1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//! Orphan checker: every impl either implements a trait defined in this
//! crate or pertains to a type defined in this crate.

use crate::errors;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_middle::ty::{self, AliasKind, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::def_id::LocalDefId;
use rustc_span::Span;
use rustc_trait_selection::traits::{self, IsFirstInputType};

#[instrument(skip(tcx), level = "debug")]
pub(crate) fn orphan_check_impl(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
    trait_ref.error_reported()?;

    let trait_def_id = trait_ref.def_id;

    match traits::orphan_check(tcx, impl_def_id.to_def_id()) {
        Ok(()) => {}
        Err(err) => {
            let item = tcx.hir().expect_item(impl_def_id);
            let hir::ItemKind::Impl(impl_) = item.kind else {
                bug!("{:?} is not an impl: {:?}", impl_def_id, item);
            };
            let tr = impl_.of_trait.as_ref().unwrap();
            let sp = tcx.def_span(impl_def_id);

            emit_orphan_check_error(
                tcx,
                sp,
                item.span,
                tr.path.span,
                trait_ref,
                impl_.self_ty.span,
                impl_.generics,
                err,
            )?
        }
    }

    // In addition to the above rules, we restrict impls of auto traits
    // so that they can only be implemented on nominal types, such as structs,
    // enums or foreign types. To see why this restriction exists, consider the
    // following example (#22978). Imagine that crate A defines an auto trait
    // `Foo` and a fn that operates on pairs of types:
    //
    // ```
    // // Crate A
    // auto trait Foo { }
    // fn two_foos<A:Foo,B:Foo>(..) {
    //     one_foo::<(A,B)>(..)
    // }
    // fn one_foo<T:Foo>(..) { .. }
    // ```
    //
    // This type-checks fine; in particular the fn
    // `two_foos` is able to conclude that `(A,B):Foo`
    // because `A:Foo` and `B:Foo`.
    //
    // Now imagine that crate B comes along and does the following:
    //
    // ```
    // struct A { }
    // struct B { }
    // impl Foo for A { }
    // impl Foo for B { }
    // impl !Foo for (A, B) { }
    // ```
    //
    // This final impl is legal according to the orphan
    // rules, but it invalidates the reasoning from
    // `two_foos` above.
    debug!(
        "trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
        trait_ref,
        trait_def_id,
        tcx.trait_is_auto(trait_def_id)
    );

    if tcx.trait_is_auto(trait_def_id) {
        let self_ty = trait_ref.self_ty();

        // If the impl is in the same crate as the auto-trait, almost anything
        // goes.
        //
        //     impl MyAuto for Rc<Something> {}  // okay
        //     impl<T> !MyAuto for *const T {}   // okay
        //     impl<T> MyAuto for T {}           // okay
        //
        // But there is one important exception: implementing for a trait object
        // is not allowed.
        //
        //     impl MyAuto for dyn Trait {}      // NOT OKAY
        //     impl<T: ?Sized> MyAuto for T {}   // NOT OKAY
        //
        // With this restriction, it's guaranteed that an auto-trait is
        // implemented for a trait object if and only if the auto-trait is one
        // of the trait object's trait bounds (or a supertrait of a bound). In
        // other words `dyn Trait + AutoTrait` always implements AutoTrait,
        // while `dyn Trait` never implements AutoTrait.
        //
        // This is necessary in order for autotrait bounds on methods of trait
        // objects to be sound.
        //
        //     auto trait AutoTrait {}
        //
        //     trait ObjectSafeTrait {
        //         fn f(&self) where Self: AutoTrait;
        //     }
        //
        // We can allow f to be called on `dyn ObjectSafeTrait + AutoTrait`.
        //
        // If we didn't deny `impl AutoTrait for dyn Trait`, it would be unsound
        // for the ObjectSafeTrait shown above to be object safe because someone
        // could take some type implementing ObjectSafeTrait but not AutoTrait,
        // unsize it to `dyn ObjectSafeTrait`, and call .f() which has no
        // concrete implementation (issue #50781).
        enum LocalImpl {
            Allow,
            Disallow { problematic_kind: &'static str },
        }

