1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::{codes::*, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::ty::{self as ty, Ty};
use rustc_span::symbol::Ident;
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::traits;
use smallvec::SmallVec;

use crate::astconv::{AstConv, OnlySelfBounds, PredicateFilter};
use crate::bounds::Bounds;
use crate::errors;

impl<'tcx> dyn AstConv<'tcx> + '_ {
    /// Sets `implicitly_sized` to true on `Bounds` if necessary
    pub(crate) fn add_implicitly_sized(
        &self,
        bounds: &mut Bounds<'tcx>,
        self_ty: Ty<'tcx>,
        ast_bounds: &'tcx [hir::GenericBound<'tcx>],
        self_ty_where_predicates: Option<(LocalDefId, &'tcx [hir::WherePredicate<'tcx>])>,
        span: Span,
    ) {
        let tcx = self.tcx();
        let sized_def_id = tcx.lang_items().sized_trait();
        let mut seen_negative_sized_bound = false;
        let mut seen_positive_sized_bound = false;

        // Try to find an unbound in bounds.
        let mut unbounds: SmallVec<[_; 1]> = SmallVec::new();
        let mut search_bounds = |ast_bounds: &'tcx [hir::GenericBound<'tcx>]| {
            for ab in ast_bounds {
                let hir::GenericBound::Trait(ptr, modifier) = ab else {
                    continue;
                };
                match modifier {
                    hir::TraitBoundModifier::Maybe => unbounds.push(ptr),
                    hir::TraitBoundModifier::Negative => {
                        if let Some(sized_def_id) = sized_def_id
                            && ptr.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
                        {
                            seen_negative_sized_bound = true;
                        }
                    }
                    hir::TraitBoundModifier::None => {
                        if let Some(sized_def_id) = sized_def_id
                            && ptr.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
                        {
                            seen_positive_sized_bound = true;
                        }
                    }
                    _ => {}
                }
            }
        };
        search_bounds(ast_bounds);
        if let Some((self_ty, where_clause)) = self_ty_where_predicates {
            for clause in where_clause {
                if let hir::WherePredicate::BoundPredicate(pred) = clause
                    && pred.is_param_bound(self_ty.to_def_id())
                {
                    search_bounds(pred.bounds);
                }
            }
        }

        if unbounds.len() > 1 {
            tcx.dcx().emit_err(errors::MultipleRelaxedDefaultBounds {
                spans: unbounds.iter().map(|ptr| ptr.span).collect(),
            });
        }

        let mut seen_sized_unbound = false;
        for unbound in unbounds {
            if let Some(sized_def_id) = sized_def_id
                && unbound.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
            {
                seen_sized_unbound = true;
                continue;
            }
            // There was a `?Trait` bound, but it was not `?Sized`; warn.
            tcx.dcx().span_warn(
                unbound.span,
                "relaxing a default bound only does something for `?Sized`; \
                all other traits are not bound by default",
            );
        }

        if seen_sized_unbound || seen_negative_sized_bound || seen_positive_sized_bound {
            // There was in fact a `?Sized`, `!Sized` or explicit `Sized` bound;
            // we don't need to do anything.
        } else if sized_def_id.is_some() {
            // There was no `?Sized`, `!Sized` or explicit `Sized` bound;
            // add `Sized` if it's available.
            bounds.push_sized(tcx, self_ty, span);
        }
    }

    /// This helper takes a *converted* parameter type (`param_ty`)
    /// and an *unconverted* list of bounds:
    ///
    /// ```text
    /// fn foo<T: Debug>
    ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
    ///        |
    ///        `param_ty`, in ty form
    /// ```
    ///
    /// It adds these `ast_bounds` into the `bounds` structure.
    ///
    /// **A note on binders:** there is an implied binder around
    /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
    /// for more details.
    #[instrument(level = "debug", skip(self, ast_bounds, bounds))]
    pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'tcx>>>(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: I,
        bounds: &mut Bounds<'tcx>,
        bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
        only_self_bounds: OnlySelfBounds,
    ) where
        'tcx: 'hir,
    {
        for ast_bound in ast_bounds {
            match ast_bound {
                hir::GenericBound::Trait(poly_trait_ref, modifier) => {
                    let (constness, polarity) = match modifier {
                        hir::TraitBoundModifier::Const => {
                            (ty::BoundConstness::Const, ty::ImplPolarity::Positive)
                        }
                        hir::TraitBoundModifier::MaybeConst => {
                            (ty::BoundConstness::ConstIfConst, ty::ImplPolarity::Positive)
                        }
                        hir::TraitBoundModifier::None => {
                            (ty::BoundConstness::NotConst, ty::ImplPolarity::Positive)
                        }
                        hir::TraitBoundModifier::Negative => {
                            (ty::BoundConstness::NotConst, ty::ImplPolarity::Negative)
                        }
                        hir::TraitBoundModifier::Maybe => continue,
                    };
                    let _ = self.instantiate_poly_trait_ref(
                        &poly_trait_ref.trait_ref,
                        poly_trait_ref.span,
                        constness,
                        polarity,
                        param_ty,
                        bounds,
                        false,
                        only_self_bounds,
                    );
                }
                hir::GenericBound::Outlives(lifetime) => {
                    let region = self.ast_region_to_region(lifetime, None);
                    bounds.push_region_bound(
                        self.tcx(),
                        ty::Binder::bind_with_vars(
                            ty::OutlivesPredicate(param_ty, region),
                            bound_vars,
                        ),
                        lifetime.ident.span,
                    );
                }
            }
        }
    }

