1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::{outlives::env::OutlivesEnvironment, TyCtxtInferExt};
use rustc_lint_defs::builtin::REFINING_IMPL_TRAIT;
use rustc_middle::traits::{ObligationCause, Reveal};
use rustc_middle::ty::{
    self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperVisitable, TypeVisitable, TypeVisitor,
};
use rustc_span::Span;
use rustc_trait_selection::regions::InferCtxtRegionExt;
use rustc_trait_selection::traits::{
    elaborate, normalize_param_env_or_error, outlives_bounds::InferCtxtExt, ObligationCtxt,
};

/// Check that an implementation does not refine an RPITIT from a trait method signature.
pub(super) fn check_refining_return_position_impl_trait_in_trait<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) {
    if !tcx.impl_method_has_trait_impl_trait_tys(impl_m.def_id) {
        return;
    }
    // unreachable traits don't have any library guarantees, there's no need to do this check.
    if trait_m
        .container_id(tcx)
        .as_local()
        .is_some_and(|trait_def_id| !tcx.effective_visibilities(()).is_reachable(trait_def_id))
    {
        return;
    }

    // If a type in the trait ref is private, then there's also no reason to do this check.
    let impl_def_id = impl_m.container_id(tcx);
    for arg in impl_trait_ref.args {
        if let Some(ty) = arg.as_type()
            && let Some(self_visibility) = type_visibility(tcx, ty)
            && !self_visibility.is_public()
        {
            return;
        }
    }

    let impl_m_args = ty::GenericArgs::identity_for_item(tcx, impl_m.def_id);
    let trait_m_to_impl_m_args = impl_m_args.rebase_onto(tcx, impl_def_id, impl_trait_ref.args);
    let bound_trait_m_sig = tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_m_to_impl_m_args);
    let trait_m_sig = tcx.liberate_late_bound_regions(impl_m.def_id, bound_trait_m_sig);
    // replace the self type of the trait ref with `Self` so that diagnostics render better.
    let trait_m_sig_with_self_for_diag = tcx.liberate_late_bound_regions(
        impl_m.def_id,
        tcx.fn_sig(trait_m.def_id).instantiate(
            tcx,
            tcx.mk_args_from_iter(
                [tcx.types.self_param.into()]
                    .into_iter()
                    .chain(trait_m_to_impl_m_args.iter().skip(1)),
            ),
        ),
    );

    let Ok(hidden_tys) = tcx.collect_return_position_impl_trait_in_trait_tys(impl_m.def_id) else {
        // Error already emitted, no need to delay another.
        return;
    };

    let mut collector = ImplTraitInTraitCollector { tcx, types: FxIndexSet::default() };
    trait_m_sig.visit_with(&mut collector);

    // Bound that we find on RPITITs in the trait signature.
    let mut trait_bounds = vec![];
    // Bounds that we find on the RPITITs in the impl signature.
    let mut impl_bounds = vec![];

    for trait_projection in collector.types.into_iter().rev() {
        let impl_opaque_args = trait_projection.args.rebase_onto(tcx, trait_m.def_id, impl_m_args);
        let hidden_ty = hidden_tys[&trait_projection.def_id].instantiate(tcx, impl_opaque_args);

        // If the hidden type is not an opaque, then we have "refined" the trait signature.
        let ty::Alias(ty::Opaque, impl_opaque) = *hidden_ty.kind() else {
            report_mismatched_rpitit_signature(
                tcx,
                trait_m_sig_with_self_for_diag,
                trait_m.def_id,
                impl_m.def_id,
                None,
            );
            return;
        };

        // This opaque also needs to be from the impl method -- otherwise,
        // it's a refinement to a TAIT.
        if !tcx.hir().get_if_local(impl_opaque.def_id).is_some_and(|node| {
            matches!(
                node.expect_item().expect_opaque_ty().origin,
                hir::OpaqueTyOrigin::AsyncFn(def_id)  | hir::OpaqueTyOrigin::FnReturn(def_id)
                    if def_id == impl_m.def_id.expect_local()
            )
        }) {
            report_mismatched_rpitit_signature(
                tcx,
                trait_m_sig_with_self_for_diag,
                trait_m.def_id,
                impl_m.def_id,
                None,
            );
            return;
        }

