1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
pub use at::DefineOpaqueTypes;
pub use freshen::TypeFreshener;
pub use lexical_region_resolve::RegionResolutionError;
pub use relate::combine::CombineFields;
pub use relate::combine::ObligationEmittingRelation;
pub use relate::StructurallyRelateAliases;
pub use rustc_middle::ty::IntVarValue;
pub use BoundRegionConversionTime::*;
pub use RegionVariableOrigin::*;
pub use SubregionOrigin::*;
pub use ValuePairs::*;

use crate::traits::{
    self, ObligationCause, ObligationInspector, PredicateObligations, TraitEngine, TraitEngineExt,
};
use error_reporting::TypeErrCtxt;
use free_regions::RegionRelations;
use lexical_region_resolve::LexicalRegionResolutions;
use opaque_types::OpaqueTypeStorage;
use region_constraints::{GenericKind, VarInfos, VerifyBound};
use region_constraints::{RegionConstraintCollector, RegionConstraintStorage};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::undo_log::Rollback;
use rustc_data_structures::unify as ut;
use rustc_errors::{Diag, DiagCtxt, ErrorGuaranteed};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_middle::infer::unify_key::ConstVariableValue;
use rustc_middle::infer::unify_key::EffectVarValue;
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
use rustc_middle::infer::unify_key::{ConstVidKey, EffectVidKey};
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::traits::{select, DefiningAnchor};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BoundVarReplacerDelegate;
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt};
use rustc_middle::ty::{ConstVid, EffectVid, FloatVid, IntVid, TyVid};
use rustc_middle::ty::{GenericArg, GenericArgKind, GenericArgs, GenericArgsRef};
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use snapshot::undo_log::InferCtxtUndoLogs;
use std::cell::{Cell, RefCell};
use std::fmt;
use type_variable::{TypeVariableOrigin, TypeVariableOriginKind};

pub mod at;
pub mod canonical;
pub mod error_reporting;
pub mod free_regions;
mod freshen;
mod lexical_region_resolve;
pub mod opaque_types;
pub mod outlives;
mod projection;
pub mod region_constraints;
mod relate;
pub mod resolve;
pub(crate) mod snapshot;
pub mod type_variable;

#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
    pub value: T,
    pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;

pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"

pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
    ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
>;

/// This type contains all the things within `InferCtxt` that sit within a
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
/// operations are hot enough that we want only one call to `borrow_mut` per
/// call to `start_snapshot` and `rollback_to`.
#[derive(Clone)]
pub struct InferCtxtInner<'tcx> {
    undo_log: InferCtxtUndoLogs<'tcx>,

    /// Cache for projections.
    ///
    /// This cache is snapshotted along with the infcx.
    projection_cache: traits::ProjectionCacheStorage<'tcx>,

    /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
    /// that might instantiate a general type variable have an order,
    /// represented by its upper and lower bounds.
    type_variable_storage: type_variable::TypeVariableStorage<'tcx>,

    /// Map from const parameter variable to the kind of const it represents.
    const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,

    /// Map from integral variable to the kind of integer it represents.
    int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,

    /// Map from floating variable to the kind of float it represents.
    float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,

    /// Map from effect variable to the effect param it represents.
    effect_unification_storage: ut::UnificationTableStorage<EffectVidKey<'tcx>>,

    /// Tracks the set of region variables and the constraints between them.
    ///
    /// This is initially `Some(_)` but when
    /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
    /// -- further attempts to perform unification, etc., may fail if new
    /// region constraints would've been added.
    region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,

    /// A set of constraints that regionck must validate.
    ///
    /// Each constraint has the form `T:'a`, meaning "some type `T` must
    /// outlive the lifetime 'a". These constraints derive from
    /// instantiated type parameters. So if you had a struct defined
    /// like the following:
    /// ```ignore (illustrative)
    /// struct Foo<T: 'static> { ... }
    /// ```
    /// In some expression `let x = Foo { ... }`, it will
    /// instantiate the type parameter `T` with a fresh type `$0`. At
    /// the same time, it will record a region obligation of
    /// `$0: 'static`. This will get checked later by regionck. (We
    /// can't generally check these things right away because we have
    /// to wait until types are resolved.)
    ///
    /// These are stored in a map keyed to the id of the innermost
    /// enclosing fn body / static initializer expression. This is
    /// because the location where the obligation was incurred can be
    /// relevant with respect to which sublifetime assumptions are in
    /// place. The reason that we store under the fn-id, and not
    /// something more fine-grained, is so that it is easier for
    /// regionck to be sure that it has found *all* the region
    /// obligations (otherwise, it's easy to fail to walk to a
    /// particular node-id).
    ///
    /// Before running `resolve_regions_and_report_errors`, the creator
    /// of the inference context is expected to invoke
    /// [`InferCtxt::process_registered_region_obligations`]
    /// for each body-id in this map, which will process the
    /// obligations within. This is expected to be done 'late enough'
    /// that all type inference variables have been bound and so forth.
    region_obligations: Vec<RegionObligation<'tcx>>,

    /// Caches for opaque type inference.
    opaque_type_storage: OpaqueTypeStorage<'tcx>,
}

impl<'tcx> InferCtxtInner<'tcx> {
    fn new() -> InferCtxtInner<'tcx> {
        InferCtxtInner {
            undo_log: InferCtxtUndoLogs::default(),

            projection_cache: Default::default(),
            type_variable_storage: type_variable::TypeVariableStorage::new(),
            const_unification_storage: ut::UnificationTableStorage::new(),
            int_unification_storage: ut::UnificationTableStorage::new(),
            float_unification_storage: ut::UnificationTableStorage::new(),
            effect_unification_storage: ut::UnificationTableStorage::new(),
            region_constraint_storage: Some(RegionConstraintStorage::new()),
            region_obligations: vec![],
            opaque_type_storage: Default::default(),
        }
    }

    #[inline]
    pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
        &self.region_obligations
    }

    #[inline]
    pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
        self.projection_cache.with_log(&mut self.undo_log)
    }

    #[inline]
    fn try_type_variables_probe_ref(
        &self,
        vid: ty::TyVid,
    ) -> Option<&type_variable::TypeVariableValue<'tcx>> {
        // Uses a read-only view of the unification table, this way we don't
        // need an undo log.
        self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
    }

    #[inline]
    fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
        self.type_variable_storage.with_log(&mut self.undo_log)
    }

    #[inline]
    pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
        self.opaque_type_storage.with_log(&mut self.undo_log)
    }

    #[inline]
    fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
        self.int_unification_storage.with_log(&mut self.undo_log)
    }

    #[inline]
    fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
        self.float_unification_storage.with_log(&mut self.undo_log)
    }

    #[inline]
    fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
        self.const_unification_storage.with_log(&mut self.undo_log)
    }

    fn effect_unification_table(&mut self) -> UnificationTable<'_, 'tcx, EffectVidKey<'tcx>> {
        self.effect_unification_storage.with_log(&mut self.undo_log)
    }