    /// Translates a list of bounds from the HIR into the `Bounds` data structure.
    /// The self-type for the bounds is given by `param_ty`.
    ///
    /// Example:
    ///
    /// ```ignore (illustrative)
    /// fn foo<T: Bar + Baz>() { }
    /// //     ^  ^^^^^^^^^ ast_bounds
    /// //     param_ty
    /// ```
    ///
    /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
    /// considered `Sized` unless there is an explicit `?Sized` bound. This would be true in the
    /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
    ///
    /// `span` should be the declaration size of the parameter.
    pub(crate) fn compute_bounds(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: &[hir::GenericBound<'tcx>],
        filter: PredicateFilter,
    ) -> Bounds<'tcx> {
        let mut bounds = Bounds::default();

        let only_self_bounds = match filter {
            PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {
                OnlySelfBounds(false)
            }
            PredicateFilter::SelfOnly | PredicateFilter::SelfThatDefines(_) => OnlySelfBounds(true),
        };

        self.add_bounds(
            param_ty,
            ast_bounds.iter().filter(|bound| match filter {
                PredicateFilter::All
                | PredicateFilter::SelfOnly
                | PredicateFilter::SelfAndAssociatedTypeBounds => true,
                PredicateFilter::SelfThatDefines(assoc_name) => {
                    if let Some(trait_ref) = bound.trait_ref()
                        && let Some(trait_did) = trait_ref.trait_def_id()
                        && self.tcx().trait_may_define_assoc_item(trait_did, assoc_name)
                    {
                        true
                    } else {
                        false
                    }
                }
            }),
            &mut bounds,
            ty::List::empty(),
            only_self_bounds,
        );
        debug!(?bounds);

        bounds
    }

    /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
    /// onto `bounds`.
    ///
    /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
    /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
    /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
    #[instrument(level = "debug", skip(self, bounds, speculative, dup_bindings, path_span))]
    pub(super) fn add_predicates_for_ast_type_binding(
        &self,
        hir_ref_id: hir::HirId,
        trait_ref: ty::PolyTraitRef<'tcx>,
        binding: &hir::TypeBinding<'tcx>,
        bounds: &mut Bounds<'tcx>,
        speculative: bool,
        dup_bindings: &mut FxIndexMap<DefId, Span>,
        path_span: Span,
        only_self_bounds: OnlySelfBounds,
    ) -> Result<(), ErrorGuaranteed> {
        // Given something like `U: SomeTrait<T = X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait: SuperTrait<i32> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B: SubTrait<T = foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<i32>>::T == foo`.

        let tcx = self.tcx();

        let assoc_kind = if binding.gen_args.parenthesized
            == hir::GenericArgsParentheses::ReturnTypeNotation
        {
            ty::AssocKind::Fn
        } else if let hir::TypeBindingKind::Equality { term: hir::Term::Const(_) } = binding.kind {
            ty::AssocKind::Const
        } else {
            ty::AssocKind::Type
        };

        let candidate = if self.trait_defines_associated_item_named(
            trait_ref.def_id(),
            assoc_kind,
            binding.ident,
        ) {
            // Simple case: The assoc item is defined in the current trait.
            trait_ref
        } else {
            // Otherwise, we have to walk through the supertraits to find
            // one that does define it.
            self.one_bound_for_assoc_item(
                || traits::supertraits(tcx, trait_ref),
                trait_ref.skip_binder().print_only_trait_name(),
                None,
                assoc_kind,
                binding.ident,
                path_span,
                Some(binding),
            )?
        };

        let (assoc_ident, def_scope) =
            tcx.adjust_ident_and_get_scope(binding.ident, candidate.def_id(), hir_ref_id);