        // If the auto-trait is from a dependency, it must only be getting
        // implemented for a nominal type, and specifically one local to the
        // current crate.
        //
        //     impl<T> Sync for MyStruct<T> {}   // okay
        //
        //     impl Sync for Rc<MyStruct> {}     // NOT OKAY
        enum NonlocalImpl {
            Allow,
            DisallowBecauseNonlocal,
            DisallowOther,
        }

        // Exhaustive match considering that this logic is essential for
        // soundness.
        let (local_impl, nonlocal_impl) = match self_ty.kind() {
            // struct Struct<T>;
            // impl AutoTrait for Struct<Foo> {}
            ty::Adt(self_def, _) => (
                LocalImpl::Allow,
                if self_def.did().is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // extern { type OpaqueType; }
            // impl AutoTrait for OpaqueType {}
            ty::Foreign(did) => (
                LocalImpl::Allow,
                if did.is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // impl AutoTrait for dyn Trait {}
            ty::Dynamic(..) => (
                LocalImpl::Disallow { problematic_kind: "trait object" },
                NonlocalImpl::DisallowOther,
            ),

            // impl<T> AutoTrait for T {}
            // impl<T: ?Sized> AutoTrait for T {}
            ty::Param(..) => (
                if self_ty.is_sized(tcx, tcx.param_env(impl_def_id)) {
                    LocalImpl::Allow
                } else {
                    LocalImpl::Disallow { problematic_kind: "generic type" }
                },
                NonlocalImpl::DisallowOther,
            ),

            ty::Alias(kind, _) => {
                let problematic_kind = match kind {
                    // trait Id { type This: ?Sized; }
                    // impl<T: ?Sized> Id for T {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for <T as Id>::This {}
                    AliasKind::Projection => "associated type",
                    // type Foo = (impl Sized, bool)
                    // impl AutoTrait for Foo {}
                    AliasKind::Weak => "type alias",
                    // type Opaque = impl Trait;
                    // impl AutoTrait for Opaque {}
                    AliasKind::Opaque => "opaque type",
                    // ```
                    // struct S<T>(T);
                    // impl<T: ?Sized> S<T> {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for S<T>::This {}
                    // ```
                    // FIXME(inherent_associated_types): The example code above currently leads to a cycle
                    AliasKind::Inherent => "associated type",
                };
                (LocalImpl::Disallow { problematic_kind }, NonlocalImpl::DisallowOther)
            }

            ty::Bool
            | ty::Char
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(..)
            | ty::RawPtr(..)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Never
            | ty::Tuple(..) => (LocalImpl::Allow, NonlocalImpl::DisallowOther),

            ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Bound(..)
            | ty::Placeholder(..)
            | ty::Infer(..) => {
                let sp = tcx.def_span(impl_def_id);
                span_bug!(sp, "weird self type for autotrait impl")
            }

            ty::Error(..) => (LocalImpl::Allow, NonlocalImpl::Allow),
        };

        if trait_def_id.is_local() {
            match local_impl {
                LocalImpl::Allow => {}
                LocalImpl::Disallow { problematic_kind } => {
                    return Err(tcx.dcx().emit_err(errors::TraitsWithDefaultImpl {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                        problematic_kind,
                        self_ty,
                    }));
                }
            }
        } else {
            match nonlocal_impl {
                NonlocalImpl::Allow => {}
                NonlocalImpl::DisallowBecauseNonlocal => {
                    return Err(tcx.dcx().emit_err(errors::CrossCrateTraitsDefined {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                    }));
                }
                NonlocalImpl::DisallowOther => {
                    return Err(tcx.dcx().emit_err(errors::CrossCrateTraits {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                        self_ty,
                    }));
                }
            }
        }
    }

    Ok(())
}

fn emit_orphan_check_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    sp: Span,
    full_impl_span: Span,
    trait_span: Span,
    trait_ref: ty::TraitRef<'tcx>,
    self_ty_span: Span,
    generics: &hir::Generics<'tcx>,
    err: traits::OrphanCheckErr<'tcx>,
) -> Result<!, ErrorGuaranteed> {
    let self_ty = trait_ref.self_ty();
    Err(match err {
        traits::OrphanCheckErr::NonLocalInputType(tys) => {
            let (mut opaque, mut foreign, mut name, mut pointer, mut ty_diag) =
                (Vec::new(), Vec::new(), Vec::new(), Vec::new(), Vec::new());
            let mut sugg = None;
            for &(mut ty, is_target_ty) in &tys {
                let span = if matches!(is_target_ty, IsFirstInputType::Yes) {
                    // Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
                    self_ty_span
                } else {
                    // Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
                    trait_span
                };