    #[inline]
    pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
        self.region_constraint_storage
            .as_mut()
            .expect("region constraints already solved")
            .with_log(&mut self.undo_log)
    }
}

pub struct InferCtxt<'tcx> {
    pub tcx: TyCtxt<'tcx>,

    /// The `DefId` of the item in whose context we are performing inference or typeck.
    /// It is used to check whether an opaque type use is a defining use.
    ///
    /// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
    /// the obligation. This frequently happens for
    /// short lived InferCtxt within queries. The opaque type obligations are forwarded
    /// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
    ///
    /// Its default value is `DefiningAnchor::Bind(&[])`, which means no opaque types may be defined.
    /// This way it is easier to catch errors that
    /// might come up during inference or typeck.
    pub defining_use_anchor: DefiningAnchor<'tcx>,

    /// Whether this inference context should care about region obligations in
    /// the root universe. Most notably, this is used during hir typeck as region
    /// solving is left to borrowck instead.
    pub considering_regions: bool,

    /// If set, this flag causes us to skip the 'leak check' during
    /// higher-ranked subtyping operations. This flag is a temporary one used
    /// to manage the removal of the leak-check: for the time being, we still run the
    /// leak-check, but we issue warnings.
    skip_leak_check: bool,

    pub inner: RefCell<InferCtxtInner<'tcx>>,

    /// Once region inference is done, the values for each variable.
    lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,

    /// Caches the results of trait selection. This cache is used
    /// for things that have to do with the parameters in scope.
    pub selection_cache: select::SelectionCache<'tcx>,

    /// Caches the results of trait evaluation.
    pub evaluation_cache: select::EvaluationCache<'tcx>,

    /// The set of predicates on which errors have been reported, to
    /// avoid reporting the same error twice.
    pub reported_trait_errors:
        RefCell<FxIndexMap<Span, (Vec<ty::Predicate<'tcx>>, ErrorGuaranteed)>>,

    pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,

    /// When an error occurs, we want to avoid reporting "derived"
    /// errors that are due to this original failure. Normally, we
    /// handle this with the `err_count_on_creation` count, which
    /// basically just tracks how many errors were reported when we
    /// started type-checking a fn and checks to see if any new errors
    /// have been reported since then. Not great, but it works.
    ///
    /// However, when errors originated in other passes -- notably
    /// resolve -- this heuristic breaks down. Therefore, we have this
    /// auxiliary flag that one can set whenever one creates a
    /// type-error that is due to an error in a prior pass.
    ///
    /// Don't read this flag directly, call `is_tainted_by_errors()`
    /// and `set_tainted_by_errors()`.
    tainted_by_errors: Cell<Option<ErrorGuaranteed>>,

    /// Track how many errors were reported when this infcx is created.
    /// If the number of errors increases, that's also a sign (like
    /// `tainted_by_errors`) to avoid reporting certain kinds of errors.
    // FIXME(matthewjasper) Merge into `tainted_by_errors`
    err_count_on_creation: usize,

    /// What is the innermost universe we have created? Starts out as
    /// `UniverseIndex::root()` but grows from there as we enter
    /// universal quantifiers.
    ///
    /// N.B., at present, we exclude the universal quantifiers on the
    /// item we are type-checking, and just consider those names as
    /// part of the root universe. So this would only get incremented
    /// when we enter into a higher-ranked (`for<..>`) type or trait
    /// bound.
    universe: Cell<ty::UniverseIndex>,

    /// During coherence we have to assume that other crates may add
    /// additional impls which we currently don't know about.
    ///
    /// To deal with this evaluation, we should be conservative
    /// and consider the possibility of impls from outside this crate.
    /// This comes up primarily when resolving ambiguity. Imagine
    /// there is some trait reference `$0: Bar` where `$0` is an
    /// inference variable. If `intercrate` is true, then we can never
    /// say for sure that this reference is not implemented, even if
    /// there are *no impls at all for `Bar`*, because `$0` could be
    /// bound to some type that in a downstream crate that implements
    /// `Bar`.
    ///
    /// Outside of coherence, we set this to false because we are only
    /// interested in types that the user could actually have written.
    /// In other words, we consider `$0: Bar` to be unimplemented if
    /// there is no type that the user could *actually name* that
    /// would satisfy it. This avoids crippling inference, basically.
    pub intercrate: bool,

    next_trait_solver: bool,

    pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
}

impl<'tcx> ty::InferCtxtLike for InferCtxt<'tcx> {
    type Interner = TyCtxt<'tcx>;

    fn interner(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn universe_of_ty(&self, vid: TyVid) -> Option<ty::UniverseIndex> {
        // FIXME(BoxyUwU): this is kind of jank and means that printing unresolved
        // ty infers will give you the universe of the var it resolved to not the universe
        // it actually had. It also means that if you have a `?0.1` and infer it to `u8` then
        // try to print out `?0.1` it will just print `?0`.
        match self.probe_ty_var(vid) {
            Err(universe) => Some(universe),
            Ok(_) => None,
        }
    }

    fn universe_of_ct(&self, ct: ConstVid) -> Option<ty::UniverseIndex> {
        // Same issue as with `universe_of_ty`
        match self.probe_const_var(ct) {
            Err(universe) => Some(universe),
            Ok(_) => None,
        }
    }

    fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> {
        match self.inner.borrow_mut().unwrap_region_constraints().probe_value(lt) {
            Err(universe) => Some(universe),
            Ok(_) => None,
        }
    }

    fn root_ty_var(&self, vid: TyVid) -> TyVid {
        self.root_var(vid)
    }

    fn probe_ty_var(&self, vid: TyVid) -> Option<Ty<'tcx>> {
        self.probe_ty_var(vid).ok()
    }

    fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> Option<ty::Region<'tcx>> {
        let re = self
            .inner
            .borrow_mut()
            .unwrap_region_constraints()
            .opportunistic_resolve_var(self.tcx, vid);
        if *re == ty::ReVar(vid) { None } else { Some(re) }
    }

    fn root_ct_var(&self, vid: ConstVid) -> ConstVid {
        self.root_const_var(vid)
    }

    fn probe_ct_var(&self, vid: ConstVid) -> Option<ty::Const<'tcx>> {
        self.probe_const_var(vid).ok()
    }
}

/// See the `error_reporting` module for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
pub enum ValuePairs<'tcx> {
    Regions(ExpectedFound<ty::Region<'tcx>>),
    Terms(ExpectedFound<ty::Term<'tcx>>),
    Aliases(ExpectedFound<ty::AliasTy<'tcx>>),
    PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
    PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
    ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
    ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
}

impl<'tcx> ValuePairs<'tcx> {
    pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
        if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
            && let Some(expected) = expected.ty()
            && let Some(found) = found.ty()
        {
            Some((expected, found))
        } else {
            None
        }
    }
}

/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See the `error_reporting` module for more details.
#[derive(Clone, Debug)]
pub struct TypeTrace<'tcx> {
    pub cause: ObligationCause<'tcx>,
    pub values: ValuePairs<'tcx>,
}

/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
    /// Arose from a subtyping relation
    Subtype(Box<TypeTrace<'tcx>>),

    /// When casting `&'a T` to an `&'b Trait` object,
    /// relating `'a` to `'b`.
    RelateObjectBound(Span),

    /// Some type parameter was instantiated with the given type,
    /// and that type must outlive some region.
    RelateParamBound(Span, Ty<'tcx>, Option<Span>),

    /// The given region parameter was instantiated with a region
    /// that must outlive some other region.
    RelateRegionParamBound(Span),

