1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
use crate::common::CodegenCx;
use crate::coverageinfo;
use crate::coverageinfo::ffi::CounterMappingRegion;
use crate::coverageinfo::map_data::{FunctionCoverage, FunctionCoverageCollector};
use crate::llvm;

use itertools::Itertools as _;
use rustc_codegen_ssa::traits::{BaseTypeMethods, ConstMethods};
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::mir;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::def_id::DefIdSet;
use rustc_span::Symbol;

/// Generates and exports the Coverage Map.
///
/// Rust Coverage Map generation supports LLVM Coverage Mapping Format version
/// 6 (zero-based encoded as 5), as defined at
/// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format).
/// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`)
/// bundled with Rust's fork of LLVM.
///
/// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with
/// the same version. Clang's implementation of Coverage Map generation was referenced when
/// implementing this Rust version, and though the format documentation is very explicit and
/// detailed, some undocumented details in Clang's implementation (that may or may not be important)
/// were also replicated for Rust's Coverage Map.
pub fn finalize(cx: &CodegenCx<'_, '_>) {
    let tcx = cx.tcx;

    // Ensure the installed version of LLVM supports Coverage Map Version 6
    // (encoded as a zero-based value: 5), which was introduced with LLVM 13.
    let version = coverageinfo::mapping_version();
    assert_eq!(version, 5, "The `CoverageMappingVersion` exposed by `llvm-wrapper` is out of sync");

    debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());

    // In order to show that unused functions have coverage counts of zero (0), LLVM requires the
    // functions exist. Generate synthetic functions with a (required) single counter, and add the
    // MIR `Coverage` code regions to the `function_coverage_map`, before calling
    // `ctx.take_function_coverage_map()`.
    if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
        add_unused_functions(cx);
    }

    let function_coverage_map = match cx.coverage_context() {
        Some(ctx) => ctx.take_function_coverage_map(),
        None => return,
    };

    if function_coverage_map.is_empty() {
        // This module has no functions with coverage instrumentation
        return;
    }

    let function_coverage_entries = function_coverage_map
        .into_iter()
        .map(|(instance, function_coverage)| (instance, function_coverage.into_finished()))
        .collect::<Vec<_>>();

    let all_file_names =
        function_coverage_entries.iter().flat_map(|(_, fn_cov)| fn_cov.all_file_names());
    let global_file_table = GlobalFileTable::new(all_file_names);

    // Encode all filenames referenced by coverage mappings in this CGU.
    let filenames_buffer = global_file_table.make_filenames_buffer(tcx);

    let filenames_size = filenames_buffer.len();
    let filenames_val = cx.const_bytes(&filenames_buffer);
    let filenames_ref = coverageinfo::hash_bytes(&filenames_buffer);

    // Generate the coverage map header, which contains the filenames used by
    // this CGU's coverage mappings, and store it in a well-known global.
    let cov_data_val = generate_coverage_map(cx, version, filenames_size, filenames_val);
    coverageinfo::save_cov_data_to_mod(cx, cov_data_val);

    let mut unused_function_names = Vec::new();
    let covfun_section_name = coverageinfo::covfun_section_name(cx);

    // Encode coverage mappings and generate function records
    for (instance, function_coverage) in function_coverage_entries {
        debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance);

        let mangled_function_name = tcx.symbol_name(instance).name;
        let source_hash = function_coverage.source_hash();
        let is_used = function_coverage.is_used();

        let coverage_mapping_buffer =
            encode_mappings_for_function(&global_file_table, &function_coverage);

        if coverage_mapping_buffer.is_empty() {
            if function_coverage.is_used() {
                bug!(
                    "A used function should have had coverage mapping data but did not: {}",
                    mangled_function_name
                );
            } else {
                debug!("unused function had no coverage mapping data: {}", mangled_function_name);
                continue;
            }
        }

        if !is_used {
            unused_function_names.push(mangled_function_name);
        }

        save_function_record(
            cx,
            &covfun_section_name,
            mangled_function_name,
            source_hash,
            filenames_ref,
            coverage_mapping_buffer,
            is_used,
        );
    }

