1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
use crate::lints::{DropGlue, DropTraitConstraintsDiag};
use crate::LateContext;
use crate::LateLintPass;
use crate::LintContext;
use rustc_hir as hir;
use rustc_span::symbol::sym;
declare_lint! {
/// The `drop_bounds` lint checks for generics with `std::ops::Drop` as
/// bounds.
///
/// ### Example
///
/// ```rust
/// fn foo<T: Drop>() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A generic trait bound of the form `T: Drop` is most likely misleading
/// and not what the programmer intended (they probably should have used
/// `std::mem::needs_drop` instead).
///
/// `Drop` bounds do not actually indicate whether a type can be trivially
/// dropped or not, because a composite type containing `Drop` types does
/// not necessarily implement `Drop` itself. Naïvely, one might be tempted
/// to write an implementation that assumes that a type can be trivially
/// dropped while also supplying a specialization for `T: Drop` that
/// actually calls the destructor. However, this breaks down e.g. when `T`
/// is `String`, which does not implement `Drop` itself but contains a
/// `Vec`, which does implement `Drop`, so assuming `T` can be trivially
/// dropped would lead to a memory leak here.
///
/// Furthermore, the `Drop` trait only contains one method, `Drop::drop`,
/// which may not be called explicitly in user code (`E0040`), so there is
/// really no use case for using `Drop` in trait bounds, save perhaps for
/// some obscure corner cases, which can use `#[allow(drop_bounds)]`.
pub DROP_BOUNDS,
Warn,
"bounds of the form `T: Drop` are most likely incorrect"
}
declare_lint! {
/// The `dyn_drop` lint checks for trait objects with `std::ops::Drop`.
///
/// ### Example
///
/// ```rust
/// fn foo(_x: Box<dyn Drop>) {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A trait object bound of the form `dyn Drop` is most likely misleading
/// and not what the programmer intended.
///
/// `Drop` bounds do not actually indicate whether a type can be trivially
/// dropped or not, because a composite type containing `Drop` types does
/// not necessarily implement `Drop` itself. Naïvely, one might be tempted
/// to write a deferred drop system, to pull cleaning up memory out of a
/// latency-sensitive code path, using `dyn Drop` trait objects. However,
/// this breaks down e.g. when `T` is `String`, which does not implement
/// `Drop`, but should probably be accepted.
///
/// To write a trait object bound that accepts anything, use a placeholder
/// trait with a blanket implementation.
///
/// ```rust
/// trait Placeholder {}
/// impl<T> Placeholder for T {}
/// fn foo(_x: Box<dyn Placeholder>) {}
/// ```
pub DYN_DROP,
Warn,
"trait objects of the form `dyn Drop` are useless"
}
declare_lint_pass!(
/// Lint for bounds of the form `T: Drop`, which usually
/// indicate an attempt to emulate `std::mem::needs_drop`.
DropTraitConstraints => [DROP_BOUNDS, DYN_DROP]
);
impl<'tcx> LateLintPass<'tcx> for DropTraitConstraints {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
use rustc_middle::ty::ClauseKind;
let predicates = cx.tcx.explicit_predicates_of(item.owner_id);
for &(predicate, span) in predicates.predicates {
let ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() else {
continue;
};
let def_id = trait_predicate.trait_ref.def_id;
if cx.tcx.lang_items().drop_trait() == Some(def_id) {
// Explicitly allow `impl Drop`, a drop-guards-as-unnameable-type pattern.
if trait_predicate.trait_ref.self_ty().is_impl_trait() {
continue;
}
let Some(def_id) = cx.tcx.get_diagnostic_item(sym::needs_drop) else { return };
cx.emit_span_lint(
DROP_BOUNDS,
span,
DropTraitConstraintsDiag { predicate, tcx: cx.tcx, def_id },
);
}
}
}
fn check_ty(&mut self, cx: &LateContext<'_>, ty: &'tcx hir::Ty<'tcx>) {
let hir::TyKind::TraitObject(bounds, _lifetime, _syntax) = &ty.kind else { return };
for bound in &bounds[..] {
let def_id = bound.trait_ref.trait_def_id();
if cx.tcx.lang_items().drop_trait() == def_id {
let Some(def_id) = cx.tcx.get_diagnostic_item(sym::needs_drop) else { return };
cx.emit_span_lint(DYN_DROP, bound.span, DropGlue { tcx: cx.tcx, def_id });
}
}
}
}