    /// Creating a pointer `b` to contents of another reference.
    Reborrow(Span),

    /// (&'a &'b T) where a >= b
    ReferenceOutlivesReferent(Ty<'tcx>, Span),

    /// Comparing the signature and requirements of an impl method against
    /// the containing trait.
    CompareImplItemObligation {
        span: Span,
        impl_item_def_id: LocalDefId,
        trait_item_def_id: DefId,
    },

    /// Checking that the bounds of a trait's associated type hold for a given impl.
    CheckAssociatedTypeBounds {
        parent: Box<SubregionOrigin<'tcx>>,
        impl_item_def_id: LocalDefId,
        trait_item_def_id: DefId,
    },

    AscribeUserTypeProvePredicate(Span),
}

// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(SubregionOrigin<'_>, 32);

impl<'tcx> SubregionOrigin<'tcx> {
    pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
        match self {
            Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
            Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
            _ => ConstraintCategory::BoringNoLocation,
        }
    }
}

/// Times when we replace bound regions with existentials:
#[derive(Clone, Copy, Debug)]
pub enum BoundRegionConversionTime {
    /// when a fn is called
    FnCall,

    /// when two higher-ranked types are compared
    HigherRankedType,

    /// when projecting an associated type
    AssocTypeProjection(DefId),
}

/// Reasons to create a region inference variable.
///
/// See `error_reporting` module for more details.
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
    /// Region variables created for ill-categorized reasons.
    ///
    /// They mostly indicate places in need of refactoring.
    MiscVariable(Span),

    /// Regions created by a `&P` or `[...]` pattern.
    PatternRegion(Span),

    /// Regions created by `&` operator.
    ///
    AddrOfRegion(Span),
    /// Regions created as part of an autoref of a method receiver.
    Autoref(Span),

    /// Regions created as part of an automatic coercion.
    Coercion(Span),

    /// Region variables created as the values for early-bound regions.
    ///
    /// FIXME(@lcnr): This can also store a `DefId`, similar to
    /// `TypeVariableOriginKind::TypeParameterDefinition`.
    RegionParameterDefinition(Span, Symbol),

    /// Region variables created when instantiating a binder with
    /// existential variables, e.g. when calling a function or method.
    BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),

    UpvarRegion(ty::UpvarId, Span),

    /// This origin is used for the inference variables that we create
    /// during NLL region processing.
    Nll(NllRegionVariableOrigin),
}

#[derive(Copy, Clone, Debug)]
pub enum NllRegionVariableOrigin {
    /// During NLL region processing, we create variables for free
    /// regions that we encounter in the function signature and
    /// elsewhere. This origin indices we've got one of those.
    FreeRegion,

    /// "Universal" instantiation of a higher-ranked region (e.g.,
    /// from a `for<'a> T` binder). Meant to represent "any region".
    Placeholder(ty::PlaceholderRegion),

    Existential {
        /// If this is true, then this variable was created to represent a lifetime
        /// bound in a `for` binder. For example, it might have been created to
        /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
        /// Such variables are created when we are trying to figure out if there
        /// is any valid instantiation of `'a` that could fit into some scenario.
        ///
        /// This is used to inform error reporting: in the case that we are trying to
        /// determine whether there is any valid instantiation of a `'a` variable that meets
        /// some constraint C, we want to blame the "source" of that `for` type,
        /// rather than blaming the source of the constraint C.
        from_forall: bool,
    },
}

// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
#[derive(Copy, Clone, Debug)]
pub enum FixupError {
    UnresolvedIntTy(IntVid),
    UnresolvedFloatTy(FloatVid),
    UnresolvedTy(TyVid),
    UnresolvedConst(ConstVid),
}

/// See the `region_obligations` field for more information.
#[derive(Clone, Debug)]
pub struct RegionObligation<'tcx> {
    pub sub_region: ty::Region<'tcx>,
    pub sup_type: Ty<'tcx>,
    pub origin: SubregionOrigin<'tcx>,
}

impl fmt::Display for FixupError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use self::FixupError::*;

        match *self {
            UnresolvedIntTy(_) => write!(
                f,
                "cannot determine the type of this integer; \
                 add a suffix to specify the type explicitly"
            ),
            UnresolvedFloatTy(_) => write!(
                f,
                "cannot determine the type of this number; \
                 add a suffix to specify the type explicitly"
            ),
            UnresolvedTy(_) => write!(f, "unconstrained type"),
            UnresolvedConst(_) => write!(f, "unconstrained const value"),
        }
    }
}

/// Used to configure inference contexts before their creation.
pub struct InferCtxtBuilder<'tcx> {
    tcx: TyCtxt<'tcx>,
    defining_use_anchor: DefiningAnchor<'tcx>,
    considering_regions: bool,
    skip_leak_check: bool,
    /// Whether we are in coherence mode.
    intercrate: bool,
    /// Whether we should use the new trait solver in the local inference context,
    /// which affects things like which solver is used in `predicate_may_hold`.
    next_trait_solver: bool,
}

#[extension(pub trait TyCtxtInferExt<'tcx>)]
impl<'tcx> TyCtxt<'tcx> {
    fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
        InferCtxtBuilder {
            tcx: self,
            defining_use_anchor: DefiningAnchor::Bind(ty::List::empty()),
            considering_regions: true,
            skip_leak_check: false,
            intercrate: false,
            next_trait_solver: self.next_trait_solver_globally(),
        }
    }
}

impl<'tcx> InferCtxtBuilder<'tcx> {
    /// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
    /// you need to call this function. Otherwise the opaque type will be treated opaquely.
    ///
    /// It is only meant to be called in two places, for typeck
    /// (via `Inherited::build`) and for the inference context used
    /// in mir borrowck.
    pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor<'tcx>) -> Self {
        self.defining_use_anchor = defining_use_anchor;
        self
    }

    pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
        self.next_trait_solver = next_trait_solver;
        self
    }

    pub fn intercrate(mut self, intercrate: bool) -> Self {
        self.intercrate = intercrate;
        self
    }

    pub fn ignoring_regions(mut self) -> Self {
        self.considering_regions = false;
        self
    }

    pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
        self.skip_leak_check = skip_leak_check;
        self
    }

    /// Given a canonical value `C` as a starting point, create an
    /// inference context that contains each of the bound values
    /// within instantiated as a fresh variable. The `f` closure is
    /// invoked with the new infcx, along with the instantiated value
    /// `V` and a instantiation `S`. This instantiation `S` maps from
    /// the bound values in `C` to their instantiated values in `V`
    /// (in other words, `S(C) = V`).
    pub fn build_with_canonical<T>(
        &mut self,
        span: Span,
        canonical: &Canonical<'tcx, T>,
    ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        let infcx = self.build();
        let (value, args) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
        (infcx, value, args)
    }

    pub fn build(&mut self) -> InferCtxt<'tcx> {
        let InferCtxtBuilder {
            tcx,
            defining_use_anchor,
            considering_regions,
            skip_leak_check,
            intercrate,
            next_trait_solver,
        } = *self;
        InferCtxt {
            tcx,
            defining_use_anchor,
            considering_regions,
            skip_leak_check,
            inner: RefCell::new(InferCtxtInner::new()),
            lexical_region_resolutions: RefCell::new(None),
            selection_cache: Default::default(),
            evaluation_cache: Default::default(),
            reported_trait_errors: Default::default(),
            reported_signature_mismatch: Default::default(),
            tainted_by_errors: Cell::new(None),
            err_count_on_creation: tcx.dcx().err_count_excluding_lint_errs(),
            universe: Cell::new(ty::UniverseIndex::ROOT),
            intercrate,
            next_trait_solver,
            obligation_inspector: Cell::new(None),
        }
    }
}