    // For unused functions, we need to take their mangled names and store them
    // in a specially-named global array. LLVM's `InstrProfiling` pass will
    // detect this global and include those names in its `__llvm_prf_names`
    // section. (See `llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp`.)
    if !unused_function_names.is_empty() {
        assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());

        let name_globals = unused_function_names
            .into_iter()
            .map(|mangled_function_name| cx.const_str(mangled_function_name).0)
            .collect::<Vec<_>>();
        let initializer = cx.const_array(cx.type_ptr(), &name_globals);

        let array = llvm::add_global(cx.llmod, cx.val_ty(initializer), "__llvm_coverage_names");
        llvm::set_global_constant(array, true);
        llvm::set_linkage(array, llvm::Linkage::InternalLinkage);
        llvm::set_initializer(array, initializer);
    }
}

/// Maps "global" (per-CGU) file ID numbers to their underlying filenames.
struct GlobalFileTable {
    /// This "raw" table doesn't include the working dir, so a filename's
    /// global ID is its index in this set **plus one**.
    raw_file_table: FxIndexSet<Symbol>,
}

impl GlobalFileTable {
    fn new(all_file_names: impl IntoIterator<Item = Symbol>) -> Self {
        // Collect all of the filenames into a set. Filenames usually come in
        // contiguous runs, so we can dedup adjacent ones to save work.
        let mut raw_file_table = all_file_names.into_iter().dedup().collect::<FxIndexSet<Symbol>>();

        // Sort the file table by its actual string values, not the arbitrary
        // ordering of its symbols.
        raw_file_table.sort_unstable_by(|a, b| a.as_str().cmp(b.as_str()));

        Self { raw_file_table }
    }

    fn global_file_id_for_file_name(&self, file_name: Symbol) -> u32 {
        let raw_id = self.raw_file_table.get_index_of(&file_name).unwrap_or_else(|| {
            bug!("file name not found in prepared global file table: {file_name}");
        });
        // The raw file table doesn't include an entry for the working dir
        // (which has ID 0), so add 1 to get the correct ID.
        (raw_id + 1) as u32
    }

    fn make_filenames_buffer(&self, tcx: TyCtxt<'_>) -> Vec<u8> {
        // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5)
        // requires setting the first filename to the compilation directory.
        // Since rustc generates coverage maps with relative paths, the
        // compilation directory can be combined with the relative paths
        // to get absolute paths, if needed.
        use rustc_session::RemapFileNameExt;
        let working_dir: &str = &tcx.sess.opts.working_dir.for_codegen(tcx.sess).to_string_lossy();

        llvm::build_byte_buffer(|buffer| {
            coverageinfo::write_filenames_section_to_buffer(
                // Insert the working dir at index 0, before the other filenames.
                std::iter::once(working_dir).chain(self.raw_file_table.iter().map(Symbol::as_str)),
                buffer,
            );
        })
    }
}

rustc_index::newtype_index! {
    struct LocalFileId {}
}

/// Holds a mapping from "local" (per-function) file IDs to "global" (per-CGU)
/// file IDs.
#[derive(Default)]
struct VirtualFileMapping {
    local_to_global: IndexVec<LocalFileId, u32>,
    global_to_local: FxIndexMap<u32, LocalFileId>,
}

impl VirtualFileMapping {
    fn local_id_for_global(&mut self, global_file_id: u32) -> LocalFileId {
        *self
            .global_to_local
            .entry(global_file_id)
            .or_insert_with(|| self.local_to_global.push(global_file_id))
    }

    fn into_vec(self) -> Vec<u32> {
        self.local_to_global.raw
    }
}

/// Using the expressions and counter regions collected for a single function,
/// generate the variable-sized payload of its corresponding `__llvm_covfun`
/// entry. The payload is returned as a vector of bytes.
///
/// Newly-encountered filenames will be added to the global file table.
fn encode_mappings_for_function(
    global_file_table: &GlobalFileTable,
    function_coverage: &FunctionCoverage<'_>,
) -> Vec<u8> {
    let counter_regions = function_coverage.counter_regions();
    if counter_regions.is_empty() {
        return Vec::new();
    }

    let expressions = function_coverage.counter_expressions().collect::<Vec<_>>();

    let mut virtual_file_mapping = VirtualFileMapping::default();
    let mut mapping_regions = Vec::with_capacity(counter_regions.len());

