected_dep(CStore::from_tcx(tcx).injected_panic_runtime(), &mut ret, &|cnum| {
tcx.is_panic_runtime(cnum)
});
// When dylib B links to dylib A, then when using B we must also link to A.
// It could be the case, however, that the rlib for A is present (hence we
// found metadata), but the dylib for A has since been removed.
//
// For situations like this, we perform one last pass over the dependencies,
// making sure that everything is available in the requested format.
for (cnum, kind) in ret.iter().enumerate() {
let cnum = CrateNum::new(cnum + 1);
let src = tcx.used_crate_source(cnum);
match *kind {
Linkage::NotLinked | Linkage::IncludedFromDylib => {}
Linkage::Static if src.rlib.is_some() => continue,
Linkage::Dynamic if src.dylib.is_some() => continue,
kind => {
let kind = match kind {
Linkage::Static => "rlib",
_ => "dylib",
};
let crate_name = tcx.crate_name(cnum);
if crate_name.as_str().starts_with("rustc_") {
sess.dcx().emit_err(RustcLibRequired { crate_name, kind });
} else {
sess.dcx().emit_err(LibRequired { crate_name, kind });
}
}
}
}
ret
}
fn add_library(
tcx: TyCtxt<'_>,
cnum: CrateNum,
link: LinkagePreference,
m: &mut FxHashMap<CrateNum, LinkagePreference>,
) {
match m.get(&cnum) {
Some(&link2) => {
// If the linkages differ, then we'd have two copies of the library
// if we continued linking. If the linkages are both static, then we
// would also have two copies of the library (static from two
// different locations).
//
// This error is probably a little obscure, but I imagine that it
// can be refined over time.
if link2 != link || link == RequireStatic {
tcx.dcx().emit_err(CrateDepMultiple { crate_name: tcx.crate_name(cnum) });
}
}
None => {
m.insert(cnum, link);
}
}
}
fn attempt_static(tcx: TyCtxt<'_>) -> Option<DependencyList> {
let all_crates_available_as_rlib = tcx
.crates(())
.iter()
.copied()
.filter_map(|cnum| {
if tcx.dep_kind(cnum).macros_only() {
return None;
}
Some(tcx.used_crate_source(cnum).rlib.is_some())
})
.all(|is_rlib| is_rlib);
if !all_crates_available_as_rlib {
return None;
}
// All crates are available in an rlib format, so we're just going to link
// everything in explicitly so long as it's actually required.
let mut ret = tcx
.crates(())
.iter()
.map(|&cnum| match tcx.dep_kind(cnum) {
CrateDepKind::Explicit => Linkage::Static,
CrateDepKind::MacrosOnly | CrateDepKind::Implicit => Linkage::NotLinked,
})
.collect::<Vec<_>>();
// Our allocator/panic runtime may not have been linked above if it wasn't
// explicitly linked, which is the case for any injected dependency. Handle
// that here and activate them.
activate_injected_dep(CStore::from_tcx(tcx).injected_panic_runtime(), &mut ret, &|cnum| {
tcx.is_panic_runtime(cnum)
});
Some(ret)
}
// Given a list of how to link upstream dependencies so far, ensure that an
// injected dependency is activated. This will not do anything if one was
// transitively included already (e.g., via a dylib or explicitly so).
//
// If an injected dependency was not found then we're guaranteed the
// metadata::creader module has injected that dependency (not listed as
// a required dependency) in one of the session's field. If this field is not
// set then this compilation doesn't actually need the dependency and we can
// also skip this step entirely.
fn activate_injected_dep(
injected: Option<CrateNum>,
list: &mut DependencyList,
replaces_injected: &dyn Fn(CrateNum) -> bool,
) {
for (i, slot) in list.iter().enumerate() {
let cnum = CrateNum::new(i + 1);
if !replaces_injected(cnum) {
continue;
}
if *slot != Linkage::NotLinked {
return;
}
}
if let Some(injected) = injected {
let idx = injected.as_usize() - 1;
assert_eq!(list[idx], Linkage::NotLinked);
list[idx] = Linkage::Static;
}
}
// After the linkage for a crate has been determined we need to verify that
// there's only going to be one allocator in the output.
fn verify_ok(tcx: TyCtxt<'_>, list: &[Linkage]) {
let sess = &tcx.sess;
if list.is_empty() {
return;
}
let mut panic_runtime = None;
for (i, linkage) in list.iter().enumerate() {
if let Linkage::NotLinked = *linkage {
continue;
}
let cnum = CrateNum::new(i + 1);
if tcx.is_panic_runtime(cnum) {
if let Some((prev, _)) = panic_runtime {
let prev_name = tcx.crate_name(prev);
let cur_name = tcx.crate_name(cnum);
sess.dcx().emit_err(TwoPanicRuntimes { prev_name, cur_name });
}
panic_runtime = Some((
cnum,
tcx.required_panic_strategy(cnum).unwrap_or_else(|| {
bug!("cannot determine panic strategy of a panic runtime");
}),
));
}
}
// If we found a panic runtime, then we know by this point that it's the
// only one, but we perform validation here that all the panic strategy
// compilation modes for the whole DAG are valid.
if let Some((runtime_cnum, found_strategy)) = panic_runtime {
let desired_strategy = sess.panic_strategy();
// First up, validate that our selected panic runtime is indeed exactly
// our same strategy.
if found_strategy != desired_strategy {
sess.dcx().emit_err(BadPanicStrategy {
runtime: tcx.crate_name(runtime_cnum),
strategy: desired_strategy,
});
}
// Next up, verify that all other crates are compatible with this panic
// strategy. If the dep isn't linked, we ignore it, and if our strategy
// is abort then it's compatible with everything. Otherwise all crates'
// panic strategy must match our own.
for (i, linkage) in list.iter().enumerate() {
if let Linkage::NotLinked = *linkage {
continue;
}
let cnum = CrateNum::new(i + 1);
if cnum == runtime_cnum || tcx.is_compiler_builtins(cnum) {
continue;
}
if let Some(found_strategy) = tcx.required_panic_strategy(cnum)
&& desired_strategy != found_strategy
{
sess.dcx().emit_err(RequiredPanicStrategy {
crate_name: tcx.crate_name(cnum),
found_strategy,
desired_strategy,
});
}
let found_drop_strategy = tcx.panic_in_drop_strategy(cnum);
if tcx.sess.opts.unstable_opts.panic_in_drop != found_drop_strategy {
sess.dcx().emit_err(IncompatiblePanicInDropStrategy {
crate_name: tcx.crate_name(cnum),
found_strategy: found_drop_strategy,
desired_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
});
}
}
}
}