impl<'tcx, T> InferOk<'tcx, T> {
    /// Extracts `value`, registering any obligations into `fulfill_cx`.
    pub fn into_value_registering_obligations(
        self,
        infcx: &InferCtxt<'tcx>,
        fulfill_cx: &mut dyn TraitEngine<'tcx>,
    ) -> T {
        let InferOk { value, obligations } = self;
        fulfill_cx.register_predicate_obligations(infcx, obligations);
        value
    }
}

impl<'tcx> InferOk<'tcx, ()> {
    pub fn into_obligations(self) -> PredicateObligations<'tcx> {
        self.obligations
    }
}

impl<'tcx> InferCtxt<'tcx> {
    pub fn dcx(&self) -> &'tcx DiagCtxt {
        self.tcx.dcx()
    }

    pub fn next_trait_solver(&self) -> bool {
        self.next_trait_solver
    }

    /// Creates a `TypeErrCtxt` for emitting various inference errors.
    /// During typeck, use `FnCtxt::err_ctxt` instead.
    pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
        TypeErrCtxt {
            infcx: self,
            sub_relations: Default::default(),
            typeck_results: None,
            fallback_has_occurred: false,
            normalize_fn_sig: Box::new(|fn_sig| fn_sig),
            autoderef_steps: Box::new(|ty| {
                debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck");
                vec![(ty, vec![])]
            }),
        }
    }

    pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
        t.fold_with(&mut self.freshener())
    }

    /// Returns the origin of the type variable identified by `vid`, or `None`
    /// if this is not a type variable.
    ///
    /// No attempt is made to resolve `ty`.
    pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
        match *ty.kind() {
            ty::Infer(ty::TyVar(vid)) => {
                Some(self.inner.borrow_mut().type_variables().var_origin(vid))
            }
            _ => None,
        }
    }

    pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
        freshen::TypeFreshener::new(self)
    }

    pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
        let mut inner = self.inner.borrow_mut();
        let mut vars: Vec<Ty<'_>> = inner
            .type_variables()
            .unresolved_variables()
            .into_iter()
            .map(|t| Ty::new_var(self.tcx, t))
            .collect();
        vars.extend(
            (0..inner.int_unification_table().len())
                .map(|i| ty::IntVid::from_u32(i as u32))
                .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
                .map(|v| Ty::new_int_var(self.tcx, v)),
        );
        vars.extend(
            (0..inner.float_unification_table().len())
                .map(|i| ty::FloatVid::from_u32(i as u32))
                .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
                .map(|v| Ty::new_float_var(self.tcx, v)),
        );
        vars
    }

    pub fn unsolved_effects(&self) -> Vec<ty::Const<'tcx>> {
        let mut inner = self.inner.borrow_mut();
        let mut table = inner.effect_unification_table();

        (0..table.len())
            .map(|i| ty::EffectVid::from_usize(i))
            .filter(|&vid| table.probe_value(vid).is_unknown())
            .map(|v| {
                ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(v), self.tcx.types.bool)
            })
            .collect()
    }

    fn combine_fields<'a>(
        &'a self,
        trace: TypeTrace<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        define_opaque_types: DefineOpaqueTypes,
    ) -> CombineFields<'a, 'tcx> {
        CombineFields {
            infcx: self,
            trace,
            param_env,
            obligations: PredicateObligations::new(),
            define_opaque_types,
        }
    }

    pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, expected: T, actual: T) -> bool
    where
        T: at::ToTrace<'tcx>,
    {
        let origin = &ObligationCause::dummy();
        self.probe(|_| {
            self.at(origin, param_env).sub(DefineOpaqueTypes::No, expected, actual).is_ok()
        })
    }

    pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
    where
        T: at::ToTrace<'tcx>,
    {
        let origin = &ObligationCause::dummy();
        self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok())
    }

    #[instrument(skip(self), level = "debug")]
    pub fn sub_regions(
        &self,
        origin: SubregionOrigin<'tcx>,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) {
        self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
    }

    /// Require that the region `r` be equal to one of the regions in
    /// the set `regions`.
    #[instrument(skip(self), level = "debug")]
    pub fn member_constraint(
        &self,
        key: ty::OpaqueTypeKey<'tcx>,
        definition_span: Span,
        hidden_ty: Ty<'tcx>,
        region: ty::Region<'tcx>,
        in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
    ) {
        self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
            key,
            definition_span,
            hidden_ty,
            region,
            in_regions,
        );
    }

    /// Processes a `Coerce` predicate from the fulfillment context.
    /// This is NOT the preferred way to handle coercion, which is to
    /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
    ///
    /// This method here is actually a fallback that winds up being
    /// invoked when `FnCtxt::coerce` encounters unresolved type variables
    /// and records a coercion predicate. Presently, this method is equivalent
    /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
    /// actually requiring `a <: b`. This is of course a valid coercion,
    /// but it's not as flexible as `FnCtxt::coerce` would be.
    ///
    /// (We may refactor this in the future, but there are a number of
    /// practical obstacles. Among other things, `FnCtxt::coerce` presently
    /// records adjustments that are required on the HIR in order to perform
    /// the coercion, and we don't currently have a way to manage that.)
    pub fn coerce_predicate(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        predicate: ty::PolyCoercePredicate<'tcx>,
    ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
        let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
            a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
            a: p.a,
            b: p.b,
        });
        self.subtype_predicate(cause, param_env, subtype_predicate)
    }

    pub fn subtype_predicate(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        predicate: ty::PolySubtypePredicate<'tcx>,
    ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
        // Check for two unresolved inference variables, in which case we can
        // make no progress. This is partly a micro-optimization, but it's
        // also an opportunity to "sub-unify" the variables. This isn't
        // *necessary* to prevent cycles, because they would eventually be sub-unified
        // anyhow during generalization, but it helps with diagnostics (we can detect
        // earlier that they are sub-unified).
        //
        // Note that we can just skip the binders here because
        // type variables can't (at present, at
        // least) capture any of the things bound by this binder.
        //
        // Note that this sub here is not just for diagnostics - it has semantic
        // effects as well.
        let r_a = self.shallow_resolve(predicate.skip_binder().a);
        let r_b = self.shallow_resolve(predicate.skip_binder().b);
        match (r_a.kind(), r_b.kind()) {
            (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
                return Err((a_vid, b_vid));
            }
            _ => {}
        }

        self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| {
            if a_is_expected {
                Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::No, a, b))
            } else {
                Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::No, b, a))
            }
        })
    }

    pub fn region_outlives_predicate(
        &self,
        cause: &traits::ObligationCause<'tcx>,
        predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
    ) {
        self.enter_forall(predicate, |ty::OutlivesPredicate(r_a, r_b)| {
            let origin = SubregionOrigin::from_obligation_cause(cause, || {
                RelateRegionParamBound(cause.span)
            });
            self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
        })
    }