                ty = tcx.erase_regions(ty);
                ty = match ty.kind() {
                    // Remove the type arguments from the output, as they are not relevant.
                    // You can think of this as the reverse of `resolve_vars_if_possible`.
                    // That way if we had `Vec<MyType>`, we will properly attribute the
                    // problem to `Vec<T>` and avoid confusing the user if they were to see
                    // `MyType` in the error.
                    ty::Adt(def, _) => Ty::new_adt(tcx, *def, ty::List::empty()),
                    _ => ty,
                };

                fn push_to_foreign_or_name<'tcx>(
                    is_foreign: bool,
                    foreign: &mut Vec<errors::OnlyCurrentTraitsForeign>,
                    name: &mut Vec<errors::OnlyCurrentTraitsName<'tcx>>,
                    span: Span,
                    sname: &'tcx str,
                ) {
                    if is_foreign {
                        foreign.push(errors::OnlyCurrentTraitsForeign { span })
                    } else {
                        name.push(errors::OnlyCurrentTraitsName { span, name: sname });
                    }
                }

                let is_foreign =
                    !trait_ref.def_id.is_local() && matches!(is_target_ty, IsFirstInputType::No);

                match &ty.kind() {
                    ty::Slice(_) => {
                        push_to_foreign_or_name(
                            is_foreign,
                            &mut foreign,
                            &mut name,
                            span,
                            "slices",
                        );
                    }
                    ty::Array(..) => {
                        push_to_foreign_or_name(
                            is_foreign,
                            &mut foreign,
                            &mut name,
                            span,
                            "arrays",
                        );
                    }
                    ty::Tuple(..) => {
                        push_to_foreign_or_name(
                            is_foreign,
                            &mut foreign,
                            &mut name,
                            span,
                            "tuples",
                        );
                    }
                    ty::Alias(ty::Opaque, ..) => {
                        opaque.push(errors::OnlyCurrentTraitsOpaque { span })
                    }
                    ty::RawPtr(ptr_ty) => {
                        if !self_ty.has_param() {
                            let mut_key = ptr_ty.mutbl.prefix_str();
                            sugg = Some(errors::OnlyCurrentTraitsPointerSugg {
                                wrapper_span: self_ty_span,
                                struct_span: full_impl_span.shrink_to_lo(),
                                mut_key,
                                ptr_ty: ptr_ty.ty,
                            });
                        }
                        pointer.push(errors::OnlyCurrentTraitsPointer { span, pointer: ty });
                    }
                    _ => ty_diag.push(errors::OnlyCurrentTraitsTy { span, ty }),
                }
            }

            let err_struct = match self_ty.kind() {
                ty::Adt(..) => errors::OnlyCurrentTraits::Outside {
                    span: sp,
                    note: (),
                    opaque,
                    foreign,
                    name,
                    pointer,
                    ty: ty_diag,
                    sugg,
                },
                _ if self_ty.is_primitive() => errors::OnlyCurrentTraits::Primitive {
                    span: sp,
                    note: (),
                    opaque,
                    foreign,
                    name,
                    pointer,
                    ty: ty_diag,
                    sugg,
                },
                _ => errors::OnlyCurrentTraits::Arbitrary {
                    span: sp,
                    note: (),
                    opaque,
                    foreign,
                    name,
                    pointer,
                    ty: ty_diag,
                    sugg,
                },
            };
            tcx.dcx().emit_err(err_struct)
        }
        traits::OrphanCheckErr::UncoveredTy(param_ty, local_type) => {
            let mut sp = sp;
            for param in generics.params {
                if param.name.ident().to_string() == param_ty.to_string() {
                    sp = param.span;
                }
            }

            match local_type {
                Some(local_type) => tcx.dcx().emit_err(errors::TyParamFirstLocal {
                    span: sp,
                    note: (),
                    param_ty,
                    local_type,
                }),
                None => tcx.dcx().emit_err(errors::TyParamSome { span: sp, note: (), param_ty }),
            }
        }
    })
}