1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use rustc_infer::infer::outlives::components::{push_outlives_components, Component};
use rustc_middle::ty::{self, Region, Ty, TyCtxt};
use rustc_middle::ty::{GenericArg, GenericArgKind};
use rustc_span::Span;
use smallvec::smallvec;
use std::collections::BTreeMap;

/// Tracks the `T: 'a` or `'a: 'a` predicates that we have inferred
/// must be added to the struct header.
pub(crate) type RequiredPredicates<'tcx> =
    BTreeMap<ty::OutlivesPredicate<GenericArg<'tcx>, ty::Region<'tcx>>, Span>;

/// Given a requirement `T: 'a` or `'b: 'a`, deduce the
/// outlives_component and add it to `required_predicates`
pub(crate) fn insert_outlives_predicate<'tcx>(
    tcx: TyCtxt<'tcx>,
    kind: GenericArg<'tcx>,
    outlived_region: Region<'tcx>,
    span: Span,
    required_predicates: &mut RequiredPredicates<'tcx>,
) {
    // If the `'a` region is bound within the field type itself, we
    // don't want to propagate this constraint to the header.
    if !is_free_region(outlived_region) {
        return;
    }

    match kind.unpack() {
        GenericArgKind::Type(ty) => {
            // `T: 'outlived_region` for some type `T`
            // But T could be a lot of things:
            // e.g., if `T = &'b u32`, then `'b: 'outlived_region` is
            // what we want to add.
            //
            // Or if within `struct Foo<U>` you had `T = Vec<U>`, then
            // we would want to add `U: 'outlived_region`
            let mut components = smallvec![];
            push_outlives_components(tcx, ty, &mut components);
            for component in components {
                match component {
                    Component::Region(r) => {
                        // This would arise from something like:
                        //
                        // ```
                        // struct Foo<'a, 'b> {
                        //    x:  &'a &'b u32
                        // }
                        // ```
                        //
                        // Here `outlived_region = 'a` and `kind = &'b
                        // u32`. Decomposing `&'b u32` into
                        // components would yield `'b`, and we add the
                        // where clause that `'b: 'a`.
                        insert_outlives_predicate(
                            tcx,
                            r.into(),
                            outlived_region,
                            span,
                            required_predicates,
                        );
                    }

                    Component::Param(param_ty) => {
                        // param_ty: ty::ParamTy
                        // This would arise from something like:
                        //
                        // ```
                        // struct Foo<'a, U> {
                        //    x:  &'a Vec<U>
                        // }
                        // ```
                        //
                        // Here `outlived_region = 'a` and `kind =
                        // Vec<U>`. Decomposing `Vec<U>` into
                        // components would yield `U`, and we add the
                        // where clause that `U: 'a`.
                        let ty: Ty<'tcx> = param_ty.to_ty(tcx);
                        required_predicates
                            .entry(ty::OutlivesPredicate(ty.into(), outlived_region))
                            .or_insert(span);
                    }

                    Component::Placeholder(_) => {
                        span_bug!(span, "Should not deduce placeholder outlives component");
                    }

                    Component::Alias(alias_ty) => {
                        // This would either arise from something like:
                        //
                        // ```
                        // struct Foo<'a, T: Iterator> {
                        //    x:  &'a <T as Iterator>::Item
                        // }
                        // ```
                        //
                        // or:
                        //
                        // ```rust
                        // type Opaque<T> = impl Sized;
                        // fn defining<T>() -> Opaque<T> {}
                        // struct Ss<'a, T>(&'a Opaque<T>);
                        // ```
                        //
                        // Here we want to add an explicit `where <T as Iterator>::Item: 'a`
                        // or `Opaque<T>: 'a` depending on the alias kind.
                        let ty = alias_ty.to_ty(tcx);
                        required_predicates
                            .entry(ty::OutlivesPredicate(ty.into(), outlived_region))
                            .or_insert(span);
                    }

                    Component::EscapingAlias(_) => {
                        // As above, but the projection involves
                        // late-bound regions. Therefore, the WF
                        // requirement is not checked in type definition
                        // but at fn call site, so ignore it.
                        //
                        // ```
                        // struct Foo<'a, T: Iterator> {
                        //    x: for<'b> fn(<&'b T as Iterator>::Item)
                        //              //  ^^^^^^^^^^^^^^^^^^^^^^^^^
                        // }
                        // ```
                        //
                        // Since `'b` is not in scope on `Foo`, can't
                        // do anything here, ignore it.
                    }

                    Component::UnresolvedInferenceVariable(_) => bug!("not using infcx"),
                }
            }
        }

        GenericArgKind::Lifetime(r) => {
            if !is_free_region(r) {
                return;
            }
            required_predicates.entry(ty::OutlivesPredicate(kind, outlived_region)).or_insert(span);
        }

        GenericArgKind::Const(_) => {
            // Generic consts don't impose any constraints.
        }
    }
}

fn is_free_region(region: Region<'_>) -> bool {
    // First, screen for regions that might appear in a type header.
    match *region {
        // These correspond to `T: 'a` relationships:
        //
        //     struct Foo<'a, T> {
        //         field: &'a T, // this would generate a ReEarlyParam referencing `'a`
        //     }
        //
        // We care about these, so fall through.
        ty::ReEarlyParam(_) => true,

        // These correspond to `T: 'static` relationships which can be
        // rather surprising.
        //
        //     struct Foo<'a, T> {
        //         field: &'static T, // this would generate a ReStatic
        //     }
        ty::ReStatic => false,

        // Late-bound regions can appear in `fn` types:
        //
        //     struct Foo<T> {
        //         field: for<'b> fn(&'b T) // e.g., 'b here
        //     }
        //
        // The type above might generate a `T: 'b` bound, but we can
        // ignore it. We can't name this lifetime pn the struct header anyway.
        ty::ReBound(..) => false,

        ty::ReError(_) => false,

        // These regions don't appear in types from type declarations:
        ty::ReErased | ty::ReVar(..) | ty::RePlaceholder(..) | ty::ReLateParam(..) => {
            bug!("unexpected region in outlives inference: {:?}", region);
        }
    }
}