1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! Functions for reading and writing discriminants of multi-variant layouts (enums and coroutines).

use rustc_middle::mir;
use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt};
use rustc_middle::ty::{self, Ty};
use rustc_target::abi::{self, TagEncoding};
use rustc_target::abi::{VariantIdx, Variants};

use super::{ImmTy, InterpCx, InterpResult, Machine, Readable, Scalar, Writeable};

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    /// Writes the discriminant of the given variant.
    ///
    /// If the variant is uninhabited, this is UB.
    #[instrument(skip(self), level = "trace")]
    pub fn write_discriminant(
        &mut self,
        variant_index: VariantIdx,
        dest: &impl Writeable<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx> {
        // Layout computation excludes uninhabited variants from consideration
        // therefore there's no way to represent those variants in the given layout.
        // Essentially, uninhabited variants do not have a tag that corresponds to their
        // discriminant, so we cannot do anything here.
        // When evaluating we will always error before even getting here, but ConstProp 'executes'
        // dead code, so we cannot ICE here.
        if dest.layout().for_variant(self, variant_index).abi.is_uninhabited() {
            throw_ub!(UninhabitedEnumVariantWritten(variant_index))
        }

        match dest.layout().variants {
            abi::Variants::Single { index } => {
                assert_eq!(index, variant_index);
            }
            abi::Variants::Multiple {
                tag_encoding: TagEncoding::Direct,
                tag: tag_layout,
                tag_field,
                ..
            } => {
                // No need to validate that the discriminant here because the
                // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.

                let discr_val = dest
                    .layout()
                    .ty
                    .discriminant_for_variant(*self.tcx, variant_index)
                    .unwrap()
                    .val;

                // raw discriminants for enums are isize or bigger during
                // their computation, but the in-memory tag is the smallest possible
                // representation
                let size = tag_layout.size(self);
                let tag_val = size.truncate(discr_val);

                let tag_dest = self.project_field(dest, tag_field)?;
                self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?;
            }
            abi::Variants::Multiple {
                tag_encoding:
                    TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start },
                tag: tag_layout,
                tag_field,
                ..
            } => {
                // No need to validate that the discriminant here because the
                // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.

                if variant_index != untagged_variant {
                    let variants_start = niche_variants.start().as_u32();
                    let variant_index_relative = variant_index
                        .as_u32()
                        .checked_sub(variants_start)
                        .expect("overflow computing relative variant idx");
                    // We need to use machine arithmetic when taking into account `niche_start`:
                    // tag_val = variant_index_relative + niche_start_val
                    let tag_layout = self.layout_of(tag_layout.primitive().to_int_ty(*self.tcx))?;
                    let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
                    let variant_index_relative_val =
                        ImmTy::from_uint(variant_index_relative, tag_layout);
                    let tag_val = self.wrapping_binary_op(
                        mir::BinOp::Add,
                        &variant_index_relative_val,
                        &niche_start_val,
                    )?;
                    // Write result.
                    let niche_dest = self.project_field(dest, tag_field)?;
                    self.write_immediate(*tag_val, &niche_dest)?;
                } else {
                    // The untagged variant is implicitly encoded simply by having a value that is
                    // outside the niche variants. But what if the data stored here does not
                    // actually encode this variant? That would be bad! So let's double-check...
                    let actual_variant = self.read_discriminant(&dest.to_op(self)?)?;
                    if actual_variant != variant_index {
                        throw_ub!(InvalidNichedEnumVariantWritten { enum_ty: dest.layout().ty });
                    }
                }
            }
        }

        Ok(())
    }

    /// Read discriminant, return the runtime value as well as the variant index.
    /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
    ///
    /// Will never return an uninhabited variant.
    #[instrument(skip(self), level = "trace")]
    pub fn read_discriminant(
        &self,
        op: &impl Readable<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, VariantIdx> {
        let ty = op.layout().ty;
        trace!("read_discriminant_value {:#?}", op.layout());
        // Get type and layout of the discriminant.
        let discr_layout = self.layout_of(ty.discriminant_ty(*self.tcx))?;
        trace!("discriminant type: {:?}", discr_layout.ty);

        // We use "discriminant" to refer to the value associated with a particular enum variant.
        // This is not to be confused with its "variant index", which is just determining its position in the
        // declared list of variants -- they can differ with explicitly assigned discriminants.
        // We use "tag" to refer to how the discriminant is encoded in memory, which can be either
        // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`).
        let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout().variants {
            Variants::Single { index } => {
                // Do some extra checks on enums.
                if ty.is_enum() {
                    // Hilariously, `Single` is used even for 0-variant enums.
                    // (See https://github.com/rust-lang/rust/issues/89765).
                    if matches!(ty.kind(), ty::Adt(def, ..) if def.variants().is_empty()) {
                        throw_ub!(UninhabitedEnumVariantRead(index))
                    }
                    // For consistency with `write_discriminant`, and to make sure that
                    // `project_downcast` cannot fail due to strange layouts, we declare immediate UB
                    // for uninhabited variants.
                    if op.layout().for_variant(self, index).abi.is_uninhabited() {
                        throw_ub!(UninhabitedEnumVariantRead(index))
                    }
                }
                return Ok(index);
            }
            Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
                (tag, tag_encoding, tag_field)
            }
        };

        // There are *three* layouts that come into play here:
        // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for
        //   the `Scalar` we return.
        // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type,
        //   and used to interpret the value we read from the tag field.
        //   For the return value, a cast to `discr_layout` is performed.
        // - The field storing the tag has a layout, which is very similar to `tag_layout` but
        //   may be a pointer. This is `tag_val.layout`; we just use it for sanity checks.