    // Group mappings into runs with the same filename, preserving the order
    // yielded by `FunctionCoverage`.
    // Prepare file IDs for each filename, and prepare the mapping data so that
    // we can pass it through FFI to LLVM.
    for (file_name, counter_regions_for_file) in
        &counter_regions.group_by(|(_, region)| region.file_name)
    {
        // Look up the global file ID for this filename.
        let global_file_id = global_file_table.global_file_id_for_file_name(file_name);

        // Associate that global file ID with a local file ID for this function.
        let local_file_id = virtual_file_mapping.local_id_for_global(global_file_id);
        debug!("  file id: {local_file_id:?} => global {global_file_id} = '{file_name:?}'");

        // For each counter/region pair in this function+file, convert it to a
        // form suitable for FFI.
        for (mapping_kind, region) in counter_regions_for_file {
            debug!("Adding counter {mapping_kind:?} to map for {region:?}");
            mapping_regions.push(CounterMappingRegion::from_mapping(
                &mapping_kind,
                local_file_id.as_u32(),
                region,
            ));
        }
    }

    // Encode the function's coverage mappings into a buffer.
    llvm::build_byte_buffer(|buffer| {
        coverageinfo::write_mapping_to_buffer(
            virtual_file_mapping.into_vec(),
            expressions,
            mapping_regions,
            buffer,
        );
    })
}

/// Construct coverage map header and the array of function records, and combine them into the
/// coverage map. Save the coverage map data into the LLVM IR as a static global using a
/// specific, well-known section and name.
fn generate_coverage_map<'ll>(
    cx: &CodegenCx<'ll, '_>,
    version: u32,
    filenames_size: usize,
    filenames_val: &'ll llvm::Value,
) -> &'ll llvm::Value {
    debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);

    // Create the coverage data header (Note, fields 0 and 2 are now always zero,
    // as of `llvm::coverage::CovMapVersion::Version4`.)
    let zero_was_n_records_val = cx.const_u32(0);
    let filenames_size_val = cx.const_u32(filenames_size as u32);
    let zero_was_coverage_size_val = cx.const_u32(0);
    let version_val = cx.const_u32(version);
    let cov_data_header_val = cx.const_struct(
        &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
        /*packed=*/ false,
    );

    // Create the complete LLVM coverage data value to add to the LLVM IR
    cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false)
}

/// Construct a function record and combine it with the function's coverage mapping data.
/// Save the function record into the LLVM IR as a static global using a
/// specific, well-known section and name.
fn save_function_record(
    cx: &CodegenCx<'_, '_>,
    covfun_section_name: &str,
    mangled_function_name: &str,
    source_hash: u64,
    filenames_ref: u64,
    coverage_mapping_buffer: Vec<u8>,
    is_used: bool,
) {
    // Concatenate the encoded coverage mappings
    let coverage_mapping_size = coverage_mapping_buffer.len();
    let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer);

    let func_name_hash = coverageinfo::hash_bytes(mangled_function_name.as_bytes());
    let func_name_hash_val = cx.const_u64(func_name_hash);
    let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32);
    let source_hash_val = cx.const_u64(source_hash);
    let filenames_ref_val = cx.const_u64(filenames_ref);
    let func_record_val = cx.const_struct(
        &[
            func_name_hash_val,
            coverage_mapping_size_val,
            source_hash_val,
            filenames_ref_val,
            coverage_mapping_val,
        ],
        /*packed=*/ true,
    );

    coverageinfo::save_func_record_to_mod(
        cx,
        covfun_section_name,
        func_name_hash,
        func_record_val,
        is_used,
    );
}

/// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for
/// the functions that went through codegen; such as public functions and "used" functions
/// (functions referenced by other "used" or public items). Any other functions considered unused,
/// or "Unreachable", were still parsed and processed through the MIR stage, but were not
/// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but
/// that flag is known to cause other errors, when combined with `-C instrument-coverage`; and
/// `-Clink-dead-code` will not generate code for unused generic functions.)
///
/// We can find the unused functions (including generic functions) by the set difference of all MIR
/// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`codegenned_and_inlined_items`).
///
/// These unused functions don't need to be codegenned, but we do need to add them to the function
/// coverage map (in a single designated CGU) so that we still emit coverage mappings for them.
/// We also end up adding their symbol names to a special global array that LLVM will include in
/// its embedded coverage data.
fn add_unused_functions(cx: &CodegenCx<'_, '_>) {
    assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());

    let tcx = cx.tcx;

    let eligible_def_ids = tcx.mir_keys(()).iter().filter_map(|local_def_id| {
        let def_id = local_def_id.to_def_id();
        let kind = tcx.def_kind(def_id);
        // `mir_keys` will give us `DefId`s for all kinds of things, not
        // just "functions", like consts, statics, etc. Filter those out.
        if !matches!(kind, DefKind::Fn | DefKind::AssocFn | DefKind::Closure) {
            return None;
        }

        // FIXME(79651): Consider trying to filter out dummy instantiations of
        // unused generic functions from library crates, because they can produce
        // "unused instantiation" in coverage reports even when they are actually
        // used by some downstream crate in the same binary.

        Some(local_def_id.to_def_id())
    });

    let codegenned_def_ids = codegenned_and_inlined_items(tcx);

    // For each `DefId` that should have coverage instrumentation but wasn't
    // codegenned, add it to the function coverage map as an unused function.
    for def_id in eligible_def_ids.filter(|id| !codegenned_def_ids.contains(id)) {
        // Skip any function that didn't have coverage data added to it by the
        // coverage instrumentor.
        let body = tcx.instance_mir(ty::InstanceDef::Item(def_id));
        let Some(function_coverage_info) = body.function_coverage_info.as_deref() else {
            continue;
        };

        debug!("generating unused fn: {def_id:?}");
        let instance = declare_unused_fn(tcx, def_id);
        add_unused_function_coverage(cx, instance, function_coverage_info);
    }
}

/// All items participating in code generation together with (instrumented)
/// items inlined into them.
fn codegenned_and_inlined_items(tcx: TyCtxt<'_>) -> DefIdSet {
    let (items, cgus) = tcx.collect_and_partition_mono_items(());
    let mut visited = DefIdSet::default();
    let mut result = items.clone();

    for cgu in cgus {
        for item in cgu.items().keys() {
            if let mir::mono::MonoItem::Fn(ref instance) = item {
                let did = instance.def_id();
                if !visited.insert(did) {
                    continue;
                }
                let body = tcx.instance_mir(instance.def);
                for block in body.basic_blocks.iter() {
                    for statement in &block.statements {
                        let mir::StatementKind::Coverage(_) = statement.kind else { continue };
                        let scope = statement.source_info.scope;
                        if let Some(inlined) = scope.inlined_instance(&body.source_scopes) {
                            result.insert(inlined.def_id());
                        }
                    }
                }
            }
        }
    }

    result
}

fn declare_unused_fn<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::Instance<'tcx> {
    ty::Instance::new(
        def_id,
        ty::GenericArgs::for_item(tcx, def_id, |param, _| {
            if let ty::GenericParamDefKind::Lifetime = param.kind {
                tcx.lifetimes.re_erased.into()
            } else {
                tcx.mk_param_from_def(param)
            }
        }),
    )
}

fn add_unused_function_coverage<'tcx>(
    cx: &CodegenCx<'_, 'tcx>,
    instance: ty::Instance<'tcx>,
    function_coverage_info: &'tcx mir::coverage::FunctionCoverageInfo,
) {
    // An unused function's mappings will automatically be rewritten to map to
    // zero, because none of its counters/expressions are marked as seen.
    let function_coverage = FunctionCoverageCollector::unused(instance, function_coverage_info);

    if let Some(coverage_context) = cx.coverage_context() {
        coverage_context.function_coverage_map.borrow_mut().insert(instance, function_coverage);
    } else {
        bug!("Could not get the `coverage_context`");
    }
}