    /// Number of type variables created so far.
    pub fn num_ty_vars(&self) -> usize {
        self.inner.borrow_mut().type_variables().num_vars()
    }

    pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
        self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
    }

    pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
        Ty::new_var(self.tcx, self.next_ty_var_id(origin))
    }

    pub fn next_ty_var_id_in_universe(
        &self,
        origin: TypeVariableOrigin,
        universe: ty::UniverseIndex,
    ) -> TyVid {
        self.inner.borrow_mut().type_variables().new_var(universe, origin)
    }

    pub fn next_ty_var_in_universe(
        &self,
        origin: TypeVariableOrigin,
        universe: ty::UniverseIndex,
    ) -> Ty<'tcx> {
        let vid = self.next_ty_var_id_in_universe(origin, universe);
        Ty::new_var(self.tcx, vid)
    }

    pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
        ty::Const::new_var(self.tcx, self.next_const_var_id(origin), ty)
    }

    pub fn next_const_var_in_universe(
        &self,
        ty: Ty<'tcx>,
        origin: ConstVariableOrigin,
        universe: ty::UniverseIndex,
    ) -> ty::Const<'tcx> {
        let vid = self
            .inner
            .borrow_mut()
            .const_unification_table()
            .new_key(ConstVariableValue::Unknown { origin, universe })
            .vid;
        ty::Const::new_var(self.tcx, vid, ty)
    }

    pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid {
        self.inner
            .borrow_mut()
            .const_unification_table()
            .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
            .vid
    }

    fn next_int_var_id(&self) -> IntVid {
        self.inner.borrow_mut().int_unification_table().new_key(None)
    }

    pub fn next_int_var(&self) -> Ty<'tcx> {
        Ty::new_int_var(self.tcx, self.next_int_var_id())
    }

    fn next_float_var_id(&self) -> FloatVid {
        self.inner.borrow_mut().float_unification_table().new_key(None)
    }

    pub fn next_float_var(&self) -> Ty<'tcx> {
        Ty::new_float_var(self.tcx, self.next_float_var_id())
    }

    /// Creates a fresh region variable with the next available index.
    /// The variable will be created in the maximum universe created
    /// thus far, allowing it to name any region created thus far.
    pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
        self.next_region_var_in_universe(origin, self.universe())
    }

    /// Creates a fresh region variable with the next available index
    /// in the given universe; typically, you can use
    /// `next_region_var` and just use the maximal universe.
    pub fn next_region_var_in_universe(
        &self,
        origin: RegionVariableOrigin,
        universe: ty::UniverseIndex,
    ) -> ty::Region<'tcx> {
        let region_var =
            self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
        ty::Region::new_var(self.tcx, region_var)
    }

    /// Return the universe that the region `r` was created in. For
    /// most regions (e.g., `'static`, named regions from the user,
    /// etc) this is the root universe U0. For inference variables or
    /// placeholders, however, it will return the universe which they
    /// are associated.
    pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
        self.inner.borrow_mut().unwrap_region_constraints().universe(r)
    }

    /// Number of region variables created so far.
    pub fn num_region_vars(&self) -> usize {
        self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
    }

    /// Just a convenient wrapper of `next_region_var` for using during NLL.
    #[instrument(skip(self), level = "debug")]
    pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
        self.next_region_var(RegionVariableOrigin::Nll(origin))
    }

    /// Just a convenient wrapper of `next_region_var` for using during NLL.
    #[instrument(skip(self), level = "debug")]
    pub fn next_nll_region_var_in_universe(
        &self,
        origin: NllRegionVariableOrigin,
        universe: ty::UniverseIndex,
    ) -> ty::Region<'tcx> {
        self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
    }

    pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
        match param.kind {
            GenericParamDefKind::Lifetime => {
                // Create a region inference variable for the given
                // region parameter definition.
                self.next_region_var(RegionParameterDefinition(span, param.name)).into()
            }
            GenericParamDefKind::Type { .. } => {
                // Create a type inference variable for the given
                // type parameter definition. The generic parameters are
                // for actual parameters that may be referred to by
                // the default of this type parameter, if it exists.
                // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
                // used in a path such as `Foo::<T, U>::new()` will
                // use an inference variable for `C` with `[T, U]`
                // as the generic parameters for the default, `(T, U)`.
                let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
                    self.universe(),
                    TypeVariableOrigin {
                        kind: TypeVariableOriginKind::TypeParameterDefinition(
                            param.name,
                            param.def_id,
                        ),
                        span,
                    },
                );

                Ty::new_var(self.tcx, ty_var_id).into()
            }
            GenericParamDefKind::Const { is_host_effect, .. } => {
                if is_host_effect {
                    return self.var_for_effect(param);
                }
                let origin = ConstVariableOrigin {
                    kind: ConstVariableOriginKind::ConstParameterDefinition(
                        param.name,
                        param.def_id,
                    ),
                    span,
                };
                let const_var_id = self
                    .inner
                    .borrow_mut()
                    .const_unification_table()
                    .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
                    .vid;
                ty::Const::new_var(
                    self.tcx,
                    const_var_id,
                    self.tcx
                        .type_of(param.def_id)
                        .no_bound_vars()
                        .expect("const parameter types cannot be generic"),
                )
                .into()
            }
        }
    }

    pub fn var_for_effect(&self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
        let effect_vid =
            self.inner.borrow_mut().effect_unification_table().new_key(EffectVarValue::Unknown).vid;
        let ty = self
            .tcx
            .type_of(param.def_id)
            .no_bound_vars()
            .expect("const parameter types cannot be generic");
        debug_assert_eq!(self.tcx.types.bool, ty);
        ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(effect_vid), ty).into()
    }

    /// Given a set of generics defined on a type or impl, returns the generic parameters mapping each
    /// type/region parameter to a fresh inference variable.
    pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
        GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
    }

    /// Returns `true` if errors have been reported since this infcx was
    /// created. This is sometimes used as a heuristic to skip
    /// reporting errors that often occur as a result of earlier
    /// errors, but where it's hard to be 100% sure (e.g., unresolved
    /// inference variables, regionck errors).
    #[must_use = "this method does not have any side effects"]
    pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
        if let Some(guar) = self.tainted_by_errors.get() {
            Some(guar)
        } else if self.dcx().err_count_excluding_lint_errs() > self.err_count_on_creation {
            // Errors reported since this infcx was made. Lint errors are
            // excluded to avoid some being swallowed in the presence of
            // non-lint errors. (It's arguable whether or not this exclusion is
            // important.)
            let guar = self.dcx().has_errors().unwrap();
            self.set_tainted_by_errors(guar);
            Some(guar)
        } else {
            None
        }
    }

    /// Set the "tainted by errors" flag to true. We call this when we
    /// observe an error from a prior pass.
    pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
        debug!("set_tainted_by_errors(ErrorGuaranteed)");
        self.tainted_by_errors.set(Some(e));
    }

    pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
        let mut inner = self.inner.borrow_mut();
        let inner = &mut *inner;
        inner.unwrap_region_constraints().var_origin(vid)
    }

    /// Clone the list of variable regions. This is used only during NLL processing
    /// to put the set of region variables into the NLL region context.
    pub fn get_region_var_origins(&self) -> VarInfos {
        let mut inner = self.inner.borrow_mut();
        let (var_infos, data) = inner
            .region_constraint_storage
            // We clone instead of taking because borrowck still wants to use
            // the inference context after calling this for diagnostics
            // and the new trait solver.
            .clone()
            .expect("regions already resolved")
            .with_log(&mut inner.undo_log)
            .into_infos_and_data();
        assert!(data.is_empty());
        var_infos
    }