        trait_bounds.extend(
            tcx.item_bounds(trait_projection.def_id).iter_instantiated(tcx, trait_projection.args),
        );
        impl_bounds.extend(elaborate(
            tcx,
            tcx.explicit_item_bounds(impl_opaque.def_id)
                .iter_instantiated_copied(tcx, impl_opaque.args),
        ));
    }

    let hybrid_preds = tcx
        .predicates_of(impl_def_id)
        .instantiate_identity(tcx)
        .into_iter()
        .chain(tcx.predicates_of(trait_m.def_id).instantiate_own(tcx, trait_m_to_impl_m_args))
        .map(|(clause, _)| clause);
    let param_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(hybrid_preds), Reveal::UserFacing);
    let param_env = normalize_param_env_or_error(tcx, param_env, ObligationCause::dummy());

    let ref infcx = tcx.infer_ctxt().build();
    let ocx = ObligationCtxt::new(infcx);

    // Normalize the bounds. This has two purposes:
    //
    // 1. Project the RPITIT projections from the trait to the opaques on the impl,
    //    which means that they don't need to be mapped manually.
    //
    // 2. Deeply normalize any other projections that show up in the bound. That makes sure
    //    that we don't consider `tests/ui/async-await/in-trait/async-associated-types.rs`
    //    or `tests/ui/impl-trait/in-trait/refine-normalize.rs` to be refining.
    let Ok((trait_bounds, impl_bounds)) =
        ocx.deeply_normalize(&ObligationCause::dummy(), param_env, (trait_bounds, impl_bounds))
    else {
        tcx.dcx().delayed_bug("encountered errors when checking RPITIT refinement (selection)");
        return;
    };

    // Since we've normalized things, we need to resolve regions, since we'll
    // possibly have introduced region vars during projection. We don't expect
    // this resolution to have incurred any region errors -- but if we do, then
    // just delay a bug.
    let mut implied_wf_types = FxIndexSet::default();
    implied_wf_types.extend(trait_m_sig.inputs_and_output);
    implied_wf_types.extend(ocx.normalize(
        &ObligationCause::dummy(),
        param_env,
        trait_m_sig.inputs_and_output,
    ));
    if !ocx.select_all_or_error().is_empty() {
        tcx.dcx().delayed_bug("encountered errors when checking RPITIT refinement (selection)");
        return;
    }
    let outlives_env = OutlivesEnvironment::with_bounds(
        param_env,
        infcx.implied_bounds_tys(param_env, impl_m.def_id.expect_local(), &implied_wf_types),
    );
    let errors = infcx.resolve_regions(&outlives_env);
    if !errors.is_empty() {
        tcx.dcx().delayed_bug("encountered errors when checking RPITIT refinement (regions)");
        return;
    }
    // Resolve any lifetime variables that may have been introduced during normalization.
    let Ok((trait_bounds, impl_bounds)) = infcx.fully_resolve((trait_bounds, impl_bounds)) else {
        // This code path is not reached in any tests, but may be reachable. If
        // this is triggered, it should be converted to `delayed_bug` and the
        // triggering case turned into a test.
        tcx.dcx().bug("encountered errors when checking RPITIT refinement (resolution)");
    };

    // For quicker lookup, use an `IndexSet` (we don't use one earlier because
    // it's not foldable..).
    // Also, We have to anonymize binders in these types because they may contain
    // `BrNamed` bound vars, which contain unique `DefId`s which correspond to syntax
    // locations that we don't care about when checking bound equality.
    let trait_bounds = FxIndexSet::from_iter(trait_bounds.fold_with(&mut Anonymize { tcx }));
    let impl_bounds = impl_bounds.fold_with(&mut Anonymize { tcx });

