1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! **Canonicalization** is the key to constructing a query in the
//! middle of type inference. Ordinarily, it is not possible to store
//! types from type inference in query keys, because they contain
//! references to inference variables whose lifetimes are too short
//! and so forth. Canonicalizing a value T1 using `canonicalize_query`
//! produces two things:
//!
//! - a value T2 where each unbound inference variable has been
//!   replaced with a **canonical variable**;
//! - a map M (of type `CanonicalVarValues`) from those canonical
//!   variables back to the original.
//!
//! We can then do queries using T2. These will give back constraints
//! on the canonical variables which can be translated, using the map
//! M, into constraints in our source context. This process of
//! translating the results back is done by the
//! `instantiate_query_result` method.
//!
//! For a more detailed look at what is happening here, check
//! out the [chapter in the rustc dev guide][c].
//!
//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html

use crate::infer::{ConstVariableOrigin, ConstVariableOriginKind};
use crate::infer::{InferCtxt, RegionVariableOrigin, TypeVariableOrigin, TypeVariableOriginKind};
use rustc_index::IndexVec;
use rustc_middle::infer::unify_key::EffectVarValue;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::GenericArg;
use rustc_middle::ty::{self, List, Ty, TyCtxt};
use rustc_span::Span;

pub use instantiate::CanonicalExt;
pub use rustc_middle::infer::canonical::*;

mod canonicalizer;
mod instantiate;
pub mod query_response;

impl<'tcx> InferCtxt<'tcx> {
    /// Creates an instantiation S for the canonical value with fresh
    /// inference variables and applies it to the canonical value.
    /// Returns both the instantiated result *and* the instantiation S.
    ///
    /// This can be invoked as part of constructing an
    /// inference context at the start of a query (see
    /// `InferCtxtBuilder::build_with_canonical`). It basically
    /// brings the canonical value "into scope" within your new infcx.
    ///
    /// At the end of processing, the instantiation S (once
    /// canonicalized) then represents the values that you computed
    /// for each of the canonical inputs to your query.
    pub fn instantiate_canonical_with_fresh_inference_vars<T>(
        &self,
        span: Span,
        canonical: &Canonical<'tcx, T>,
    ) -> (T, CanonicalVarValues<'tcx>)
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        // For each universe that is referred to in the incoming
        // query, create a universe in our local inference context. In
        // practice, as of this writing, all queries have no universes
        // in them, so this code has no effect, but it is looking
        // forward to the day when we *do* want to carry universes
        // through into queries.
        //
        // Instantiate the root-universe content into the current universe,
        // and create fresh universes for the higher universes.
        let universes: IndexVec<ty::UniverseIndex, _> = std::iter::once(self.universe())
            .chain((1..=canonical.max_universe.as_u32()).map(|_| self.create_next_universe()))
            .collect();

        let canonical_inference_vars =
            self.instantiate_canonical_vars(span, canonical.variables, |ui| universes[ui]);
        let result = canonical.instantiate(self.tcx, &canonical_inference_vars);
        (result, canonical_inference_vars)
    }

    /// Given the "infos" about the canonical variables from some
    /// canonical, creates fresh variables with the same
    /// characteristics (see `instantiate_canonical_var` for
    /// details). You can then use `instantiate` to instantiate the
    /// canonical variable with these inference variables.
    fn instantiate_canonical_vars(
        &self,
        span: Span,
        variables: &List<CanonicalVarInfo<'tcx>>,
        universe_map: impl Fn(ty::UniverseIndex) -> ty::UniverseIndex,
    ) -> CanonicalVarValues<'tcx> {
        CanonicalVarValues {
            var_values: self.tcx.mk_args_from_iter(
                variables
                    .iter()
                    .map(|info| self.instantiate_canonical_var(span, info, &universe_map)),
            ),
        }
    }

    /// Given the "info" about a canonical variable, creates a fresh
    /// variable for it. If this is an existentially quantified
    /// variable, then you'll get a new inference variable; if it is a
    /// universally quantified variable, you get a placeholder.
    ///
    /// FIXME(-Znext-solver): This is public because it's used by the
    /// new trait solver which has a different canonicalization routine.
    /// We should somehow deduplicate all of this.
    pub fn instantiate_canonical_var(
        &self,
        span: Span,
        cv_info: CanonicalVarInfo<'tcx>,
        universe_map: impl Fn(ty::UniverseIndex) -> ty::UniverseIndex,
    ) -> GenericArg<'tcx> {
        match cv_info.kind {
            CanonicalVarKind::Ty(ty_kind) => {
                let ty = match ty_kind {
                    CanonicalTyVarKind::General(ui) => self.next_ty_var_in_universe(
                        TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span },
                        universe_map(ui),
                    ),

                    CanonicalTyVarKind::Int => self.next_int_var(),

                    CanonicalTyVarKind::Float => self.next_float_var(),
                };
                ty.into()
            }

            CanonicalVarKind::PlaceholderTy(ty::PlaceholderType { universe, bound }) => {
                let universe_mapped = universe_map(universe);
                let placeholder_mapped = ty::PlaceholderType { universe: universe_mapped, bound };
                Ty::new_placeholder(self.tcx, placeholder_mapped).into()
            }

            CanonicalVarKind::Region(ui) => self
                .next_region_var_in_universe(
                    RegionVariableOrigin::MiscVariable(span),
                    universe_map(ui),
                )
                .into(),

            CanonicalVarKind::PlaceholderRegion(ty::PlaceholderRegion { universe, bound }) => {
                let universe_mapped = universe_map(universe);
                let placeholder_mapped = ty::PlaceholderRegion { universe: universe_mapped, bound };
                ty::Region::new_placeholder(self.tcx, placeholder_mapped).into()
            }

            CanonicalVarKind::Const(ui, ty) => self
                .next_const_var_in_universe(
                    ty,
                    ConstVariableOrigin { kind: ConstVariableOriginKind::MiscVariable, span },
                    universe_map(ui),
                )
                .into(),
            CanonicalVarKind::Effect => {
                let vid = self
                    .inner
                    .borrow_mut()
                    .effect_unification_table()
                    .new_key(EffectVarValue::Unknown)
                    .vid;
                ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(vid), self.tcx.types.bool)
                    .into()
            }
            CanonicalVarKind::PlaceholderConst(ty::PlaceholderConst { universe, bound }, ty) => {
                let universe_mapped = universe_map(universe);
                let placeholder_mapped = ty::PlaceholderConst { universe: universe_mapped, bound };
                ty::Const::new_placeholder(self.tcx, placeholder_mapped, ty).into()
            }
        }
    }
}