    #[instrument(level = "debug", skip(self), ret)]
    pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
        std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
    }

    #[instrument(level = "debug", skip(self), ret)]
    pub fn clone_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
        self.inner.borrow().opaque_type_storage.opaque_types.clone()
    }

    pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
        self.resolve_vars_if_possible(t).to_string()
    }

    /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
    /// universe index of `TyVar(vid)`.
    pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
        use self::type_variable::TypeVariableValue;

        match self.inner.borrow_mut().type_variables().probe(vid) {
            TypeVariableValue::Known { value } => Ok(value),
            TypeVariableValue::Unknown { universe } => Err(universe),
        }
    }

    /// Resolve any type variables found in `value` -- but only one
    /// level. So, if the variable `?X` is bound to some type
    /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
    /// itself be bound to a type).
    ///
    /// Useful when you only need to inspect the outermost level of
    /// the type and don't care about nested types (or perhaps you
    /// will be resolving them as well, e.g. in a loop).
    pub fn shallow_resolve<T>(&self, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        value.fold_with(&mut ShallowResolver { infcx: self })
    }

    pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
        self.inner.borrow_mut().type_variables().root_var(var)
    }

    pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
        self.inner.borrow_mut().const_unification_table().find(var).vid
    }

    pub fn root_effect_var(&self, var: ty::EffectVid) -> ty::EffectVid {
        self.inner.borrow_mut().effect_unification_table().find(var).vid
    }

    /// Resolves an int var to a rigid int type, if it was constrained to one,
    /// or else the root int var in the unification table.
    pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
        let mut inner = self.inner.borrow_mut();
        if let Some(value) = inner.int_unification_table().probe_value(vid) {
            value.to_type(self.tcx)
        } else {
            Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
        }
    }

    /// Resolves a float var to a rigid int type, if it was constrained to one,
    /// or else the root float var in the unification table.
    pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
        let mut inner = self.inner.borrow_mut();
        if let Some(value) = inner.float_unification_table().probe_value(vid) {
            value.to_type(self.tcx)
        } else {
            Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
        }
    }

    /// Where possible, replaces type/const variables in
    /// `value` with their final value. Note that region variables
    /// are unaffected. If a type/const variable has not been unified, it
    /// is left as is. This is an idempotent operation that does
    /// not affect inference state in any way and so you can do it
    /// at will.
    pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        if !value.has_non_region_infer() {
            return value;
        }
        let mut r = resolve::OpportunisticVarResolver::new(self);
        value.fold_with(&mut r)
    }

    pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        if !value.has_infer() {
            return value; // Avoid duplicated type-folding.
        }
        let mut r = InferenceLiteralEraser { tcx: self.tcx };
        value.fold_with(&mut r)
    }

    pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
        match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
            ConstVariableValue::Known { value } => Ok(value),
            ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
        }
    }

    pub fn probe_effect_var(&self, vid: EffectVid) -> Option<ty::Const<'tcx>> {
        self.inner.borrow_mut().effect_unification_table().probe_value(vid).known()
    }

    /// Attempts to resolve all type/region/const variables in
    /// `value`. Region inference must have been run already (e.g.,
    /// by calling `resolve_regions_and_report_errors`). If some
    /// variable was never unified, an `Err` results.
    ///
    /// This method is idempotent, but it not typically not invoked
    /// except during the writeback phase.
    pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
        match resolve::fully_resolve(self, value) {
            Ok(value) => {
                if value.has_non_region_infer() {
                    bug!("`{value:?}` is not fully resolved");
                }
                if value.has_infer_regions() {
                    let guar =
                        self.tcx.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
                    Ok(self.tcx.fold_regions(value, |re, _| {
                        if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
                    }))
                } else {
                    Ok(value)
                }
            }
            Err(e) => Err(e),
        }
    }

    // Instantiates the bound variables in a given binder with fresh inference
    // variables in the current universe.
    //
    // Use this method if you'd like to find some generic parameters of the binder's
    // variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
    // that corresponds to your use case, consider whether or not you should
    // use [`InferCtxt::enter_forall`] instead.
    pub fn instantiate_binder_with_fresh_vars<T>(
        &self,
        span: Span,
        lbrct: BoundRegionConversionTime,
        value: ty::Binder<'tcx, T>,
    ) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>> + Copy,
    {
        if let Some(inner) = value.no_bound_vars() {
            return inner;
        }

        struct ToFreshVars<'a, 'tcx> {
            infcx: &'a InferCtxt<'tcx>,
            span: Span,
            lbrct: BoundRegionConversionTime,
            map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
        }

        impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
            fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
                self.map
                    .entry(br.var)
                    .or_insert_with(|| {
                        self.infcx
                            .next_region_var(BoundRegion(self.span, br.kind, self.lbrct))
                            .into()
                    })
                    .expect_region()
            }
            fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
                self.map
                    .entry(bt.var)
                    .or_insert_with(|| {
                        self.infcx
                            .next_ty_var(TypeVariableOrigin {
                                kind: TypeVariableOriginKind::MiscVariable,
                                span: self.span,
                            })
                            .into()
                    })
                    .expect_ty()
            }
            fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
                self.map
                    .entry(bv)
                    .or_insert_with(|| {
                        self.infcx
                            .next_const_var(
                                ty,
                                ConstVariableOrigin {
                                    kind: ConstVariableOriginKind::MiscVariable,
                                    span: self.span,
                                },
                            )
                            .into()
                    })
                    .expect_const()
            }
        }
        let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
        self.tcx.replace_bound_vars_uncached(value, delegate)
    }

    /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
    pub fn verify_generic_bound(
        &self,
        origin: SubregionOrigin<'tcx>,
        kind: GenericKind<'tcx>,
        a: ty::Region<'tcx>,
        bound: VerifyBound<'tcx>,
    ) {
        debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);

        self.inner
            .borrow_mut()
            .unwrap_region_constraints()
            .verify_generic_bound(origin, kind, a, bound);
    }

    /// Obtains the latest type of the given closure; this may be a
    /// closure in the current function, in which case its
    /// `ClosureKind` may not yet be known.
    pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> {
        let unresolved_kind_ty = match *closure_ty.kind() {
            ty::Closure(_, args) => args.as_closure().kind_ty(),
            ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(),
            _ => bug!("unexpected type {closure_ty}"),
        };
        let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty);
        closure_kind_ty.to_opt_closure_kind()
    }

    /// Clears the selection, evaluation, and projection caches. This is useful when
    /// repeatedly attempting to select an `Obligation` while changing only
    /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
    pub fn clear_caches(&self) {
        self.selection_cache.clear();
        self.evaluation_cache.clear();
        self.inner.borrow_mut().projection_cache().clear();
    }

    pub fn universe(&self) -> ty::UniverseIndex {
        self.universe.get()
    }

    /// Creates and return a fresh universe that extends all previous
    /// universes. Updates `self.universe` to that new universe.
    pub fn create_next_universe(&self) -> ty::UniverseIndex {
        let u = self.universe.get().next_universe();
        debug!("create_next_universe {u:?}");
        self.universe.set(u);
        u
    }

    pub fn try_const_eval_resolve(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        unevaluated: ty::UnevaluatedConst<'tcx>,
        ty: Ty<'tcx>,
        span: Option<Span>,
    ) -> Result<ty::Const<'tcx>, ErrorHandled> {
        match self.const_eval_resolve(param_env, unevaluated, span) {
            Ok(Some(val)) => Ok(ty::Const::new_value(self.tcx, val, ty)),
            Ok(None) => {
                let tcx = self.tcx;
                let def_id = unevaluated.def;
                span_bug!(
                    tcx.def_span(def_id),
                    "unable to construct a constant value for the unevaluated constant {:?}",
                    unevaluated
                );
            }
            Err(err) => Err(err),
        }
    }