        // We have already adjusted the item name above, so compare with `.normalize_to_macros_2_0()`
        // instead of calling `filter_by_name_and_kind` which would needlessly normalize the
        // `assoc_ident` again and again.
        let assoc_item = tcx
            .associated_items(candidate.def_id())
            .filter_by_name_unhygienic(assoc_ident.name)
            .find(|i| i.kind == assoc_kind && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident)
            .expect("missing associated item");

        if !assoc_item.visibility(tcx).is_accessible_from(def_scope, tcx) {
            let reported = tcx
                .dcx()
                .struct_span_err(
                    binding.span,
                    format!("{} `{}` is private", assoc_item.kind, binding.ident),
                )
                .with_span_label(binding.span, format!("private {}", assoc_item.kind))
                .emit();
            self.set_tainted_by_errors(reported);
        }
        tcx.check_stability(assoc_item.def_id, Some(hir_ref_id), binding.span, None);

        if !speculative {
            dup_bindings
                .entry(assoc_item.def_id)
                .and_modify(|prev_span| {
                    tcx.dcx().emit_err(errors::ValueOfAssociatedStructAlreadySpecified {
                        span: binding.span,
                        prev_span: *prev_span,
                        item_name: binding.ident,
                        def_path: tcx.def_path_str(assoc_item.container_id(tcx)),
                    });
                })
                .or_insert(binding.span);
        }

        let projection_ty = if let ty::AssocKind::Fn = assoc_kind {
            let mut emitted_bad_param_err = None;
            // If we have an method return type bound, then we need to instantiate
            // the method's early bound params with suitable late-bound params.
            let mut num_bound_vars = candidate.bound_vars().len();
            let args =
                candidate.skip_binder().args.extend_to(tcx, assoc_item.def_id, |param, _| {
                    let arg = match param.kind {
                        ty::GenericParamDefKind::Lifetime => ty::Region::new_bound(
                            tcx,
                            ty::INNERMOST,
                            ty::BoundRegion {
                                var: ty::BoundVar::from_usize(num_bound_vars),
                                kind: ty::BoundRegionKind::BrNamed(param.def_id, param.name),
                            },
                        )
                        .into(),
                        ty::GenericParamDefKind::Type { .. } => {
                            let guar = *emitted_bad_param_err.get_or_insert_with(|| {
                                tcx.dcx().emit_err(
                                    crate::errors::ReturnTypeNotationIllegalParam::Type {
                                        span: path_span,
                                        param_span: tcx.def_span(param.def_id),
                                    },
                                )
                            });
                            Ty::new_error(tcx, guar).into()
                        }
                        ty::GenericParamDefKind::Const { .. } => {
                            let guar = *emitted_bad_param_err.get_or_insert_with(|| {
                                tcx.dcx().emit_err(
                                    crate::errors::ReturnTypeNotationIllegalParam::Const {
                                        span: path_span,
                                        param_span: tcx.def_span(param.def_id),
                                    },
                                )
                            });
                            let ty = tcx
                                .type_of(param.def_id)
                                .no_bound_vars()
                                .expect("ct params cannot have early bound vars");
                            ty::Const::new_error(tcx, guar, ty).into()
                        }
                    };
                    num_bound_vars += 1;
                    arg
                });

            // Next, we need to check that the return-type notation is being used on
            // an RPITIT (return-position impl trait in trait) or AFIT (async fn in trait).
            let output = tcx.fn_sig(assoc_item.def_id).skip_binder().output();
            let output = if let ty::Alias(ty::Projection, alias_ty) = *output.skip_binder().kind()
                && tcx.is_impl_trait_in_trait(alias_ty.def_id)
            {
                alias_ty
            } else {
                return Err(tcx.dcx().emit_err(crate::errors::ReturnTypeNotationOnNonRpitit {
                    span: binding.span,
                    ty: tcx.liberate_late_bound_regions(assoc_item.def_id, output),
                    fn_span: tcx.hir().span_if_local(assoc_item.def_id),
                    note: (),
                }));
            };

