1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use super::ItemCtxt;
use crate::astconv::{AstConv, PredicateFilter};
use rustc_hir as hir;
use rustc_infer::traits::util;
use rustc_middle::ty::GenericArgs;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeFolder};
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::Span;

/// For associated types we include both bounds written on the type
/// (`type X: Trait`) and predicates from the trait: `where Self::X: Trait`.
///
/// Note that this filtering is done with the items identity args to
/// simplify checking that these bounds are met in impls. This means that
/// a bound such as `for<'b> <Self as X<'b>>::U: Clone` can't be used, as in
/// `hr-associated-type-bound-1.rs`.
fn associated_type_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    assoc_item_def_id: LocalDefId,
    ast_bounds: &'tcx [hir::GenericBound<'tcx>],
    span: Span,
) -> &'tcx [(ty::Clause<'tcx>, Span)] {
    let item_ty = Ty::new_projection(
        tcx,
        assoc_item_def_id.to_def_id(),
        GenericArgs::identity_for_item(tcx, assoc_item_def_id),
    );

    let icx = ItemCtxt::new(tcx, assoc_item_def_id);
    let mut bounds = icx.astconv().compute_bounds(item_ty, ast_bounds, PredicateFilter::All);
    // Associated types are implicitly sized unless a `?Sized` bound is found
    icx.astconv().add_implicitly_sized(&mut bounds, item_ty, ast_bounds, None, span);

    let trait_def_id = tcx.local_parent(assoc_item_def_id);
    let trait_predicates = tcx.trait_explicit_predicates_and_bounds(trait_def_id);

    let bounds_from_parent = trait_predicates.predicates.iter().copied().filter(|(pred, _)| {
        match pred.kind().skip_binder() {
            ty::ClauseKind::Trait(tr) => tr.self_ty() == item_ty,
            ty::ClauseKind::Projection(proj) => proj.projection_ty.self_ty() == item_ty,
            ty::ClauseKind::TypeOutlives(outlives) => outlives.0 == item_ty,
            _ => false,
        }
    });

    let all_bounds = tcx.arena.alloc_from_iter(bounds.clauses().chain(bounds_from_parent));
    debug!(
        "associated_type_bounds({}) = {:?}",
        tcx.def_path_str(assoc_item_def_id.to_def_id()),
        all_bounds
    );
    all_bounds
}

/// Opaque types don't inherit bounds from their parent: for return position
/// impl trait it isn't possible to write a suitable predicate on the
/// containing function and for type-alias impl trait we don't have a backwards
/// compatibility issue.
#[instrument(level = "trace", skip(tcx), ret)]
fn opaque_type_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    opaque_def_id: LocalDefId,
    ast_bounds: &'tcx [hir::GenericBound<'tcx>],
    item_ty: Ty<'tcx>,
    span: Span,
) -> &'tcx [(ty::Clause<'tcx>, Span)] {
    ty::print::with_reduced_queries!({
        let icx = ItemCtxt::new(tcx, opaque_def_id);
        let mut bounds = icx.astconv().compute_bounds(item_ty, ast_bounds, PredicateFilter::All);
        // Opaque types are implicitly sized unless a `?Sized` bound is found
        icx.astconv().add_implicitly_sized(&mut bounds, item_ty, ast_bounds, None, span);
        debug!(?bounds);

        tcx.arena.alloc_from_iter(bounds.clauses())
    })
}

pub(super) fn explicit_item_bounds(
    tcx: TyCtxt<'_>,
    def_id: LocalDefId,
) -> ty::EarlyBinder<&'_ [(ty::Clause<'_>, Span)]> {
    match tcx.opt_rpitit_info(def_id.to_def_id()) {
        // RPITIT's bounds are the same as opaque type bounds, but with
        // a projection self type.
        Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
            let item = tcx.hir_node_by_def_id(opaque_def_id.expect_local()).expect_item();
            let opaque_ty = item.expect_opaque_ty();
            return ty::EarlyBinder::bind(opaque_type_bounds(
                tcx,
                opaque_def_id.expect_local(),
                opaque_ty.bounds,
                Ty::new_projection(
                    tcx,
                    def_id.to_def_id(),
                    ty::GenericArgs::identity_for_item(tcx, def_id),
                ),
                item.span,
            ));
        }
        Some(ty::ImplTraitInTraitData::Impl { .. }) => span_bug!(
            tcx.def_span(def_id),
            "item bounds for RPITIT in impl to be fed on def-id creation"
        ),
        None => {}
    }

    let bounds = match tcx.hir_node_by_def_id(def_id) {
        hir::Node::TraitItem(hir::TraitItem {
            kind: hir::TraitItemKind::Type(bounds, _),
            span,
            ..
        }) => associated_type_bounds(tcx, def_id, bounds, *span),
        hir::Node::Item(hir::Item {
            kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, in_trait: false, .. }),
            span,
            ..
        }) => {
            let args = GenericArgs::identity_for_item(tcx, def_id);
            let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
            opaque_type_bounds(tcx, def_id, bounds, item_ty, *span)
        }
        // Since RPITITs are astconv'd as projections in `ast_ty_to_ty`, when we're asking
        // for the item bounds of the *opaques* in a trait's default method signature, we
        // need to map these projections back to opaques.
        hir::Node::Item(hir::Item {
            kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, in_trait: true, origin, .. }),
            span,
            ..
        }) => {
            let (hir::OpaqueTyOrigin::FnReturn(fn_def_id)
            | hir::OpaqueTyOrigin::AsyncFn(fn_def_id)) = *origin
            else {
                span_bug!(*span, "RPITIT cannot be a TAIT, but got origin {origin:?}");
            };
            let args = GenericArgs::identity_for_item(tcx, def_id);
            let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
            tcx.arena.alloc_slice(
                &opaque_type_bounds(tcx, def_id, bounds, item_ty, *span)
                    .to_vec()
                    .fold_with(&mut AssocTyToOpaque { tcx, fn_def_id: fn_def_id.to_def_id() }),
            )
        }
        hir::Node::Item(hir::Item { kind: hir::ItemKind::TyAlias(..), .. }) => &[],
        _ => bug!("item_bounds called on {:?}", def_id),
    };
    ty::EarlyBinder::bind(bounds)
}

pub(super) fn item_bounds(
    tcx: TyCtxt<'_>,
    def_id: DefId,
) -> ty::EarlyBinder<&'_ ty::List<ty::Clause<'_>>> {
    tcx.explicit_item_bounds(def_id).map_bound(|bounds| {
        tcx.mk_clauses_from_iter(util::elaborate(tcx, bounds.iter().map(|&(bound, _span)| bound)))
    })
}

struct AssocTyToOpaque<'tcx> {
    tcx: TyCtxt<'tcx>,
    fn_def_id: DefId,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for AssocTyToOpaque<'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
            && let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) =
                self.tcx.opt_rpitit_info(projection_ty.def_id)
            && fn_def_id == self.fn_def_id
        {
            self.tcx.type_of(projection_ty.def_id).instantiate(self.tcx, projection_ty.args)
        } else {
            ty
        }
    }
}