    /// Resolves and evaluates a constant.
    ///
    /// The constant can be located on a trait like `<A as B>::C`, in which case the given
    /// generic parameters and environment are used to resolve the constant. Alternatively if the
    /// constant has generic parameters in scope the instantiations are used to evaluate the value of
    /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
    /// constant `bar::<T>()` requires a instantiation for `T`, if the instantiation for `T` is still
    /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
    /// returned.
    ///
    /// This handles inferences variables within both `param_env` and `args` by
    /// performing the operation on their respective canonical forms.
    #[instrument(skip(self), level = "debug")]
    pub fn const_eval_resolve(
        &self,
        mut param_env: ty::ParamEnv<'tcx>,
        unevaluated: ty::UnevaluatedConst<'tcx>,
        span: Option<Span>,
    ) -> EvalToValTreeResult<'tcx> {
        let mut args = self.resolve_vars_if_possible(unevaluated.args);
        debug!(?args);

        // Postpone the evaluation of constants whose args depend on inference
        // variables
        let tcx = self.tcx;
        if args.has_non_region_infer() {
            if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
                let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, args));
                if let Err(e) = ct.error_reported() {
                    return Err(ErrorHandled::Reported(
                        e.into(),
                        span.unwrap_or(rustc_span::DUMMY_SP),
                    ));
                } else if ct.has_non_region_infer() || ct.has_non_region_param() {
                    return Err(ErrorHandled::TooGeneric(span.unwrap_or(rustc_span::DUMMY_SP)));
                } else {
                    args = replace_param_and_infer_args_with_placeholder(tcx, args);
                }
            } else {
                args = GenericArgs::identity_for_item(tcx, unevaluated.def);
                param_env = tcx.param_env(unevaluated.def);
            }
        }

        let param_env_erased = tcx.erase_regions(param_env);
        let args_erased = tcx.erase_regions(args);
        debug!(?param_env_erased);
        debug!(?args_erased);

        let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, args: args_erased };

        // The return value is the evaluated value which doesn't contain any reference to inference
        // variables, thus we don't need to instantiate back the original values.
        tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
    }

    /// The returned function is used in a fast path. If it returns `true` the variable is
    /// unchanged, `false` indicates that the status is unknown.
    #[inline]
    pub fn is_ty_infer_var_definitely_unchanged<'a>(
        &'a self,
    ) -> (impl Fn(TyOrConstInferVar) -> bool + Captures<'tcx> + 'a) {
        // This hoists the borrow/release out of the loop body.
        let inner = self.inner.try_borrow();

        return move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
            (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
                use self::type_variable::TypeVariableValue;

                matches!(
                    inner.try_type_variables_probe_ref(ty_var),
                    Some(TypeVariableValue::Unknown { .. })
                )
            }
            _ => false,
        };
    }

    /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
    ///   * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
    ///   * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
    ///
    /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
    /// inlined, despite being large, because it has only two call sites that
    /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
    /// inference variables), and it handles both `Ty` and `ty::Const` without
    /// having to resort to storing full `GenericArg`s in `stalled_on`.
    #[inline(always)]
    pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
        match infer_var {
            TyOrConstInferVar::Ty(v) => {
                use self::type_variable::TypeVariableValue;

                // If `inlined_probe` returns a `Known` value, it never equals
                // `ty::Infer(ty::TyVar(v))`.
                match self.inner.borrow_mut().type_variables().inlined_probe(v) {
                    TypeVariableValue::Unknown { .. } => false,
                    TypeVariableValue::Known { .. } => true,
                }
            }

            TyOrConstInferVar::TyInt(v) => {
                // If `inlined_probe_value` returns a value it's always a
                // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
                // `ty::Infer(_)`.
                self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
            }

            TyOrConstInferVar::TyFloat(v) => {
                // If `probe_value` returns a value it's always a
                // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
                //
                // Not `inlined_probe_value(v)` because this call site is colder.
                self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
            }

            TyOrConstInferVar::Const(v) => {
                // If `probe_value` returns a `Known` value, it never equals
                // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
                //
                // Not `inlined_probe_value(v)` because this call site is colder.
                match self.inner.borrow_mut().const_unification_table().probe_value(v) {
                    ConstVariableValue::Unknown { .. } => false,
                    ConstVariableValue::Known { .. } => true,
                }
            }

            TyOrConstInferVar::Effect(v) => {
                // If `probe_value` returns `Some`, it never equals
                // `ty::ConstKind::Infer(ty::InferConst::Effect(v))`.
                //
                // Not `inlined_probe_value(v)` because this call site is colder.
                self.probe_effect_var(v).is_some()
            }
        }
    }

    /// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
    pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
        debug_assert!(
            self.obligation_inspector.get().is_none(),
            "shouldn't override a set obligation inspector"
        );
        self.obligation_inspector.set(Some(inspector));
    }
}

impl<'tcx> TypeErrCtxt<'_, 'tcx> {
    // [Note-Type-error-reporting]
    // An invariant is that anytime the expected or actual type is Error (the special
    // error type, meaning that an error occurred when typechecking this expression),
    // this is a derived error. The error cascaded from another error (that was already
    // reported), so it's not useful to display it to the user.
    // The following methods implement this logic.
    // They check if either the actual or expected type is Error, and don't print the error
    // in this case. The typechecker should only ever report type errors involving mismatched
    // types using one of these methods, and should not call span_err directly for such
    // errors.
    pub fn type_error_struct_with_diag<M>(
        &self,
        sp: Span,
        mk_diag: M,
        actual_ty: Ty<'tcx>,
    ) -> Diag<'tcx>
    where
        M: FnOnce(String) -> Diag<'tcx>,
    {
        let actual_ty = self.resolve_vars_if_possible(actual_ty);
        debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);

        let mut err = mk_diag(self.ty_to_string(actual_ty));

        // Don't report an error if actual type is `Error`.
        if actual_ty.references_error() {
            err.downgrade_to_delayed_bug();
        }

        err
    }

    pub fn report_mismatched_types(
        &self,
        cause: &ObligationCause<'tcx>,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        err: TypeError<'tcx>,
    ) -> Diag<'tcx> {
        self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
    }

    pub fn report_mismatched_consts(
        &self,
        cause: &ObligationCause<'tcx>,
        expected: ty::Const<'tcx>,
        actual: ty::Const<'tcx>,
        err: TypeError<'tcx>,
    ) -> Diag<'tcx> {
        self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
    }
}

/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
#[derive(Copy, Clone, Debug)]
pub enum TyOrConstInferVar {
    /// Equivalent to `ty::Infer(ty::TyVar(_))`.
    Ty(TyVid),
    /// Equivalent to `ty::Infer(ty::IntVar(_))`.
    TyInt(IntVid),
    /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
    TyFloat(FloatVid),

