1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
//! Bindings to acquire a global named lock.
//!
//! This is intended to be used to synchronize multiple compiler processes to
//! ensure that we can output complete errors without interleaving on Windows.
//! Note that this is currently only needed for allowing only one 32-bit MSVC
//! linker to execute at once on MSVC hosts, so this is only implemented for
//! `cfg(windows)`. Also note that this may not always be used on Windows,
//! only when targeting 32-bit MSVC.
//!
//! For more information about why this is necessary, see where this is called.
use std::any::Any;
#[cfg(windows)]
pub fn acquire_global_lock(name: &str) -> Box<dyn Any> {
use std::ffi::CString;
use std::io;
use windows::{
core::PCSTR,
Win32::Foundation::{CloseHandle, HANDLE, WAIT_ABANDONED, WAIT_OBJECT_0},
Win32::System::Threading::{CreateMutexA, ReleaseMutex, WaitForSingleObject, INFINITE},
};
struct Handle(HANDLE);
impl Drop for Handle {
fn drop(&mut self) {
unsafe {
// FIXME can panic here
CloseHandle(self.0).unwrap();
}
}
}
struct Guard(Handle);
impl Drop for Guard {
fn drop(&mut self) {
unsafe {
// FIXME can panic here
ReleaseMutex((self.0).0).unwrap();
}
}
}
let cname = CString::new(name).unwrap();
// Create a named mutex, with no security attributes and also not
// acquired when we create it.
//
// This will silently create one if it doesn't already exist, or it'll
// open up a handle to one if it already exists.
let mutex = unsafe { CreateMutexA(None, false, PCSTR::from_raw(cname.as_ptr().cast())) }
.unwrap_or_else(|_| panic!("failed to create global mutex named `{}`", name));
let mutex = Handle(mutex);
// Acquire the lock through `WaitForSingleObject`.
//
// A return value of `WAIT_OBJECT_0` means we successfully acquired it.
//
// A return value of `WAIT_ABANDONED` means that the previous holder of
// the thread exited without calling `ReleaseMutex`. This can happen,
// for example, when the compiler crashes or is interrupted via ctrl-c
// or the like. In this case, however, we are still transferred
// ownership of the lock so we continue.
//
// If an error happens.. well... that's surprising!
match unsafe { WaitForSingleObject(mutex.0, INFINITE) } {
WAIT_OBJECT_0 | WAIT_ABANDONED => (),
err => panic!(
"WaitForSingleObject failed on global mutex named `{}`: {} (ret={:x})",
name,
io::Error::last_os_error(),
err.0
),
}
// Return a guard which will call `ReleaseMutex` when dropped.
Box::new(Guard(mutex))
}
#[cfg(not(windows))]
pub fn acquire_global_lock(_name: &str) -> Box<dyn Any> {
Box::new(())
}