            // Finally, move the fn return type's bound vars over to account for the early bound
            // params (and trait ref's late bound params). This logic is very similar to
            // `rustc_middle::ty::predicate::Clause::instantiate_supertrait`
            // and it's no coincidence why.
            let shifted_output = tcx.shift_bound_var_indices(num_bound_vars, output);
            let instantiation_output = ty::EarlyBinder::bind(shifted_output).instantiate(tcx, args);

            let bound_vars = tcx.late_bound_vars(binding.hir_id);
            ty::Binder::bind_with_vars(instantiation_output, bound_vars)
        } else {
            // Create the generic arguments for the associated type or constant by joining the
            // parent arguments (the arguments of the trait) and the own arguments (the ones of
            // the associated item itself) and construct an alias type using them.
            let alias_ty = candidate.map_bound(|trait_ref| {
                let ident = Ident::new(assoc_item.name, binding.ident.span);
                let item_segment = hir::PathSegment {
                    ident,
                    hir_id: binding.hir_id,
                    res: Res::Err,
                    args: Some(binding.gen_args),
                    infer_args: false,
                };

                let alias_args = self.create_args_for_associated_item(
                    path_span,
                    assoc_item.def_id,
                    &item_segment,
                    trait_ref.args,
                );
                debug!(?alias_args);

                // Note that we're indeed also using `AliasTy` (alias *type*) for associated
                // *constants* to represent *const projections*. Alias *term* would be a more
                // appropriate name but alas.
                ty::AliasTy::new(tcx, assoc_item.def_id, alias_args)
            });

            // Provide the resolved type of the associated constant to `type_of(AnonConst)`.
            if !speculative
                && let hir::TypeBindingKind::Equality { term: hir::Term::Const(anon_const) } =
                    binding.kind
            {
                let ty = alias_ty.map_bound(|ty| tcx.type_of(ty.def_id).instantiate(tcx, ty.args));
                // Since the arguments passed to the alias type above may contain early-bound
                // generic parameters, the instantiated type may contain some as well.
                // Therefore wrap it in `EarlyBinder`.
                // FIXME(fmease): Reject escaping late-bound vars.
                tcx.feed_anon_const_type(
                    anon_const.def_id,
                    ty::EarlyBinder::bind(ty.skip_binder()),
                );
            }

            alias_ty
        };

        match binding.kind {
            hir::TypeBindingKind::Equality { .. } if let ty::AssocKind::Fn = assoc_kind => {
                return Err(tcx.dcx().emit_err(crate::errors::ReturnTypeNotationEqualityBound {
                    span: binding.span,
                }));
            }
            hir::TypeBindingKind::Equality { term } => {
                let term = match term {
                    hir::Term::Ty(ty) => self.ast_ty_to_ty(ty).into(),
                    hir::Term::Const(ct) => ty::Const::from_anon_const(tcx, ct.def_id).into(),
                };

                if !speculative {
                    // Find any late-bound regions declared in `ty` that are not
                    // declared in the trait-ref or assoc_item. These are not well-formed.
                    //
                    // Example:
                    //
                    //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
                    //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
                    let late_bound_in_projection_ty =
                        tcx.collect_constrained_late_bound_regions(projection_ty);
                    let late_bound_in_term =
                        tcx.collect_referenced_late_bound_regions(trait_ref.rebind(term));
                    debug!(?late_bound_in_projection_ty);
                    debug!(?late_bound_in_term);

                    // FIXME: point at the type params that don't have appropriate lifetimes:
                    // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
                    //                         ----  ----     ^^^^^^^
                    // NOTE(associated_const_equality): This error should be impossible to trigger
                    //                                  with associated const equality bounds.
                    self.validate_late_bound_regions(
                        late_bound_in_projection_ty,
                        late_bound_in_term,
                        |br_name| {
                            struct_span_code_err!(
                                tcx.dcx(),
                                binding.span,
                                E0582,
                                "binding for associated type `{}` references {}, \
                                 which does not appear in the trait input types",
                                binding.ident,
                                br_name
                            )
                        },
                    );
                }

                // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
                // the "projection predicate" for:
                //
                // `<T as Iterator>::Item = u32`
                bounds.push_projection_bound(
                    tcx,
                    projection_ty
                        .map_bound(|projection_ty| ty::ProjectionPredicate { projection_ty, term }),
                    binding.span,
                );
            }
            hir::TypeBindingKind::Constraint { bounds: ast_bounds } => {
                // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
                //
                // `<T as Iterator>::Item: Debug`
                //
                // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
                // parameter to have a skipped binder.
                //
                // NOTE: If `only_self_bounds` is true, do NOT expand this associated
                // type bound into a trait predicate, since we only want to add predicates
                // for the `Self` type.
                if !only_self_bounds.0 {
                    let param_ty = Ty::new_alias(tcx, ty::Projection, projection_ty.skip_binder());
                    self.add_bounds(
                        param_ty,
                        ast_bounds.iter(),
                        bounds,
                        projection_ty.bound_vars(),
                        only_self_bounds,
                    );
                }
            }
        }
        Ok(())
    }
}