    // Find any clauses that are present in the impl's RPITITs that are not
    // present in the trait's RPITITs. This will trigger on trivial predicates,
    // too, since we *do not* use the trait solver to prove that the RPITIT's
    // bounds are not stronger -- we're doing a simple, syntactic compatibility
    // check between bounds. This is strictly forwards compatible, though.
    for (clause, span) in impl_bounds {
        if !trait_bounds.contains(&clause) {
            report_mismatched_rpitit_signature(
                tcx,
                trait_m_sig_with_self_for_diag,
                trait_m.def_id,
                impl_m.def_id,
                Some(span),
            );
            return;
        }
    }
}

struct ImplTraitInTraitCollector<'tcx> {
    tcx: TyCtxt<'tcx>,
    types: FxIndexSet<ty::AliasTy<'tcx>>,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'tcx> {
    fn visit_ty(&mut self, ty: Ty<'tcx>) {
        if let ty::Alias(ty::Projection, proj) = *ty.kind()
            && self.tcx.is_impl_trait_in_trait(proj.def_id)
        {
            if self.types.insert(proj) {
                for (pred, _) in self
                    .tcx
                    .explicit_item_bounds(proj.def_id)
                    .iter_instantiated_copied(self.tcx, proj.args)
                {
                    pred.visit_with(self);
                }
            }
        } else {
            ty.super_visit_with(self);
        }
    }
}

fn report_mismatched_rpitit_signature<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_m_sig: ty::FnSig<'tcx>,
    trait_m_def_id: DefId,
    impl_m_def_id: DefId,
    unmatched_bound: Option<Span>,
) {
    let mapping = std::iter::zip(
        tcx.fn_sig(trait_m_def_id).skip_binder().bound_vars(),
        tcx.fn_sig(impl_m_def_id).skip_binder().bound_vars(),
    )
    .filter_map(|(impl_bv, trait_bv)| {
        if let ty::BoundVariableKind::Region(impl_bv) = impl_bv
            && let ty::BoundVariableKind::Region(trait_bv) = trait_bv
        {
            Some((impl_bv, trait_bv))
        } else {
            None
        }
    })
    .collect();

    let mut return_ty =
        trait_m_sig.output().fold_with(&mut super::RemapLateBound { tcx, mapping: &mapping });

    if tcx.asyncness(impl_m_def_id).is_async() && tcx.asyncness(trait_m_def_id).is_async() {
        let ty::Alias(ty::Projection, future_ty) = return_ty.kind() else {
            span_bug!(
                tcx.def_span(trait_m_def_id),
                "expected return type of async fn in trait to be a AFIT projection"
            );
        };
        let Some(future_output_ty) = tcx
            .explicit_item_bounds(future_ty.def_id)
            .iter_instantiated_copied(tcx, future_ty.args)
            .find_map(|(clause, _)| match clause.kind().no_bound_vars()? {
                ty::ClauseKind::Projection(proj) => proj.term.ty(),
                _ => None,
            })
        else {
            span_bug!(tcx.def_span(trait_m_def_id), "expected `Future` projection bound in AFIT");
        };
        return_ty = future_output_ty;
    }

    let (span, impl_return_span, pre, post) =
        match tcx.hir_node_by_def_id(impl_m_def_id.expect_local()).fn_decl().unwrap().output {
            hir::FnRetTy::DefaultReturn(span) => (tcx.def_span(impl_m_def_id), span, "-> ", " "),
            hir::FnRetTy::Return(ty) => (ty.span, ty.span, "", ""),
        };
    let trait_return_span =
        tcx.hir().get_if_local(trait_m_def_id).map(|node| match node.fn_decl().unwrap().output {
            hir::FnRetTy::DefaultReturn(_) => tcx.def_span(trait_m_def_id),
            hir::FnRetTy::Return(ty) => ty.span,
        });

    let span = unmatched_bound.unwrap_or(span);
    tcx.emit_node_span_lint(
        REFINING_IMPL_TRAIT,
        tcx.local_def_id_to_hir_id(impl_m_def_id.expect_local()),
        span,
        crate::errors::ReturnPositionImplTraitInTraitRefined {
            impl_return_span,
            trait_return_span,
            pre,
            post,
            return_ty,
            unmatched_bound,
        },
    );
}

fn type_visibility<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Option<ty::Visibility<DefId>> {
    match *ty.kind() {
        ty::Ref(_, ty, _) => type_visibility(tcx, ty),
        ty::Adt(def, args) => {
            if def.is_fundamental() {
                type_visibility(tcx, args.type_at(0))
            } else {
                Some(tcx.visibility(def.did()))
            }
        }
        _ => None,
    }
}

struct Anonymize<'tcx> {
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for Anonymize<'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        self.tcx.anonymize_bound_vars(t)
    }
}