1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
//! # Lattice variables
//!
//! Generic code for operating on [lattices] of inference variables
//! that are characterized by an upper- and lower-bound.
//!
//! The code is defined quite generically so that it can be
//! applied both to type variables, which represent types being inferred,
//! and fn variables, which represent function types being inferred.
//! (It may eventually be applied to their types as well.)
//! In some cases, the functions are also generic with respect to the
//! operation on the lattice (GLB vs LUB).
//!
//! ## Note
//!
//! Although all the functions are generic, for simplicity, comments in the source code
//! generally refer to type variables and the LUB operation.
//!
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
use super::combine::ObligationEmittingRelation;
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::infer::{DefineOpaqueTypes, InferCtxt};
use crate::traits::ObligationCause;
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::TyVar;
use rustc_middle::ty::{self, Ty};
/// Trait for returning data about a lattice, and for abstracting
/// over the "direction" of the lattice operation (LUB/GLB).
///
/// GLB moves "down" the lattice (to smaller values); LUB moves
/// "up" the lattice (to bigger values).
pub trait LatticeDir<'f, 'tcx>: ObligationEmittingRelation<'tcx> {
fn infcx(&self) -> &'f InferCtxt<'tcx>;
fn cause(&self) -> &ObligationCause<'tcx>;
fn define_opaque_types(&self) -> DefineOpaqueTypes;
// Relates the type `v` to `a` and `b` such that `v` represents
// the LUB/GLB of `a` and `b` as appropriate.
//
// Subtle hack: ordering *may* be significant here. This method
// relates `v` to `a` first, which may help us to avoid unnecessary
// type variable obligations. See caller for details.
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()>;
}
/// Relates two types using a given lattice.
#[instrument(skip(this), level = "debug")]
pub fn super_lattice_tys<'a, 'tcx: 'a, L>(
this: &mut L,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
L: LatticeDir<'a, 'tcx>,
{
debug!("{}", this.tag());
if a == b {
return Ok(a);
}
let infcx = this.infcx();
let a = infcx.inner.borrow_mut().type_variables().replace_if_possible(a);
let b = infcx.inner.borrow_mut().type_variables().replace_if_possible(b);
match (a.kind(), b.kind()) {
// If one side is known to be a variable and one is not,
// create a variable (`v`) to represent the LUB. Make sure to
// relate `v` to the non-type-variable first (by passing it
// first to `relate_bound`). Otherwise, we would produce a
// subtype obligation that must then be processed.
//
// Example: if the LHS is a type variable, and RHS is
// `Box<i32>`, then we current compare `v` to the RHS first,
// which will instantiate `v` with `Box<i32>`. Then when `v`
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
// But if we did in reverse order, we would create a `v <:
// LHS` (or vice versa) constraint and then instantiate
// `v`. This would require further processing to achieve same
// end-result; in particular, this screws up some of the logic
// in coercion, which expects LUB to figure out that the LHS
// is (e.g.) `Box<i32>`. A more obvious solution might be to
// iterate on the subtype obligations that are returned, but I
// think this suffices. -nmatsakis
(&ty::Infer(TyVar(..)), _) => {
let v = infcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::LatticeVariable,
span: this.cause().span,
});
this.relate_bound(v, b, a)?;
Ok(v)
}
(_, &ty::Infer(TyVar(..))) => {
let v = infcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::LatticeVariable,
span: this.cause().span,
});
this.relate_bound(v, a, b)?;
Ok(v)
}
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id => infcx.super_combine_tys(this, a, b),
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
if this.define_opaque_types() == DefineOpaqueTypes::Yes
&& def_id.is_local()
&& !this.infcx().next_trait_solver() =>
{
this.register_obligations(
infcx.handle_opaque_type(a, b, this.cause(), this.param_env())?.obligations,
);
Ok(a)
}
_ => infcx.super_combine_tys(this, a, b),
}
}