    /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
    Const(ConstVid),
    /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::EffectVar(_))`.
    Effect(EffectVid),
}

impl<'tcx> TyOrConstInferVar {
    /// Tries to extract an inference variable from a type or a constant, returns `None`
    /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
    /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
    pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
        match arg.unpack() {
            GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
            GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
            GenericArgKind::Lifetime(_) => None,
        }
    }

    /// Tries to extract an inference variable from a type, returns `None`
    /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
    fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
        match *ty.kind() {
            ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
            ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
            ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
            _ => None,
        }
    }

    /// Tries to extract an inference variable from a constant, returns `None`
    /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
    fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
        match ct.kind() {
            ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
            ty::ConstKind::Infer(InferConst::EffectVar(v)) => Some(TyOrConstInferVar::Effect(v)),
            _ => None,
        }
    }
}

/// Replace `{integer}` with `i32` and `{float}` with `f64`.
/// Used only for diagnostics.
struct InferenceLiteralEraser<'tcx> {
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        match ty.kind() {
            ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
            ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
            _ => ty.super_fold_with(self),
        }
    }
}

struct ShallowResolver<'a, 'tcx> {
    infcx: &'a InferCtxt<'tcx>,
}

impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    /// If `ty` is a type variable of some kind, resolve it one level
    /// (but do not resolve types found in the result). If `typ` is
    /// not a type variable, just return it unmodified.
    #[inline]
    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty }
    }

    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        match ct.kind() {
            ty::ConstKind::Infer(InferConst::Var(vid)) => self
                .infcx
                .inner
                .borrow_mut()
                .const_unification_table()
                .probe_value(vid)
                .known()
                .unwrap_or(ct),
            ty::ConstKind::Infer(InferConst::EffectVar(vid)) => self
                .infcx
                .inner
                .borrow_mut()
                .effect_unification_table()
                .probe_value(vid)
                .known()
                .unwrap_or(ct),
            _ => ct,
        }
    }
}

impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
    // This is separate from `fold_ty` to keep that method small and inlinable.
    #[inline(never)]
    fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> {
        match v {
            ty::TyVar(v) => {
                // Not entirely obvious: if `typ` is a type variable,
                // it can be resolved to an int/float variable, which
                // can then be recursively resolved, hence the
                // recursion. Note though that we prevent type
                // variables from unifying to other type variables
                // directly (though they may be embedded
                // structurally), and we prevent cycles in any case,
                // so this recursion should always be of very limited
                // depth.
                //
                // Note: if these two lines are combined into one we get
                // dynamic borrow errors on `self.inner`.
                let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
                known.map(|t| self.fold_ty(t))
            }

            ty::IntVar(v) => self
                .infcx
                .inner
                .borrow_mut()
                .int_unification_table()
                .probe_value(v)
                .map(|v| v.to_type(self.infcx.tcx)),

            ty::FloatVar(v) => self
                .infcx
                .inner
                .borrow_mut()
                .float_unification_table()
                .probe_value(v)
                .map(|v| v.to_type(self.infcx.tcx)),

            ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None,
        }
    }
}

impl<'tcx> TypeTrace<'tcx> {
    pub fn span(&self) -> Span {
        self.cause.span
    }

    pub fn types(
        cause: &ObligationCause<'tcx>,
        a_is_expected: bool,
        a: Ty<'tcx>,
        b: Ty<'tcx>,
    ) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
        }
    }

    pub fn poly_trait_refs(
        cause: &ObligationCause<'tcx>,
        a_is_expected: bool,
        a: ty::PolyTraitRef<'tcx>,
        b: ty::PolyTraitRef<'tcx>,
    ) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
        }
    }

    pub fn consts(
        cause: &ObligationCause<'tcx>,
        a_is_expected: bool,
        a: ty::Const<'tcx>,
        b: ty::Const<'tcx>,
    ) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
        }
    }
}

impl<'tcx> SubregionOrigin<'tcx> {
    pub fn span(&self) -> Span {
        match *self {
            Subtype(ref a) => a.span(),
            RelateObjectBound(a) => a,
            RelateParamBound(a, ..) => a,
            RelateRegionParamBound(a) => a,
            Reborrow(a) => a,
            ReferenceOutlivesReferent(_, a) => a,
            CompareImplItemObligation { span, .. } => span,
            AscribeUserTypeProvePredicate(span) => span,
            CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
        }
    }

    pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
    where
        F: FnOnce() -> Self,
    {
        match *cause.code() {
            traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
                SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
            }

            traits::ObligationCauseCode::CompareImplItemObligation {
                impl_item_def_id,
                trait_item_def_id,
                kind: _,
            } => SubregionOrigin::CompareImplItemObligation {
                span: cause.span,
                impl_item_def_id,
                trait_item_def_id,
            },

            traits::ObligationCauseCode::CheckAssociatedTypeBounds {
                impl_item_def_id,
                trait_item_def_id,
            } => SubregionOrigin::CheckAssociatedTypeBounds {
                impl_item_def_id,
                trait_item_def_id,
                parent: Box::new(default()),
            },

            traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
                SubregionOrigin::AscribeUserTypeProvePredicate(span)
            }

            _ => default(),
        }
    }
}

impl RegionVariableOrigin {
    pub fn span(&self) -> Span {
        match *self {
            MiscVariable(a)
            | PatternRegion(a)
            | AddrOfRegion(a)
            | Autoref(a)
            | Coercion(a)
            | RegionParameterDefinition(a, ..)
            | BoundRegion(a, ..)
            | UpvarRegion(_, a) => a,
            Nll(..) => bug!("NLL variable used with `span`"),
        }
    }
}

/// Replaces args that reference param or infer variables with suitable
/// placeholders. This function is meant to remove these param and infer
/// args when they're not actually needed to evaluate a constant.
fn replace_param_and_infer_args_with_placeholder<'tcx>(
    tcx: TyCtxt<'tcx>,
    args: GenericArgsRef<'tcx>,
) -> GenericArgsRef<'tcx> {
    struct ReplaceParamAndInferWithPlaceholder<'tcx> {
        tcx: TyCtxt<'tcx>,
        idx: u32,
    }

    impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
        fn interner(&self) -> TyCtxt<'tcx> {
            self.tcx
        }

        fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
            if let ty::Infer(_) = t.kind() {
                let idx = {
                    let idx = self.idx;
                    self.idx += 1;
                    idx
                };
                Ty::new_placeholder(
                    self.tcx,
                    ty::PlaceholderType {
                        universe: ty::UniverseIndex::ROOT,
                        bound: ty::BoundTy {
                            var: ty::BoundVar::from_u32(idx),
                            kind: ty::BoundTyKind::Anon,
                        },
                    },
                )
            } else {
                t.super_fold_with(self)
            }
        }

        fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
            if let ty::ConstKind::Infer(_) = c.kind() {
                let ty = c.ty();
                // If the type references param or infer then ICE ICE ICE
                if ty.has_non_region_param() || ty.has_non_region_infer() {
                    bug!("const `{c}`'s type should not reference params or types");
                }
                ty::Const::new_placeholder(
                    self.tcx,
                    ty::PlaceholderConst {
                        universe: ty::UniverseIndex::ROOT,
                        bound: ty::BoundVar::from_u32({
                            let idx = self.idx;
                            self.idx += 1;
                            idx
                        }),
                    },
                    ty,
                )
            } else {
                c.super_fold_with(self)
            }
        }
    }

    args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
}