        // Get layout for tag.
        let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?;

        // Read tag and sanity-check `tag_layout`.
        let tag_val = self.read_immediate(&self.project_field(op, tag_field)?)?;
        assert_eq!(tag_layout.size, tag_val.layout.size);
        assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed());
        trace!("tag value: {}", tag_val);

        // Figure out which discriminant and variant this corresponds to.
        let index = match *tag_encoding {
            TagEncoding::Direct => {
                // Generate a specific error if `tag_val` is not an integer.
                // (`tag_bits` itself is only used for error messages below.)
                let tag_bits = tag_val
                    .to_scalar()
                    .try_to_int()
                    .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))?
                    .assert_bits(tag_layout.size);
                // Cast bits from tag layout to discriminant layout.
                // After the checks we did above, this cannot fail, as
                // discriminants are int-like.
                let discr_val = self.int_to_int_or_float(&tag_val, discr_layout).unwrap();
                let discr_bits = discr_val.to_scalar().assert_bits(discr_layout.size);
                // Convert discriminant to variant index, and catch invalid discriminants.
                let index = match *ty.kind() {
                    ty::Adt(adt, _) => {
                        adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits)
                    }
                    ty::Coroutine(def_id, args) => {
                        let args = args.as_coroutine();
                        args.discriminants(def_id, *self.tcx).find(|(_, var)| var.val == discr_bits)
                    }
                    _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-coroutine"),
                }
                .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?;
                // Return the cast value, and the index.
                index.0
            }
            TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
                let tag_val = tag_val.to_scalar();
                // Compute the variant this niche value/"tag" corresponds to. With niche layout,
                // discriminant (encoded in niche/tag) and variant index are the same.
                let variants_start = niche_variants.start().as_u32();
                let variants_end = niche_variants.end().as_u32();
                let variant = match tag_val.try_to_int() {
                    Err(dbg_val) => {
                        // So this is a pointer then, and casting to an int failed.
                        // Can only happen during CTFE.
                        // The niche must be just 0, and the ptr not null, then we know this is
                        // okay. Everything else, we conservatively reject.
                        let ptr_valid = niche_start == 0
                            && variants_start == variants_end
                            && !self.scalar_may_be_null(tag_val)?;
                        if !ptr_valid {
                            throw_ub!(InvalidTag(dbg_val))
                        }
                        untagged_variant
                    }
                    Ok(tag_bits) => {
                        let tag_bits = tag_bits.assert_bits(tag_layout.size);
                        // We need to use machine arithmetic to get the relative variant idx:
                        // variant_index_relative = tag_val - niche_start_val
                        let tag_val = ImmTy::from_uint(tag_bits, tag_layout);
                        let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
                        let variant_index_relative_val =
                            self.wrapping_binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
                        let variant_index_relative =
                            variant_index_relative_val.to_scalar().assert_bits(tag_val.layout.size);
                        // Check if this is in the range that indicates an actual discriminant.
                        if variant_index_relative <= u128::from(variants_end - variants_start) {
                            let variant_index_relative = u32::try_from(variant_index_relative)
                                .expect("we checked that this fits into a u32");
                            // Then computing the absolute variant idx should not overflow any more.
                            let variant_index = VariantIdx::from_u32(
                                variants_start
                                    .checked_add(variant_index_relative)
                                    .expect("overflow computing absolute variant idx"),
                            );
                            let variants =
                                ty.ty_adt_def().expect("tagged layout for non adt").variants();
                            assert!(variant_index < variants.next_index());
                            variant_index
                        } else {
                            untagged_variant
                        }
                    }
                };
                // Compute the size of the scalar we need to return.
                // No need to cast, because the variant index directly serves as discriminant and is
                // encoded in the tag.
                variant
            }
        };
        // Reading the discriminant of an uninhabited variant is UB. This is the basis for the
        // `uninhabited_enum_branching` MIR pass. It also ensures consistency with
        // `write_discriminant`.
        if op.layout().for_variant(self, index).abi.is_uninhabited() {
            throw_ub!(UninhabitedEnumVariantRead(index))
        }
        Ok(index)
    }

    pub fn discriminant_for_variant(
        &self,
        ty: Ty<'tcx>,
        variant: VariantIdx,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        let discr_layout = self.layout_of(ty.discriminant_ty(*self.tcx))?;
        let discr_value = match ty.discriminant_for_variant(*self.tcx, variant) {
            Some(discr) => {
                // This type actually has discriminants.
                assert_eq!(discr.ty, discr_layout.ty);
                Scalar::from_uint(discr.val, discr_layout.size)
            }
            None => {
                // On a type without actual discriminants, variant is 0.
                assert_eq!(variant.as_u32(), 0);
                Scalar::from_uint(variant.as_u32(), discr_layout.size)
            }
        };
        Ok(ImmTy::from_scalar(discr_value, discr_layout))
    }
}