1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
//! rustc encodes a lot of hashes. If hashes are stored as `u64` or `u128`, a `derive(Encodable)`
//! will apply varint encoding to the hashes, which is less efficient than directly encoding the 8
//! or 16 bytes of the hash.
//!
//! The types in this module represent 64-bit or 128-bit hashes produced by a `StableHasher`.
//! `Hash64` and `Hash128` expose some utilty functions to encourage users to not extract the inner
//! hash value as an integer type and accidentally apply varint encoding to it.
//!
//! In contrast with `Fingerprint`, users of these types cannot and should not attempt to construct
//! and decompose these types into constitutent pieces. The point of these types is only to
//! connect the fact that they can only be produced by a `StableHasher` to their
//! `Encode`/`Decode` impls.

use crate::stable_hasher::{StableHasher, StableHasherResult};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::fmt;
use std::ops::BitXorAssign;

#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
pub struct Hash64 {
    inner: u64,
}

impl Hash64 {
    pub const ZERO: Hash64 = Hash64 { inner: 0 };

    #[inline]
    pub fn new(n: u64) -> Self {
        Self { inner: n }
    }

    #[inline]
    pub fn as_u64(self) -> u64 {
        self.inner
    }
}

impl BitXorAssign<u64> for Hash64 {
    #[inline]
    fn bitxor_assign(&mut self, rhs: u64) {
        self.inner ^= rhs;
    }
}

impl<S: Encoder> Encodable<S> for Hash64 {
    #[inline]
    fn encode(&self, s: &mut S) {
        s.emit_raw_bytes(&self.inner.to_le_bytes());
    }
}

impl<D: Decoder> Decodable<D> for Hash64 {
    #[inline]
    fn decode(d: &mut D) -> Self {
        Self { inner: u64::from_le_bytes(d.read_raw_bytes(8).try_into().unwrap()) }
    }
}

impl StableHasherResult for Hash64 {
    #[inline]
    fn finish(hasher: StableHasher) -> Self {
        Self { inner: hasher.finalize().0 }
    }
}

impl fmt::Debug for Hash64 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.inner.fmt(f)
    }
}

impl fmt::LowerHex for Hash64 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.inner, f)
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Default)]
pub struct Hash128 {
    inner: u128,
}

// We expect Hash128 to be well mixed. So there's no point in hashing both parts.
//
// This also allows using Hash128-containing types in UnHash-based hashmaps, which would otherwise
// debug_assert! that we're hashing more than a single u64.
impl std::hash::Hash for Hash128 {
    fn hash<H: std::hash::Hasher>(&self, h: &mut H) {
        h.write_u64(self.truncate().as_u64());
    }
}

impl Hash128 {
    #[inline]
    pub fn truncate(self) -> Hash64 {
        Hash64 { inner: self.inner as u64 }
    }

    #[inline]
    pub fn wrapping_add(self, other: Self) -> Self {
        Self { inner: self.inner.wrapping_add(other.inner) }
    }

    #[inline]
    pub fn as_u128(self) -> u128 {
        self.inner
    }
}

impl<S: Encoder> Encodable<S> for Hash128 {
    #[inline]
    fn encode(&self, s: &mut S) {
        s.emit_raw_bytes(&self.inner.to_le_bytes());
    }
}

impl<D: Decoder> Decodable<D> for Hash128 {
    #[inline]
    fn decode(d: &mut D) -> Self {
        Self { inner: u128::from_le_bytes(d.read_raw_bytes(16).try_into().unwrap()) }
    }
}

impl StableHasherResult for Hash128 {
    #[inline]
    fn finish(hasher: StableHasher) -> Self {
        let (_0, _1) = hasher.finalize();
        Self { inner: u128::from(_0) | (u128::from(_1) << 64) }
    }
}

impl fmt::Debug for Hash128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.inner.fmt(f)
    }
}

impl fmt::LowerHex for Hash128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.inner, f)
    }
}